1
|
Witkiewitz K, Leggio L. Sex and gender differences in alcohol use disorder: Quo Vadis? Alcohol 2025; 123:121-125. [PMID: 39837376 DOI: 10.1016/j.alcohol.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Affiliation(s)
- Katie Witkiewitz
- Center on Alcohol, Substance Use and Addictions, University of New Mexico, Albuquerque, NM, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
2
|
Sharma R, Berendzen KM, Everitt A, Wang B, Williams G, Wang S, Quine K, Larios RD, Long KLP, Hoglen N, Sulaman BA, Heath MC, Sherman M, Klinkel R, Cai A, Galo D, Caamal LC, Goodwin NL, Beery A, Bales KL, Pollard KS, Willsey AJ, Manoli DS. Oxytocin receptor controls distinct components of pair bonding and development in prairie voles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.613753. [PMID: 39399774 PMCID: PMC11468833 DOI: 10.1101/2024.09.25.613753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Oxytocin receptor (Oxtr) signaling influences complex social behaviors in diverse species, including social monogamy in prairie voles. How Oxtr regulates specific components of social attachment behaviors and the neural mechanisms mediating them remains unknown. Here, we examine prairie voles lacking Oxtr and demonstrate that pair bonding comprises distinct behavioral modules: the preference for a bonded partner, and the rejection of novel potential mates. Our longitudinal study of social attachment shows that Oxtr sex-specifically influences early interactions between novel partners facilitating the formation of partner preference. Additionally, Oxtr suppresses promiscuity towards novel potential mates following pair bonding, contributing to rejection. Oxtr function regulates coordinated patterns of gene expression in regions implicated in attachment behaviors and regulates the expression of oxytocin in the paraventricular nucleus of the hypothalamus, a principal source of oxytocin. Thus, Oxtr controls genetically separable components of pair bonding behaviors and coordinates development of the neural substrates of attachment.
Collapse
|
3
|
Johnson MC, Zweig JA, Zhang Y, Nunez L, Ryabinina OP, Hibert M, Ryabinin AE. Effects of oxytocin receptor agonism on acquisition and expression of pair bonding in male prairie voles. Transl Psychiatry 2024; 14:286. [PMID: 39009600 PMCID: PMC11251033 DOI: 10.1038/s41398-024-02993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
There is much interest in targeting the activity in the oxytocin system to regulate social bonding. However, studies with exogenous administration of oxytocin face the caveats of its low stability, poor brain permeability and insufficient receptor specificity. The use of a small-molecule oxytocin receptor-specific agonist could overcome these caveats. Prior to testing the potential effects of a brain-penetrant oxytocin receptor agonist in clinical settings, it is important to assess how such an agonist would affect social bonds in animal models. The facultatively monogamous prairie voles (Microtus ochrogaster), capable of forming long-term social attachments between adult individuals, are an ideal rodent model for such testing. Therefore, in a series of experiments we investigated the effects of the recently developed oxytocin receptor-specific agonist LIT-001 on the acquisition and expression of partner preference, a well-established model of pair bonding, in prairie voles. LIT-001 (10 mg/kg, intraperitoneal), as expected, facilitated the acquisition of partner preference when administered prior to a 4hr cohabitation. In contrast, while animals injected with vehicle after the 4hr cohabitation exhibited significant partner preference, animals that were injected with LIT-001 did not show such partner preference. This result suggests that OXTR activation during expression of pair bonding can inhibit partner preference. The difference in effects of LIT-001 on acquisition versus expression was not due to basal differences in partner preference between the experiments, as LIT-001 had no significant effects on expression of partner preference if administered following a shorter (2hr-long) cohabitation. Instead, this difference agrees with the hypothesis that the activation of oxytocin receptors acts as a signal of presence of a social partner. Our results indicate that the effects of pharmacological activation of oxytocin receptors crucially depend on the phase of social attachments.
Collapse
Affiliation(s)
- Michael C Johnson
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jonathan A Zweig
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Yangmiao Zhang
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Louis Nunez
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Olga P Ryabinina
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Marcel Hibert
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS/Université de Strasbourg, Strasbourg, IL, France
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
4
|
Johnson MC, Zweig JA, Zhang Y, Ryabinin AE. Effects of social housing on alcohol intake in mice depend on the non-social environment. Front Behav Neurosci 2024; 18:1380031. [PMID: 38817806 PMCID: PMC11137225 DOI: 10.3389/fnbeh.2024.1380031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Background Excessive alcohol consumption leads to serious health problems. Mechanisms regulating the consumption of alcohol are insufficiently understood. Previous preclinical studies suggested that non-social environmental and social environmental complexities can regulate alcohol consumption in opposite directions. However, previous studies did not include all conditions and/or did not include female rodents. Therefore, in this study, we examined the effects of social versus single housing in standard versus non-standard housing conditions in male and female mice. Methods Adult C57BL/6 J mice were housed in either standard shoebox cages or in automated Herdsman 2 (HM2) cages and exposed to a two-bottle choice procedure with 3% or 6% ethanol versus water for 5 days. The HM2 cages use radiotracking devices to measure the fluid consumption of individual mice in an undisturbed and automated manner. In both housing conditions, mice were housed either at one or at four per cage. Results In standard cages, group housing of animals decreased alcohol consumption and water consumption. In HM2 cages, group housing significantly increased ethanol preference and decreased water intake. There were no significant differences in these effects between male and female animals. These observations were similar for 3 and 6% ethanol solutions but were more pronounced for the latter. The effects of social environment on ethanol preference in HM2 cages were accompanied by an increase in the number of approaches to the ethanol solution and a decrease in the number of approaches to water. The differences in ethanol intake could not be explained by differences in locomotor or exploratory activity as socially housed mice showed fewer non-consummatory visits to the ethanol solutions than single-housed animals. In addition, we observed that significant changes in behaviors measuring the approach to the fluid were not always accompanied by significant changes in fluid consumption, and vice versa, suggesting that it is important to assess both measures of motivation to consume alcohol. Conclusion Our results indicate that the direction of the effects of social environment on alcohol intake in mice depends on the non-social housing environment. Understanding mechanisms by which social and non-social housing conditions modulate alcohol intake could suggest approaches to counteract environmental factors enhancing hazardous alcohol consumption.
Collapse
Affiliation(s)
| | | | | | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
5
|
Ryabinin A, Johnson M, Zweig J, Zhang Y, Nunez L, Ryabinina O, Hibert M. Effects of Oxytocin Receptor Agonism on Acquisition and Expression of Pair Bonding in Male Prairie Voles. RESEARCH SQUARE 2024:rs.3.rs-4351761. [PMID: 38798348 PMCID: PMC11118693 DOI: 10.21203/rs.3.rs-4351761/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
There is much interest in targeting the activity in the oxytocin system to regulate social bonding. However, studies with exogenous administration of oxytocin face the caveats of its low stability, poor brain permeability and insufficient receptor specificity. The use of a small-molecule oxytocin receptor-specific agonist could overcome these caveats. Prior to testing the potential effects of a brain-penetrant oxytocin receptor agonist in clinical settings, it is important to assess how such an agonist would affect social bonds in animal models. The facultatively monogamous prairie voles (Microtus ochrogaster), capable of forming long-term social attachments between adult individuals, are an ideal rodent model for such testing. Therefore, in a series of experiments we investigated the effects of the recently developed oxytocin receptor-specific agonist LIT-001 on the acquisition and expression of partner preference, a well-established model of pair bonding, in prairie voles. LIT-001 (10 mg/kg, intraperitoneal), as expected, facilitated the acquisition of partner preference when administered prior to a 4-hour cohabitation. In contrast, while animals injected with vehicle after the 4-hour cohabitation exhibited significant partner preference, animals that were injected with LIT-001 did not show such partner preference. This result suggests that OXTR activation during expression of pair bonding can inhibit partner preference. The difference in effects of LIT-001 on acquisition versus expression was not due to basal differences in partner preference between the experiments, as LIT-001 had no significant effects on expression of partner preference if administered following a shorter (2 hour-long) cohabitation. Instead, this difference agrees with the hypothesis that the activation of oxytocin receptors acts as a signal of presence of a social partner. Our results indicate that the effects of pharmacological activation of oxytocin receptors crucially depend on the phase of social attachments.
Collapse
|
6
|
Berendzen KM, Bales KL, Manoli DS. Attachment across the lifespan: Examining the intersection of pair bonding neurobiology and healthy aging. Neurosci Biobehav Rev 2023; 153:105339. [PMID: 37536581 PMCID: PMC11073483 DOI: 10.1016/j.neubiorev.2023.105339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Increasing evidence suggests that intact social bonds are protective against age-related morbidity, while bond disruption and social isolation increase the risk for multiple age-related diseases. Social attachments, the enduring, selective bonds formed between individuals, are thus essential to human health. Socially monogamous species like the prairie vole (M. ochrogaster) form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment and the poorly understood connection between social bonds and health. In this review, we explore several potential areas of focus emerging from data in humans and other species associating attachment and healthy aging, and evidence from prairie voles that may clarify this link. We examine gaps in our understanding of social cognition and pair bond behavior. Finally, we discuss physiologic pathways related to pair bonding that promote resilience to the processes of aging and age-related disease. Advances in the development of molecular genetic tools in monogamous species will allow us to bridge the mechanistic gaps presented and identify conserved research and therapeutic targets relevant to human health and aging.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
| | - Karen L. Bales
- Department of Psychology, University of California, Davis; Davis, CA 95616, USA
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis; Davis, CA 95616, USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Neurosciences Graduate Program, University of California, San Francisco; San Francisco, CA 95158, USA
| |
Collapse
|
7
|
Gerasimenko M, Higashida H. Remission of social behavior impairment by oral administration of a precursor of NAD in CD157, but not in CD38, knockout mice. Front Immunol 2023; 14:1166609. [PMID: 37215105 PMCID: PMC10192747 DOI: 10.3389/fimmu.2023.1166609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a substrate of adenosine diphosphate (ADP)-ribosyl cyclase and is catalyzed to cyclic ADP-ribose (cADPR) by CD38 and/or CD157. cADPR, a Ca2+ mobilizing second messenger, is critical in releasing oxytocin from the hypothalamus into the brain. Although NAD precursors effectively play a role in neurodegenerative disorders, muscular dystrophy, and senescence, the beneficial effects of elevating NAD by NAD precursor supplementation on brain function, especially social interaction, and whether CD38 is required in this response, has not been intensely studied. Here, we report that oral gavage administration of nicotinamide riboside, a perspective NAD precursor with high bioavailability, for 12 days did not show any suppressive or increasing effects on sociability (mouse's interest in social targets compared to non-social targets) in both CD157KO and CD38KO male mice models in a three-chamber test. CD157KO and CD38KO mice displayed no social preference (that is, more interest towards a novel mouse than a familiar one) behavior. This defect was rescued after oral gavage administration of nicotinamide riboside for 12 days in CD157KO mice, but not in CD38KO mice. Social memory was not observed in CD157KO and CD38KO mice; subsequently, nicotinamide riboside administration had no effect on social memory. Together with the results that nicotinamide riboside had essentially no or little effect on body weight during treatment in CD157KO mice, nicotinamide riboside is less harmful and has beneficial effect on defects in recovery from social behavioral, for which CD38 is required in mice.
Collapse
Affiliation(s)
- Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
8
|
Kirkland JM, Edgar EL, Patel I, Kopec AM. Impaired microglia-mediated synaptic pruning in the nucleus accumbens during adolescence results in persistent dysregulation of familiar, but not novel social interactions in sex-specific ways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539115. [PMID: 37205324 PMCID: PMC10187149 DOI: 10.1101/2023.05.02.539115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Evolutionarily conserved, peer-directed social behaviors are essential to participate in many aspects of human society. These behaviors directly impact psychological, physiological, and behavioral maturation. Adolescence is an evolutionarily conserved period during which reward-related behaviors, including social behaviors, develop via developmental plasticity in the mesolimbic dopaminergic 'reward' circuitry of the brain. The nucleus accumbens (NAc) is an intermediate reward relay center that develops during adolescence and mediates both social behaviors and dopaminergic signaling. In several developing brain regions, synaptic pruning mediated by microglia, the resident immune cells of the brain, is important for normal behavioral development. In rats, we previously demonstrated that microglial synaptic pruning also mediates NAc and social development during sex-specific adolescent periods and via sex-specific synaptic pruning targets. In this report, we demonstrate that interrupting microglial pruning in NAc during adolescence persistently dysregulates social behavior towards a familiar, but not novel social partner in both sexes, via sex-specific behavioral expression. This leads us to infer that naturally occurring NAc pruning serves to reduce social behaviors primarily directed toward a familiar conspecific in both sexes, but in sex-specific ways.
Collapse
Affiliation(s)
- Julia M. Kirkland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Erin L. Edgar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ishan Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ashley M. Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| |
Collapse
|
9
|
Berendzen KM, Sharma R, Mandujano MA, Wei Y, Rogers FD, Simmons TC, Seelke AMH, Bond JM, Larios R, Goodwin NL, Sherman M, Parthasarthy S, Espineda I, Knoedler JR, Beery A, Bales KL, Shah NM, Manoli DS. Oxytocin receptor is not required for social attachment in prairie voles. Neuron 2023; 111:787-796.e4. [PMID: 36708707 PMCID: PMC10150797 DOI: 10.1016/j.neuron.2022.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/24/2022] [Accepted: 12/08/2022] [Indexed: 01/28/2023]
Abstract
Prairie voles are among a small group of mammals that display long-term social attachment between mating partners. Many pharmacological studies show that signaling via the oxytocin receptor (Oxtr) is critical for the display of social monogamy in these animals. We used CRISPR mutagenesis to generate three different Oxtr-null mutant prairie vole lines. Oxtr mutants displayed social attachment such that males and females showed a behavioral preference for their mating partners over a stranger of the opposite sex, even when assayed using different experimental setups. Mothers lacking Oxtr delivered viable pups, and parents displayed care for their young and raised them to the weanling stage. Together, our studies unexpectedly reveal that social attachment, parturition, and parental behavior can occur in the absence of Oxtr signaling in prairie voles.
Collapse
Affiliation(s)
- Kristen M Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Ruchira Sharma
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | | | - Yichao Wei
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Forrest D Rogers
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | - Trenton C Simmons
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | - Adele M H Seelke
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | - Jessica M Bond
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | - Rose Larios
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA; Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 95158, USA
| | - Nastacia L Goodwin
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Sherman
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Srinivas Parthasarthy
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Isidero Espineda
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph R Knoedler
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Annaliese Beery
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Karen L Bales
- Department of Psychology, University of California, Davis, Davis, CA, USA; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Nirao M Shah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| | - Devanand S Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Berendzen KM, Manoli DS. Rethinking the Architecture of Attachment: New Insights into the Role for Oxytocin Signaling. AFFECTIVE SCIENCE 2022; 3:734-748. [PMID: 36519145 PMCID: PMC9743890 DOI: 10.1007/s42761-022-00142-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Social attachments, the enduring bonds between individuals and groups, are essential to health and well-being. The appropriate formation and maintenance of social relationships depend upon a number of affective processes, including stress regulation, motivation, reward, as well as reciprocal interactions necessary for evaluating the affective state of others. A genetic, molecular, and neural circuit level understanding of social attachments therefore provides a powerful substrate for probing the affective processes associated with social behaviors. Socially monogamous species form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment. Now, molecular genetic tools permit manipulations in monogamous species. Studies using these tools reveal new insights into the genetic and neuroendocrine factors that design and control the neural architecture underlying attachment behavior. We focus this discussion on the prairie vole and oxytocinergic signaling in this and related species as a model of attachment behavior that has been studied in the context of genetic and pharmacological manipulations. We consider developmental processes that impact the demonstration of bonding behavior across genetic backgrounds, the modularity of mechanisms underlying bonding behaviors, and the distributed circuitry supporting these behaviors. Incorporating such theoretical considerations when interpreting reverse genetic studies in the context of the rich ethological and pharmacological data collected in monogamous species provides an important framework for studies of attachment behavior in both animal models and studies of human relationships.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 95158 USA
| |
Collapse
|
11
|
López-Gutiérrez MF, Mejía-Chávez S, Alcauter S, Portillo W. The neural circuits of monogamous behavior. Front Neural Circuits 2022; 16:978344. [PMID: 36247729 PMCID: PMC9559370 DOI: 10.3389/fncir.2022.978344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The interest in studying the neural circuits related to mating behavior and mate choice in monogamous species lies in the parallels found between human social structure and sexual behavior and that of other mammals that exhibit social monogamy, potentially expanding our understanding of human neurobiology and its underlying mechanisms. Extensive research has suggested that social monogamy, as opposed to non-monogamy in mammals, is a consequence of the neural encoding of sociosensory information from the sexual partner with an increased reward value. Thus, the reinforced value of the mate outweighs the reward value of mating with any other potential sexual partners. This mechanism reinforces the social relationship of a breeding pair, commonly defined as a pair bond. In addition to accentuated prosocial behaviors toward the partner, other characteristic behaviors may appear, such as territorial and partner guarding, selective aggression toward unfamiliar conspecifics, and biparental care. Concomitantly, social buffering and distress upon partner separation are also observed. The following work intends to overview and compare known neural and functional circuits that are related to mating and sexual behavior in monogamous mammals. We will particularly discuss reports on Cricetid rodents of the Microtus and Peromyscus genus, and New World primates (NWP), such as the Callicebinae subfamily of the titi monkey and the marmoset (Callithrix spp.). In addition, we will mention the main factors that modulate the neural circuits related to social monogamy and how that modulation may reflect phenotypic differences, ultimately creating the widely observed diversity in social behavior.
Collapse
Affiliation(s)
| | | | | | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
12
|
Wei D, Tsheringla S, McPartland JC, Allsop AZASA. Combinatorial approaches for treating neuropsychiatric social impairment. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210051. [PMID: 35858103 PMCID: PMC9274330 DOI: 10.1098/rstb.2021.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/13/2022] [Indexed: 01/30/2023] Open
Abstract
Social behaviour is an essential component of human life and deficits in social function are seen across multiple psychiatric conditions with high morbidity. However, there are currently no FDA-approved treatments for social dysfunction. Since social cognition and behaviour rely on multiple signalling processes acting in concert across various neural networks, treatments aimed at social function may inherently require a combinatorial approach. Here, we describe the social neurobiology of the oxytocin and endocannabinoid signalling systems as well as translational evidence for their use in treating symptoms in the social domain. We leverage this systems neurobiology to propose a network-based framework that involves pharmacology, psychotherapy, non-invasive brain stimulation and social skills training to combinatorially target trans-diagnostic social impairment. Lastly, we discuss the combined use of oxytocin and endocannabinoids within our proposed framework as an illustrative strategy to treat specific aspects of social function. Using this framework provides a roadmap for actionable treatment strategies for neuropsychiatric social impairment. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Don Wei
- Department of Psychiatry, UCLA, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
13
|
Quintana GR, Mac Cionnaith CE, Pfaus JG. Behavioral, Neural, and Molecular Mechanisms of Conditioned Mate Preference: The Role of Opioids and First Experiences of Sexual Reward. Int J Mol Sci 2022; 23:8928. [PMID: 36012194 PMCID: PMC9409009 DOI: 10.3390/ijms23168928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
Although mechanisms of mate preference are thought to be relatively hard-wired, experience with appetitive and consummatory sexual reward has been shown to condition preferences for partner related cues and even objects that predict sexual reward. Here, we reviewed evidence from laboratory species and humans on sexually conditioned place, partner, and ejaculatory preferences in males and females, as well as the neurochemical, molecular, and epigenetic mechanisms putatively responsible. From a comprehensive review of the available data, we concluded that opioid transmission at μ opioid receptors forms the basis of sexual pleasure and reward, which then sensitizes dopamine, oxytocin, and vasopressin systems responsible for attention, arousal, and bonding, leading to cortical activation that creates awareness of attraction and desire. First experiences with sexual reward states follow a pattern of sexual imprinting, during which partner- and/or object-related cues become crystallized by conditioning into idiosyncratic "types" that are found sexually attractive and arousing. These mechanisms tie reward and reproduction together, blending proximate and ultimate causality in the maintenance of variability within a species.
Collapse
Affiliation(s)
- Gonzalo R. Quintana
- Departamento de Psicología y Filosofía, Facultad de Ciencias Sociales y Jurídicas, Universidad de Tarapacá, Arica 1000007, Chile
| | - Conall E. Mac Cionnaith
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC H4B1R6, Canada
| | - James G. Pfaus
- Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, 182 00 Prague, Czech Republic
- Division of Sexual Neuroscience, Center for Sexual Health and Intervention, Czech National Institute of Mental Health, 250 67 Klecany, Czech Republic
| |
Collapse
|
14
|
|
15
|
Wirobski G, Range F, Schaebs FS, Palme R, Deschner T, Marshall-Pescini S. Endocrine changes related to dog domestication: Comparing urinary cortisol and oxytocin in hand-raised, pack-living dogs and wolves. Horm Behav 2021; 128:104901. [PMID: 33245878 DOI: 10.1016/j.yhbeh.2020.104901] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/02/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Dogs are exceptionally well adapted to life close to humans, and alterations in their endocrine system during the domestication process may be an underlying mechanism. In particular, it has been suggested that low circulating cortisol concentrations in conjunction with simultaneously high oxytocin concentrations may have resulted in dogs' increased docility ('selection for tameness' hypothesis) and heightened propensity to interact and form relationships with humans ('hypersociability' hypothesis) compared to wolves. To investigate this, we analyzed cortisol and oxytocin metabolite concentrations from urine samples of hand-raised, pack-living domestic dogs and their non-domestic relatives, grey wolves. Based on the hypotheses outlined above, we predicted lower cortisol but higher oxytocin concentrations in dogs than wolves. In contrast to our prediction, we found higher cortisol concentrations in dogs than wolves. However, oxytocin concentrations were higher in dogs compared to wolves although the effect was relatively small. Indeed, male dogs had the highest oxytocin concentrations while female dogs' oxytocin concentrations were comparable to wolves'. Feeding status, reproductive phase, and conspecific social interactions also significantly affected cortisol and oxytocin concentrations. Furthermore, we compared two methods of correcting for variable water content of urine samples. We discuss our results in light of physiological and behavioral changes during domestication and highlight the importance of accounting for confounding variables in future studies.
Collapse
Affiliation(s)
- G Wirobski
- Domestication Lab, Wolf Science Center, Konrad-Lorenz-Institute for Ethology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - F Range
- Domestication Lab, Wolf Science Center, Konrad-Lorenz-Institute for Ethology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - F S Schaebs
- University of Leipzig, ZLS, Prager Str. 34, 04317 Leipzig, Germany.
| | - R Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - T Deschner
- Endocrinology Lab, Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - S Marshall-Pescini
- Domestication Lab, Wolf Science Center, Konrad-Lorenz-Institute for Ethology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
16
|
Neural mechanisms of aggression across species. Nat Neurosci 2020; 23:1317-1328. [PMID: 33046890 DOI: 10.1038/s41593-020-00715-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
Aggression is a social behavior essential for securing resources and defending oneself and family. Thanks to its indispensable function in competition and thus survival, aggression exists widely across animal species, including humans. Classical works from Tinbergen and Lorenz concluded that instinctive behaviors including aggression are mediated by hardwired brain circuitries that specialize in processing certain sensory inputs to trigger stereotyped motor outputs. They further suggest that instinctive behaviors are influenced by an animal's internal state and past experiences. Following this conceptual framework, here we review our current understanding regarding the neural substrates underlying aggression generation, highlighting an evolutionarily conserved 'core aggression circuit' composed of four subcortical regions. We further discuss the neural mechanisms that support changes in aggression based on the animal's internal state. We aim to provide an overview of features of aggression and the relevant neural substrates across species, highlighting findings in rodents, primates and songbirds.
Collapse
|
17
|
Gerasimenko M, Cherepanov SM, Furuhara K, Lopatina O, Salmina AB, Shabalova AA, Tsuji C, Yokoyama S, Ishihara K, Brenner C, Higashida H. Nicotinamide riboside supplementation corrects deficits in oxytocin, sociability and anxiety of CD157 mutants in a mouse model of autism spectrum disorder. Sci Rep 2020; 10:10035. [PMID: 32572044 PMCID: PMC7308284 DOI: 10.1038/s41598-019-57236-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OT) is a critical molecule for social recognition and memory that mediates social and emotional behaviours. In addition, OT acts as an anxiolytic factor and is released during stress. Based on the activity of CD38 as an enzyme that produces the calcium-mobilizing second messenger cyclic ADP-ribose (cADPR), CD157, a sister protein of CD38, has been considered a candidate mediator for the production and release of OT and its social engagement and anti-anxiety functions. However, the limited expression of CD157 in the adult mouse brain undermined confidence that CD157 is an authentic and/or actionable molecular participant in OT-dependent social behaviour. Here, we show that CD157 knockout mice have low levels of circulating OT in cerebrospinal fluid, which can be corrected by the oral administration of nicotinamide riboside, a recently discovered vitamin precursor of nicotinamide adenine dinucleotide (NAD). NAD is the substrate for the CD157- and CD38-dependent production of cADPR. Nicotinamide riboside corrects social deficits and fearful and anxiety-like behaviours in CD157 knockout males. These results suggest that elevating NAD levels with nicotinamide riboside may allow animals with cADPR- and OT-forming deficits to overcome these deficits and function more normally.
Collapse
Affiliation(s)
- Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
- Department of Socioneurosciences, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa Campus, Kanazawa, 920-8640, Japan
| | - Stanislav M Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Kazumi Furuhara
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Olga Lopatina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasenetsky, Krasnoyarsk, 660022, Russia
| | - Alla B Salmina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasenetsky, Krasnoyarsk, 660022, Russia
| | - Anna A Shabalova
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
- Department of Socioneurosciences, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa Campus, Kanazawa, 920-8640, Japan
| | - Chiharu Tsuji
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Katsuhiko Ishihara
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan.
- Department of Socioneurosciences, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa Campus, Kanazawa, 920-8640, Japan.
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasenetsky, Krasnoyarsk, 660022, Russia.
| |
Collapse
|
18
|
Duque JF, Rasmussen T, Rodriguez A, Stevens JR. The role of mesotocin on social bonding in pinyon jays. Ethology 2020. [DOI: 10.1111/eth.12990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Juan F. Duque
- University of Nebraska‐Lincoln Lincoln Nebraska
- Arcadia University Glenside Pennsylvania
| | | | | | | |
Collapse
|
19
|
Clinical potential of oxytocin in autism spectrum disorder: current issues and future perspectives. Behav Pharmacol 2019; 29:1-12. [PMID: 28857771 DOI: 10.1097/fbp.0000000000000341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effects of oxytocin on social cognition and behavior have recently attracted considerable attention. In particular, oxytocin has been proposed as a novel therapeutic for psychiatric disorders with social deficits such as autism spectrum disorders. This review provides a brief overview of behavioral and neural responses to oxytocin manipulations in humans and animal models. Although the differences in findings between human and animal studies should be interpreted carefully, shared behavioral phenotypes have been recognized, such as social bonding, social responses, and recognition and usage of social cues. Previous literature suggests that the neural effects of oxytocin in humans and animals overlap in the prefrontal, limbic, and paralimbic cortices. Oxytocin-induced alterations in these regions may indicate a fundamental basis for how oxytocin modulates social behaviors and facilitate the discovery of new pharmaceutical targets for treating social deficits.
Collapse
|
20
|
Piva M, Chang SWC. An integrated framework for the role of oxytocin in multistage social decision-making. Am J Primatol 2018; 80:e22735. [PMID: 29350419 DOI: 10.1002/ajp.22735] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 01/13/2023]
Abstract
Interest in the effects of oxytocin on social behavior has persisted even as an overarching theory describing these effects has remained largely elusive. Some of the earliest studies on the effects of oxytocin on social decision-making indicated that oxytocin might enhance prosocial actions directed toward others. This led to development of the prosocial hypothesis, which stipulates that oxytocin specifically enhances prosocial choices. However, further work indicated that oxytocin administration could elicit antisocial behaviors as well in certain social situations, highlighting the importance of context-dependent effects. At least two prominent hypotheses have been used to explain these seemingly contradictory findings. The social salience hypothesis indicates that the effects of oxytocin can be conceptualized as a general increase in the salience of social stimuli in the environment. Distinctly, the approach/withdrawal hypothesis stipulates that oxytocin enhances approach behaviors and decreases withdrawal behaviors. These phenomenologically motivated hypotheses regarding the effects of oxytocin on social behavior have created controversies in the field. In this review, we present a multistage framework of social decision-making designed to unify these disparate theories in a process common to all social decisions. We conceptualize this process as involving multiple distinct computational steps, including sensory input, sensory perception, valuation, decision formulation, and behavioral output. Iteratively, these steps generate social behaviors, and oxytocin could be acting on any of these steps to exert its effects. In support of this framework, we examine both behavioral and neural evidence across rodents, non-human primates, and humans, determining at what point in our multistage framework oxytocin could be eliciting its socially relevant effects. Finally, we postulate based on our framework that the prosocial, social salience, and approach/withdrawal hypotheses may not be mutually exclusive and could explain the influence of oxytocin on social behavior to different extents depending on context.
Collapse
Affiliation(s)
- Matthew Piva
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut
| | - Steve W C Chang
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychology, Yale University, New Haven, Connecticut.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut.,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
21
|
Dzirbíková Z, Talarovičová A, Štefánik P, Olexová L, Kršková L. Testosterone enhancement during pregnancy influences social coping and gene expression of oxytocin and vasopressin in the brain of adult rats. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Petersson M, Uvnäs-Moberg K, Nilsson A, Gustafson LL, Hydbring-Sandberg E, Handlin L. Oxytocin and Cortisol Levels in Dog Owners and Their Dogs Are Associated with Behavioral Patterns: An Exploratory Study. Front Psychol 2017; 8:1796. [PMID: 29081760 PMCID: PMC5645535 DOI: 10.3389/fpsyg.2017.01796] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/28/2017] [Indexed: 12/30/2022] Open
Abstract
We have previously shown that dog-owner interaction results in increasing oxytocin levels in owners and dogs, decreasing cortisol levels in owners but increasing cortisol levels in dogs. The present study aimed to further investigate whether oxytocin and cortisol levels in the previously tested owners and dogs were associated with their behaviors during the interaction experiment. Ten female volunteer dog-owners and their male Labrador dogs participated in a 60 min interaction experiment with interaction taking place during 0-3 min and blood samples for analysis of oxytocin and cortisol were collected at 0, 1, 3, 5, 15, 30, and 60 min. The entire experiment was videotaped and the following variables were noted; the different types (stroking, scratching, patting and activating touch, i.e., scratching and patting combined) as well as the frequency of touch applied by the owner, the number of times the owner touched her dog, the dog's positions and time spent in each position. Correlations were analyzed between the behavioral variables and basal oxytocin levels, maximum oxytocin levels, delta oxytocin levels, basal cortisol levels and cortisol levels at 15 min. Owners with low oxytocin levels before and during the interaction touched their dogs more frequently (0 min: Rs = -0.683, p = 0.042; oxytocin maximum: Rs = -0.783, p = 0.013). The lower the dogs' oxytocin levels during the interaction, the more stroking they received (Rs = -0.717, p = 0.041). The more frequently activating touch was applied by the owner, the higher the dogs' cortisol levels became (15 min: Rs = 0.661, p = 0.038). The higher the owners' maximum oxytocin level the fewer position changes the dogs made (Rs = -0.817, p = 0.007) and the shorter time they spent sitting (Rs = -0.786, p = 0.036), whereas the higher the owners' basal cortisol levels, the longer time the dogs spent standing (0 min: Rs = 0.683, p = 0.041). In conclusion, oxytocin and cortisol levels, both in dogs and in their owners, are associated with the way the owners interact with their dogs and also with behaviors caused by the interaction.
Collapse
Affiliation(s)
- Maria Petersson
- Endocrine and Diabetes Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Uvnäs-Moberg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Anne Nilsson
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Lise-Lotte Gustafson
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Eva Hydbring-Sandberg
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Linda Handlin
- School of Health and Education, University of Skövde, Skövde, Sweden
| |
Collapse
|
23
|
Dynamic Associations between Testosterone, Partnering, and Sexuality During the College Transition in Women. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2017. [DOI: 10.1007/s40750-017-0076-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Rickenbacher E, Perry RE, Sullivan RM, Moita MA. Freezing suppression by oxytocin in central amygdala allows alternate defensive behaviours and mother-pup interactions. eLife 2017; 6. [PMID: 28606306 PMCID: PMC5469614 DOI: 10.7554/elife.24080] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/09/2017] [Indexed: 01/05/2023] Open
Abstract
When animals and their offspring are threatened, parents switch from self-defense to offspring protection. How self-defense is suppressed remains elusive. We postulated that suppression of the self-defense response, freezing, is gated via oxytocin acting in the centro-lateral amygdala (CeL). We found that rat dams conditioned to fear an odor, froze when tested alone, whereas if pups were present, they remained in close contact with them or targeted the threat. Furthermore, blocking oxytocin signaling in the CeL prevented the suppression of maternal freezing. Finally, pups exposed to the odor in the presence of the conditioned dam later froze when re-exposed alone. However, if oxytocin signaling in the dam had been blocked, pups failed to learn. This study provides a functional role for the well-described action of oxytocin in the central amygdala, and demonstrates that self-defense suppression allows for active pup protection and mother-pup interactions crucial for pup threat learning. DOI:http://dx.doi.org/10.7554/eLife.24080.001 Animals have many mechanisms to avoid or defend themselves against deadly encounters with predators. However, adult animals frequently put themselves at risk while protecting their more vulnerable offspring from attacks. For example, a killdeerbird with young will fake a broken wing and lead a predator away from its nest. This helps ensure that the parent’s genes live on and contribute to the survival of their species. To do this, the parent must override his or her own defense mechanisms and protect the young instead of themselves. Little is known about the exact mechanisms that allow animals to suppress their own defense mechanisms while protecting their young. Freezing is one tactic that animals will use when they are unable to escape a predator. Previously, studies have shown that the hormone oxytocin, which is produced in the brain, suppresses freezing behavior. Oxytocin plays an important role in birth and breastfeeding, but it is also known to strengthen the bond between individuals, in particular between mother and child. Until now, it was not known whether this hormone also blocks self-defense behaviors in animals protecting their offspring. Now, Rickenbacher et al. show that oxytocin does indeed block freezing behavior, enabling mother rats to protect their offspring in the face of a threatening smell. In the experiments, mother rats were taught to fear the scent of peppermint. Without their young, these rats would freeze whenever they smelled peppermint. Yet, when mother rats with their pups were exposed to the scent, they did not freeze. Instead, they tried to defend their young. Blocking oxytocin in a part of the mothers’ brains called the amygdala, however, caused them to freeze in response to the scent of peppermint, even in the presence of their pups. The experiments show that oxytocin helps mother rats suppress their self-defense mechanisms and is necessary for the mothers to protect their young. Rickenbacher et al. also showed that pups of oxytocin-treated mothers did not learn to freeze in response to the threat. But pups of untreated mothers who defended them, learned to freeze when they were exposed to the scent of peppermint. A next step will be to record neurons that produce oxytocin to better understand how the presence of the pups stimulate its production in their mothers. In addition, it is still unclear how pups learn from their mothers to freeze in response to a threat. One possibility is that the mother produces a molecule that signals danger. Identifying this molecule would be the next step. DOI:http://dx.doi.org/10.7554/eLife.24080.002
Collapse
Affiliation(s)
| | - Rosemarie E Perry
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, United States.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, United States.,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, New York, United States.,New York University Child Study Center, New York University School of Medicine, New York, United States.,Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, United States
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, New York, United States.,New York University Child Study Center, New York University School of Medicine, New York, United States.,Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, United States
| | - Marta A Moita
- Champalimaud Neuroscience Programme, LIsboa, Portugal
| |
Collapse
|
25
|
Ziegler TE, Crockford C. Neuroendocrine control in social relationships in non-human primates: Field based evidence. Horm Behav 2017; 91:107-121. [PMID: 28284710 PMCID: PMC6372243 DOI: 10.1016/j.yhbeh.2017.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 11/22/2022]
Abstract
Primates maintain a variety of social relationships and these can have fitness consequences. Research has established that different types of social relationships are unpinned by different or interacting hormonal systems, for example, the neuropeptide oxytocin influences social bonding, the steroid hormone testosterone influences dominance relationships, and paternal care is characterized by high oxytocin and low testosterone. Although the oxytocinergic system influences social bonding, it can support different types of social bonds in different species, whether pair bonds, parent-offspring bonds or friendships. It seems that selection processes shape social and mating systems and their interactions with neuroendocrine pathways. Within species, there are individual differences in the development of the neuroendocrine system: the social environment individuals are exposed to during ontogeny alters their neuroendocrine and socio-cognitive development, and later, their social interactions as adults. Within individuals, neuroendocrine systems can also have short-term effects, impacting on social interactions, such as those during hunting, intergroup encounters or food sharing, or the likelihood of cooperating, winning or losing. To understand these highly dynamic processes, extending research beyond animals in laboratory settings to wild animals living within their natural social and ecological setting may bring insights that are otherwise unreachable. Field endocrinology with neuropeptides is still emerging. We review the current status of this research, informed by laboratory studies, and identify questions particularly suited to future field studies. We focus on primate social relationships, specifically social bonds (mother-offspring, father-offspring, cooperative breeders, pair bonds and adult platonic friendships), dominance, cooperation and in-group/out-group relationships, and examine evidence with respect to the 'tend and defend' hypothesis.
Collapse
Affiliation(s)
- Toni E Ziegler
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
26
|
Banerjee P, Joy KP, Chaube R. Structural and functional diversity of nonapeptide hormones from an evolutionary perspective: A review. Gen Comp Endocrinol 2017; 241:4-23. [PMID: 27133544 DOI: 10.1016/j.ygcen.2016.04.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/09/2016] [Accepted: 04/25/2016] [Indexed: 01/08/2023]
Abstract
The article presents an overview of the comparative distribution, structure and functions of the nonapeptide hormones in chordates and non chordates. The review begins with a historical preview of the advent of the concept of neurosecretion and birth of neuroendocrine science, pioneered by the works of E. Scharrer and W. Bargmann. The sections which follow discuss different vertebrate nonapeptides, their distribution, comparison, precursor gene structures and processing, highlighting the major differences in these aspects amidst the conserved features across vertebrates. The vast literature on the anatomical characteristics of the nonapeptide secreting nuclei in the brain and their projections was briefly reviewed in a comparative framework. Recent knowledge on the nonapeptide hormone receptors and their intracellular signaling pathways is discussed and few grey areas which require deeper studies are identified. The sections on the functions and regulation of nonapeptides summarize the huge and ever increasing literature that is available in these areas. The nonapeptides emerge as key homeostatic molecules with complex regulation and several synergistic partners. Lastly, an update of the nonapeptides in non chordates with respect to distribution, site of synthesis, functions and receptors, dealt separately for each phylum, is presented. The non chordate nonapeptides share many similarities with their counterparts in vertebrates, pointing the system to have an ancient origin and to be an important substrate for changes during adaptive evolution. The article concludes projecting the nonapeptides as one of the very first common molecules of the primitive nervous and endocrine systems, which have been retained to maintain homeostatic functions in metazoans; some of which are conserved across the animal kingdom and some are specialized in a group/lineage-specific manner.
Collapse
Affiliation(s)
- P Banerjee
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005, India
| | - K P Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India.
| | - R Chaube
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
27
|
Lockard MA, Ebert MS, Bargmann CI. Oxytocin mediated behavior in invertebrates: An evolutionary perspective. Dev Neurobiol 2016; 77:128-142. [PMID: 27804275 DOI: 10.1002/dneu.22466] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/14/2016] [Accepted: 10/15/2016] [Indexed: 12/31/2022]
Abstract
The molecular and functional conservation of oxytocin-related neuropeptides in behavior is striking. In animals separated by at least 600 million years of evolution, from roundworms to humans, oxytocin homologs play critical roles in the modulation of reproductive behavior and other biological functions. Here, we review the roles of oxytocin in invertebrate behavior from an evolutionary perspective. We begin by tracing the evolution of oxytocin through the invertebrate animal lineages, and then describe common themes in invertebrate behaviors that are mediated by oxytocin-related peptides, including reproductive behavior, learning and memory, food arousal, and predator/prey relationships. Finally, we discuss interesting future directions that have recently become experimentally tractable. Studying oxytocin in invertebrates offers precise insights into the activity of neuropeptides on well-defined neural circuits; the principles that emerge may also be represented in the more complex vertebrate brain. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 128-142, 2017.
Collapse
Affiliation(s)
- Meghan A Lockard
- Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, 10065
| | - Margaret S Ebert
- Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, 10065
| | - Cornelia I Bargmann
- Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, 10065.,Howard Hughes Medical Institute, The Rockefeller University, New York, New York, 10065
| |
Collapse
|
28
|
Larke RH, Maninger N, Ragen BJ, Mendoza SP, Bales KL. Serotonin 1A agonism decreases affiliative behavior in pair-bonded titi monkeys. Horm Behav 2016; 86:71-77. [PMID: 27712925 PMCID: PMC5159202 DOI: 10.1016/j.yhbeh.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/20/2016] [Accepted: 10/02/2016] [Indexed: 01/08/2023]
Abstract
Relatively little is known about serotonergic involvement in pair-bonding despite its putative role in regulating social behavior. Here we sought to determine if pharmacological elevation of serotonin 1A (5-HT1A) receptor activity would lead to changes in social behavior in pair-bonded male titi monkeys (Callicebus cupreus). Adult males in established heterosexual pairs were injected daily with the selective 5-HT1A agonist 8-OH-DPAT or saline for 15days using a within-subjects design. Social behavior with the female pair-mate was quantified, and plasma concentrations of oxytocin, vasopressin, and cortisol were measured. When treated with saline, subjects showed reduced plasma oxytocin concentrations, while 8-OH-DPAT treatment buffered this decrease. Treatment with 8-OH-DPAT also led to decreased plasma cortisol 15minutes post-injection and decreased social behavior directed toward the pair-mate including approaching, initiating contact, lipsmacking, and grooming. The reduction in affiliative behavior seen with increased activity at 5-HT1A receptors indicates a substantial role of serotonin activity in the expression of social behavior. In addition, results indicate that the effects of 5-HT1A agonism on social behavior in adulthood differ between rodents and primates.
Collapse
Affiliation(s)
- Rebecca H Larke
- University of California, Davis, Department of Psychology, Davis, CA, USA; California National Primate Research Center, University of California, Davis, Davis, CA, USA.
| | - Nicole Maninger
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Benjamin J Ragen
- University of California, Davis, Department of Psychology, Davis, CA, USA; California National Primate Research Center, University of California, Davis, Davis, CA, USA; New York University, Department of Anthropology, New York, NY, USA
| | - Sally P Mendoza
- University of California, Davis, Department of Psychology, Davis, CA, USA; California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Karen L Bales
- University of California, Davis, Department of Psychology, Davis, CA, USA; California National Primate Research Center, University of California, Davis, Davis, CA, USA
| |
Collapse
|
29
|
Goldey KL, Posh AR, Bell SN, van Anders SM. Defining Pleasure: A Focus Group Study of Solitary and Partnered Sexual Pleasure in Queer and Heterosexual Women. ARCHIVES OF SEXUAL BEHAVIOR 2016; 45:2137-2154. [PMID: 27007471 DOI: 10.1007/s10508-016-0704-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 05/12/2023]
Abstract
Solitary and partnered sexuality are typically depicted as fundamentally similar, but empirical evidence suggests they differ in important ways. We investigated how women's definitions of sexual pleasure overlapped and diverged when considering solitary versus partnered sexuality. Based on an interdisciplinary literature, we explored whether solitary pleasure would be characterized by eroticism (e.g., genital pleasure, orgasm) and partnered pleasure by nurturance (e.g., closeness). Via focus groups with a sexually diverse sample of women aged 18-64 (N = 73), we found that women defined solitary and partnered pleasure in both convergent and divergent ways that supported expectations. Autonomy was central to definitions of solitary pleasure, whereas trust, giving pleasure, and closeness were important elements of partnered pleasure. Both solitary and partnered pleasure involved exploration for self-discovery or for growing a partnered relationship. Definitions of pleasure were largely similar across age and sexual identity; however, relative to queer women, heterosexual women (especially younger heterosexual women) expressed greater ambivalence toward solitary masturbation and partnered orgasm. Results have implications for women's sexual well-being across multiple sexual identities and ages, and for understanding solitary and partnered sexuality as overlapping but distinct constructs.
Collapse
Affiliation(s)
- Katherine L Goldey
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Psychology and Behavioral Neuroscience, St. Edward's University, Austin, TX, USA
| | - Amanda R Posh
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Sarah N Bell
- Departments of Psychology and Women's Studies, University of Michigan, Ann Arbor, MI, USA
| | - Sari M van Anders
- Departments of Psychology and Women's Studies, Programs in Neuroscience and Reproductive Sciences, Science, Technology, and Society Program, Biosocial Methods Collaborative, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
30
|
Abstract
It has been established that living things are sensitive to extremely low-frequency magnetic fields at vanishingly small intensities, on the order of tens of nT. We hypothesize, as a consequence of this sensitivity, that some fraction of an individual's central nervous system activity can be magnetically detected by nearby individuals. Even if we restrict the information content of such processes to merely simple magnetic cues that are unconsciously received by individuals undergoing close-knit continuing exposure to these cues, it is likely that they will tend to associate these cues with the transmitting individual, no less than would occur if such signals were visual or auditory. Furthermore, following what happens when one experiences prolonged exposure to visual and like sensory inputs, it can be anticipated that such association occurring magnetically will eventually also enable the receiving individual to bond to the transmitting individual. One can readily extrapolate from single individuals to groups, finding reasonable explanations for group behavior in a number of social situations, including those occurring in families, animal packs, gatherings as found in concerts, movie theaters and sports arenas, riots and selected predatory/prey situations. The argument developed here not only is consistent with the notion of a magnetic sense in humans, but also provides a new approach to electromagnetic hypersensitivity, suggesting that it may simply result from sensory overload.
Collapse
Affiliation(s)
- A R Liboff
- a Department of Physics , Oakland University , Rochester Hills , MI , USA
| |
Collapse
|
31
|
Resendez SL, Keyes PC, Day JJ, Hambro C, Austin CJ, Maina FK, Eidson LN, Porter-Stransky KA, Nevárez N, McLean JW, Kuhnmuench MA, Murphy AZ, Mathews TA, Aragona BJ. Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds. eLife 2016; 5:e15325. [PMID: 27371827 PMCID: PMC4972541 DOI: 10.7554/elife.15325] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/01/2016] [Indexed: 01/23/2023] Open
Abstract
Prairie vole breeder pairs form monogamous pair bonds, which are maintained through the expression of selective aggression toward novel conspecifics. Here, we utilize behavioral and anatomical techniques to extend the current understanding of neural mechanisms that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like receptor regulation of selective aggression is mediated through downstream activation of kappa-opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally, we also identified sex-specific alterations in KOR binding density within the NAc shell of paired males and demonstrate that this alteration contributes to the neuroprotective effect of pair bonding against drug reward. Together, these findings suggest motivational and valence processing systems interact to mediate the maintenance of social bonds.
Collapse
Affiliation(s)
- Shanna L Resendez
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, United States
- University of North Carolina, Chapel Hill, United States
| | - Piper C Keyes
- Department of Psychology, University of Michigan-Ann Arbor, Ann Arbor, United States
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmangham, United States
| | - Caely Hambro
- Department of Psychology, University of Michigan-Ann Arbor, Ann Arbor, United States
| | - Curtis J Austin
- Department of Psychology, University of Michigan-Ann Arbor, Ann Arbor, United States
| | - Francis K Maina
- Department of Chemistry, Wayne State University, Detroit, United States
| | - Lori N Eidson
- Neuroscience Institute, Georgia State University, Atlanta, United States
| | - Kirsten A Porter-Stransky
- Department of Psychology, University of Michigan-Ann Arbor, Ann Arbor, United States
- Department of Human Genetics, Emory University, Atlanta, United States
| | - Natalie Nevárez
- Department of Psychology, University of Michigan-Ann Arbor, Ann Arbor, United States
| | - J William McLean
- Department of Neurobiology, University of Alabama at Birmingham, Birmangham, United States
| | - Morgan A Kuhnmuench
- Department of Psychology, University of Michigan-Ann Arbor, Ann Arbor, United States
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, United States
| | - Tiffany A Mathews
- Department of Chemistry, Wayne State University, Detroit, United States
| | - Brandon J Aragona
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, United States
- Department of Psychology, University of Michigan-Ann Arbor, Ann Arbor, United States
| |
Collapse
|
32
|
Steinman MQ, Trainor BC. Sex differences in the effects of social defeat on brain and behavior in the California mouse: Insights from a monogamous rodent. Semin Cell Dev Biol 2016; 61:92-98. [PMID: 27375045 DOI: 10.1016/j.semcdb.2016.06.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/20/2022]
Abstract
Women are nearly twice as likely as men to be diagnosed with major depressive disorder, yet the use of female animal models in studying the biological basis of depression lags behind that of males. The social defeat model uses social stress to generate depression-like symptoms in order to study the neurobiological mechanisms. In general, social defeat is difficult to apply in female rodents. However, male and female California mice (Peromyscus californicus) are territorial. This allows defeat to be studied in both sexes. Males exposed to defeat tend to exhibit proactive coping mechanisms and demonstrate aggression and reduced cognitive flexibility. Females exposed to defeat engage more in reactive coping mechanisms which is highlighted by social avoidance and low aggression. Importantly, effects of defeat on social interaction behavior in females is independent of adult gonadal steroids. These behavioral phenotypes are associated with sex-specific changes in arginine vasopressin (AVP) and oxytocin (OT), closely related peptides that regulate social behavior and stress reactivity. In brain regions associated with stress responses and social behavior, defeat induced long term decreases in AVP activity and increases in OT activity in males and females respectively. Intranasal OT administration was shown to mimic the effects of defeat-induced increases in endogenous OT activity, causing social withdrawal in undefeated females. This suggests that inhibition of OT activity could reduce the impact of stress on behavior in females. These results highlight the value of maintaining diverse rodent models in the search for sex-specific pharmacological approaches to treating mood disorders.
Collapse
Affiliation(s)
- Michael Q Steinman
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, U.S.A
| | - Brian C Trainor
- Department of Psychology and Center for Neuroscience, University of California, Davis, CA 95616, U.S.A..
| |
Collapse
|
33
|
Yee JR, Kenkel WM, Frijling JL, Dodhia S, Onishi KG, Tovar S, Saber MJ, Lewis GF, Liu W, Porges SW, Carter CS. Oxytocin promotes functional coupling between paraventricular nucleus and both sympathetic and parasympathetic cardioregulatory nuclei. Horm Behav 2016; 80:82-91. [PMID: 26836772 PMCID: PMC5768414 DOI: 10.1016/j.yhbeh.2016.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/29/2015] [Accepted: 01/29/2016] [Indexed: 02/07/2023]
Abstract
The neuropeptide oxytocin (OXT) facilitates prosocial behavior and selective sociality. In the context of stress, OXT also can down-regulate hypothalamic-pituitary-adrenal (HPA) axis activity, leading to consideration of OXT as a potential treatment for many socioaffective disorders. However, the mechanisms through which administration of exogenous OXT modulates social behavior in stressful environmental contexts are not fully understood. Here, we investigate the hypothesis that autonomic pathways are components of the mechanisms through which OXT aids the recruitment of social resources in stressful contexts that may elicit mobilized behavioral responses. Female prairie voles (Microtus ochrogaster) underwent a stressor (walking in shallow water) following pretreatment with intraperitoneal OXT (0.25mg/kg) or OXT antagonist (OXT-A, 20mg/kg), and were allowed to recover with or without their sibling cagemate. Administration of OXT resulted in elevated OXT concentrations in plasma, but did not dampen the HPA axis response to a stressor. However, OXT, but not OXT-A, pretreatment prevented the functional coupling, usually seen in the absence of OXT, between paraventricular nucleus (PVN) activity as measured by c-Fos immunoreactivity and HPA output (i.e. corticosterone release). Furthermore, OXT pretreatment resulted in functional coupling between PVN activity and brain regions regulating both sympathetic (i.e. rostral ventrolateral medulla) and parasympathetic (i.e. dorsal vagal complex and nucleus ambiguous) branches of the autonomic nervous system. These findings suggest that OXT increases central neural control of autonomic activity, rather than strictly dampening HPA axis activity, and provides a potential mechanism through which OXT may facilitate adaptive and context-dependent behavioral and physiological responses to stressors.
Collapse
Affiliation(s)
- Jason R Yee
- Northeastern University, United States; The Kinsey Institute at Indiana University, United States.
| | - William M Kenkel
- Northeastern University, United States; The Kinsey Institute at Indiana University, United States
| | | | | | | | | | | | - Gregory F Lewis
- The University of North Carolina at Chapel Hill, United States
| | | | - Stephen W Porges
- The Kinsey Institute at Indiana University, United States; The University of North Carolina at Chapel Hill, United States
| | - C Sue Carter
- The Kinsey Institute at Indiana University, United States
| |
Collapse
|
34
|
MacDonald K, Patch EA, Figueredo AJ. Love, Trust, and Evolution: Nurturance/Love and Trust as Two Independent Attachment Systems Underlying Intimate Relationships. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/psych.2016.72026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Blum K, Thompson B, Demotrovics Z, Femino J, Giordano J, Oscar-Berman M, Teitelbaum S, Smith DE, Roy AK, Agan G, Fratantonio J, Badgaiyan RD, Gold MS. The Molecular Neurobiology of Twelve Steps Program & Fellowship: Connecting the Dots for Recovery. JOURNAL OF REWARD DEFICIENCY SYNDROME 2015; 1:46-64. [PMID: 26306329 PMCID: PMC4545669 DOI: 10.17756/jrds.2015-008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are some who suggest that alcoholism and drug abuse are not diseases at all and that they are not consequences of a brain disorder as espoused recently by the American Society of Addiction Medicine (ASAM). Some would argue that addicts can quit on their own and moderate their alcohol and drug intake. When they present to a treatment program or enter the 12 Step Program & Fellowship, many addicts finally achieve complete abstinence. However, when controlled drinking fails, there may be successful alternatives that fit particular groups of individuals. In this expert opinion, we attempt to identify personal differences in recovery, by clarifying the molecular neurobiological basis of each step of the 12 Step Program. We explore the impact that the molecular neurobiological basis of the 12 steps can have on Reward Deficiency Syndrome (RDS) despite addiction risk gene polymorphisms. This exploration has already been accomplished in part by Blum and others in a 2013 Springer Neuroscience Brief. The purpose of this expert opinion is to briefly, outline the molecular neurobiological and genetic links, especially as they relate to the role of epigenetic changes that are possible in individuals who regularly attend AA meetings. It begs the question as to whether "12 steps programs and fellowship" does induce neuroplasticity and continued dopamine D2 receptor proliferation despite carrying hypodopaminergic type polymorphisms such as DRD2 A1 allele. "Like-minded" doctors of ASAM are cognizant that patients in treatment without the "psycho-social-spiritual trio," may not be obtaining the important benefits afforded by adopting 12-step doctrines. Are we better off with coupling medical assisted treatment (MAT) that favors combining dopamine agonist modalities (DAM) as possible histone-deacetylase activators with the 12 steps followed by a program that embraces either one or the other? While there are many unanswered questions, at least we have reached a time when "science meets recovery," and in doing so, can further redeem joy in recovery.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, School of Medicine and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Addiction Research and Therapy, Malibu Beach Recovery Center, Malibu Beach, CA, USA
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- IGENE, LLC., Austin, TX, USA
- RDSolutions, Del Mar, CA, USA
- National Institute for Holistic Medicine, North Miami Beach, FL, USA
| | - Benjamin Thompson
- Behavioral Neuroscience Program, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Zsolt Demotrovics
- Eötvös Loránd University, Institute of Psychology, Budapest, Hungary
| | - John Femino
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- Meadows Edge Recovery Center, North Kingstown, RI, USA
| | - John Giordano
- National Institute for Holistic Medicine, North Miami Beach, FL, USA
| | - Marlene Oscar-Berman
- Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Scott Teitelbaum
- Department of Psychiatry, School of Medicine and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - David E. Smith
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- Institute of Health & Aging, University of California at San Francisco, San Francisco, CA, USA
| | | | - Gozde Agan
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
| | | | - Rajendra D. Badgaiyan
- Department of Psychiatry, University of Minnesota College of Medicine, Minneapolis, MN, USA
| | - Mark S. Gold
- Director of Research, Drug Enforcement Administration (DEA) Educational Foundation, Washington, D.C, USA
- Departments of Psychiatry & Behavioral Sciences at the Keck, University of Southern California, School of Medicine, CA, USA
| |
Collapse
|
36
|
The neurobiology of offensive aggression: Revealing a modular view. Physiol Behav 2015; 146:111-27. [DOI: 10.1016/j.physbeh.2015.04.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 02/03/2023]
|
37
|
Veening J, Coolen L. Neural mechanisms of sexual behavior in the male rat: Emphasis on ejaculation-related circuits. Pharmacol Biochem Behav 2014; 121:170-83. [DOI: 10.1016/j.pbb.2013.12.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 01/20/2023]
|
38
|
Acute prosocial effects of oxytocin and vasopressin when given alone or in combination with 3,4-methylenedioxymethamphetamine in rats: involvement of the V1A receptor. Neuropsychopharmacology 2013; 38:2249-59. [PMID: 23676791 PMCID: PMC3773675 DOI: 10.1038/npp.2013.125] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/01/2013] [Accepted: 05/06/2013] [Indexed: 11/08/2022]
Abstract
The neuropeptides oxytocin (OT) and vasopressin (AVP) are recognized for their modulation of social processes in humans when delivered peripherally. However, there is surprisingly little evidence for acute social effects of peripherally administered OT or AVP in animal models. On the other hand, the party drug 3,4-methylenedioxymethamphetamine (MDMA, 'Ecstasy') has powerful prosocial effects in rats that appear to occur through stimulation of central OT release. Here, we directly compared the social effects of peripherally administered OT and AVP with those of MDMA, and examined a possible role for the vasopressin 1A receptor (V1AR) in the observed prosocial effects. Adult male Long-Evans rats were tested in a social interaction paradigm after OT (0.1, 0.25, 0.5, and 1 mg/kg, intraperitoneal (IP)), AVP (0.001, 0.0025, 0.005, 0.01, and 0.1 mg/kg, IP), and MDMA (2.5, 5 mg/kg, IP), or combined low doses of OT and MDMA, or AVP and MDMA. The effects of pretreatment with the non-peptide OT receptor antagonist compound 25 (C25; 5 mg/kg, IP) and the V1AR antagonist SR49059 (1 mg/kg, IP) were also examined. OT (0.5 mg/kg), AVP (0.01 mg/kg), and MDMA (5 mg/kg) potently increased 'adjacent lying', where rats meeting for the first time lie passively next to each other. C25 did not inhibit adjacent lying induced by OT, whereas SR49059 inhibited adjacent lying induced by MDMA (5 mg/kg), OT (0.5 mg/kg), and AVP (0.01 mg/kg). Interestingly, when ineffective doses of OT and MDMA, or AVP and MDMA, were combined, a robust increase in adjacent lying was observed. These results show for the first time acute prosocial effects of peripherally injected OT and AVP in laboratory rats, and suggest a commonality of action of OT, AVP, and MDMA in stimulating social behavior that involves V1ARs.
Collapse
|
39
|
Bales KL, Perkeybile AM, Conley OG, Lee MH, Guoynes CD, Downing GM, Yun CR, Solomon M, Jacob S, Mendoza SP. Chronic intranasal oxytocin causes long-term impairments in partner preference formation in male prairie voles. Biol Psychiatry 2013; 74:180-8. [PMID: 23079235 PMCID: PMC3556198 DOI: 10.1016/j.biopsych.2012.08.025] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Oxytocin (OT) is a hormone shown to be involved in social bonding in animal models. Intranasal OT is currently in clinical trials for use in disorders such as autism and schizophrenia. We examined long-term effects of intranasal OT given developmentally in the prairie vole (Microtus ochrogaster), a socially monogamous rodent, often used as an animal model to screen drugs that have therapeutic potential for social disorders. METHODS We treated voles with one of three dosages of intranasal OT, or saline, from day 21 (weaning) through day 42 (sexual maturity). We examined both social behavior immediately following administration, as well as long-term changes in social and anxiety behavior after treatment ceased. Group sizes varied from 8 to 15 voles (n = 89 voles total). RESULTS Treatment with OT resulted in acute increases in social behavior in male voles with familiar partners, as seen in humans. However, long-term developmental treatment with low doses of intranasal OT resulted in a deficit in partner preference behavior (a reduction of contact with a familiar opposite-sex partner, used to index pair-bond formation) by male voles. CONCLUSIONS Long-term developmental treatment with OT may show results different to those predicted by short-term studies, as well as significant sex differences and dosage effects. Further animal study is crucial to determining safe and effective strategies for use of chronic intranasal OT, especially during development.
Collapse
Affiliation(s)
- Karen L. Bales
- Department of Psychology, University of California, Davis, California,California National Primate Research Center, Davis, California,Correspondence to: Karen L. Bales, Department of Psychology, University of California, Davis, 135 Young Hall, Davis, CA 95616. Ph: 530-754-5890; Fax: 530-752-2087;
| | | | - Olivia G. Conley
- Department of Psychology, University of California, Davis, California
| | - Meredith H. Lee
- Department of Psychology, University of California, Davis, California,John F. Kennedy High School, Sacramento, California
| | | | | | - Catherine R. Yun
- Department of Psychology, University of California, Davis, California
| | | | - Suma Jacob
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | | |
Collapse
|
40
|
Hicks C, Jorgensen W, Brown C, Fardell J, Koehbach J, Gruber CW, Kassiou M, Hunt GE, McGregor IS. The nonpeptide oxytocin receptor agonist WAY 267,464: receptor-binding profile, prosocial effects and distribution of c-Fos expression in adolescent rats. J Neuroendocrinol 2012; 24:1012-29. [PMID: 22420322 PMCID: PMC3399775 DOI: 10.1111/j.1365-2826.2012.02311.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous research suggests that the nonpeptide oxytocin receptor (OTR) agonist WAY 267,464 may only partly mimic the effects of oxytocin in rodents. The present study further explored these differences and related them to OTR and vasopressin 1a receptor (V(1a) R) pharmacology and regional patterns of c-Fos expression. Binding data for WAY 267,464 and oxytocin were obtained by displacement binding assays on cellular membranes, while functional receptor data were generated by luciferase reporter assays. For behavioural testing, adolescent rats were tested in a social preference paradigm, the elevated plus-maze (EPM) and for locomotor activity changes following WAY 267,464 (10 and 100 mg/kg, i.p.) or oxytocin (0.1 and 1 mg/kg, i.p.). The higher doses were also examined for their effects on regional c-Fos expression. Results showed that WAY 267,464 had higher affinity (K(i) ) at the V(1a) R than the OTR (113 versus 978 nm). However, it had no functional response at the V(1a) R and only a weak functional effect (EC(50) ) at the OTR (881 nm). This suggests WAY 267,464 is an OTR agonist with weak affinity and a possible V(1a) R antagonist. Oxytocin showed high binding at the OTR (1.0 nm) and V(1a) R (503 nm), with a functional EC(50) of 9.0 and 59.7 nm, respectively, indicating it is a potent OTR agonist and full V(1a) R agonist. WAY 267,464 (100 mg/kg), but not oxytocin, significantly increased the proportion of time spent with a live rat, over a dummy rat, in the social preference test. Neither compound affected EPM behaviour, whereas the higher doses of WAY 267,464 and oxytocin suppressed locomotor activity. WAY 267,464 and oxytocin produced similar c-Fos expression in the paraventricular hypothalamic nucleus, central amygdala, lateral parabrachial nucleus and nucleus of the solitary tract, suggesting a commonality of action at the OTR with the differential doses employed. However, WAY 267,464 caused greater c-Fos expression in the medial amygdala and the supraoptic nucleus than oxytocin, and lesser effects in the locus coeruleus. Overall, our results confirm the differential effects of WAY 267,464 and oxytocin and suggest that this may reflect contrasting actions of WAY 267,464 and oxytocin at the V(1a) R. Antagonism of the V(1a) R by WAY 267,464 could underlie some of the prosocial effects of this drug either through a direct action or through disinhibition of oxytocin circuitry that is subject to vasopressin inhibitory influences.
Collapse
Affiliation(s)
- C. Hicks
- School of Psychology, Brennan MacCallum Building, University of Sydney, Sydney, Australia
| | - W. Jorgensen
- School of Chemistry, University of Sydney, Sydney, Australia
- Brain and Mind Research Institute, University of Sydney, Sydney, Australia
| | - C. Brown
- Brain and Mind Research Institute, University of Sydney, Sydney, Australia
| | - J. Fardell
- School of Psychology, Brennan MacCallum Building, University of Sydney, Sydney, Australia
| | - J. Koehbach
- Medical University of Vienna, Centre for Physiology and Pharmacology, Vienna, Austria
| | - C. W. Gruber
- Medical University of Vienna, Centre for Physiology and Pharmacology, Vienna, Austria
| | - M. Kassiou
- School of Chemistry, University of Sydney, Sydney, Australia
- Brain and Mind Research Institute, University of Sydney, Sydney, Australia
- Discipline of Medical Radiation Sciences, University of Sydney, Sydney, Australia
| | - G. E. Hunt
- Discipline of Psychiatry, Sydney Medical School, University of Sydney, Concord Hospital, Sydney, Australia
| | - I. S. McGregor
- School of Psychology, Brennan MacCallum Building, University of Sydney, Sydney, Australia
| |
Collapse
|
41
|
Coping in groups of domestic horses – Review from a social and neurobiological perspective. Appl Anim Behav Sci 2012. [DOI: 10.1016/j.applanim.2012.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Neurohypophyseal hormones manipulation modulate social and anxiety-related behavior in zebrafish. Psychopharmacology (Berl) 2012; 220:319-30. [PMID: 21956239 DOI: 10.1007/s00213-011-2482-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/31/2011] [Indexed: 01/28/2023]
Abstract
RATIONALE Oxytocin (OT) and arginine-vasopressin (AVP) regulate social behavior in mammals. Zebrafish (Danio rerio) allows higher throughput and ease in studying human brain disorders. OBJECTIVES This study investigated in zebrafish the effect of non-mammalian homologs isotocin (IT) and vasotocin (AVT) in comparison with OT/AVP on social behavior and fear response to predator. The mechanism was studied using the most human selective OT and AVP receptor antagonists. METHODS Zebrafish were injected i.m. with increasing doses (0.001-40 ng/kg) of the neuropeptides. DesGly-NH(2)-d(CH(2))(5)-[D-Tyr(2),Thr(4)]OVT) for OT receptor, SR 49059 for V1a subtype receptor, and SSR-149415 for V1b subtype receptor were injected i.m. 10 min before each agonist. RESULTS All the peptides increased social preference and reduced fear to predator response in a dose-dependent manner interpolated by symmetrical parabolas. AVT/AVP were more potent to elicit anxiolytic than social effect while IT and OT were equally potent. All the antagonists dose-dependently inhibited both the effects induced by the neuropeptides. The ratio between the ED50 obtained for blocking the OT-induced effects on social preference and fear response to predator was very high only for desglyDTTyrOVT (160). SR49059 showed the highest ratio in blocking AVP-induced effects (807). The less selective antagonist appeared to be SSR149415. CONCLUSIONS For the first time, IT/AVT and OT/AVP were found to modulate in zebrafish, social behavior, unrelated to sex, and fear to predator response through at least two different receptors. Zebrafish is confirmed as a valid, reliable model to study deficit in social behavior characteristic of some psychiatric disorders.
Collapse
|
43
|
Fisher ML, Worth K, Garcia JR, Meredith T. Feelings of regret following uncommitted sexual encounters in Canadian university students. CULTURE, HEALTH & SEXUALITY 2012; 14:45-57. [PMID: 22077716 DOI: 10.1080/13691058.2011.619579] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study we explored the prevalence of regret following uncommitted sexual encounters (i.e., casual sex that occurs with someone once and only once or with someone known for less than 24 hours) among 138 female and 62 male Canadian university students, who were approximately 21 years of age. The majority of participants self-reported that they had experienced feelings of regret after an uncommitted sexual encounter. We found women reported feeling significantly more regret than men. However, men's regret was more closely tied to physical attributes than women's regrets. Regret was also influenced by the quality of the sex: high-quality sex rarely led to regret, while the reverse was true for poor-quality sex. In keeping with past studies, intoxication by alcohol and/or drugs was often listed as a source of regret by both men and women.
Collapse
Affiliation(s)
- Maryanne L Fisher
- Department of Psychology, Saint Mary's University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
44
|
van Anders SM, Goldey KL, Kuo PX. The Steroid/Peptide Theory of Social Bonds: integrating testosterone and peptide responses for classifying social behavioral contexts. Psychoneuroendocrinology 2011; 36:1265-75. [PMID: 21724336 DOI: 10.1016/j.psyneuen.2011.06.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/25/2011] [Accepted: 06/02/2011] [Indexed: 01/06/2023]
Abstract
Hormones, and hormone responses to social contexts, are the proximate mechanisms of evolutionary pathways to pair bonds and other social bonds. Testosterone (T) is implicated in tradeoffs relevant to pair bonding, and oxytocin (OT) and arginine vasopressin (AVP) are positively tied to social bonding in a variety of species. Here, we present the Steroid/Peptide Theory of Social Bonds (S/P Theory), which integrates T and peptides to provide a model, set of predictions, and classification system for social behavioral contexts related to social bonds. The S/P Theory also resolves several paradoxes apparent in the literature on social bonds and hormones: the Offspring Defense Paradox, Aggression Paradox, and Intimacy Paradox. In the S/P Theory, we partition aggression into antagonistic and protective aggression, which both increase T but exert distinct effects on AVP and thus social bonds. Similarly, we partition intimacy into sexual and nurturant intimacy, both of which increase OT and facilitate social bonds, but exert distinct effects on T. We describe the utility of the S/P Theory for classifying 'tricky' behavioral contexts on the basis of their hormonal responses using partner cuddling, a behavior which is assumed to be nurturant but increases T, as a test case of the S/P Theory. The S/P Theory provides a comparative basis for conceptualizing and testing evolved hormonal pathways to pair bonds with attention to species, context, and gender/sex specificities and convergences.
Collapse
Affiliation(s)
- Sari M van Anders
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
45
|
O'Connell LA, Hofmann HA. Genes, hormones, and circuits: an integrative approach to study the evolution of social behavior. Front Neuroendocrinol 2011; 32:320-35. [PMID: 21163292 DOI: 10.1016/j.yfrne.2010.12.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/03/2010] [Accepted: 12/09/2010] [Indexed: 12/23/2022]
Abstract
Tremendous progress has been made in our understanding of the ultimate and proximate mechanisms underlying social behavior, yet an integrative evolutionary analysis of its underpinnings has been difficult. In this review, we propose that modern genomic approaches can facilitate such studies by integrating four approaches to brain and behavior studies: (1) animals face many challenges and opportunities that are ecologically and socially equivalent across species; (2) they respond with species-specific, yet quantifiable and comparable approach and avoidance behaviors; (3) these behaviors in turn are regulated by gene modules and neurochemical codes; and (4) these behaviors are governed by brain circuits such as the mesolimbic reward system and the social behavior network. For each approach, we discuss genomic and other studies that have shed light on various aspects of social behavior and its underpinnings and suggest promising avenues for future research into the evolution of neuroethological systems.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA
| | | |
Collapse
|
46
|
Michopoulos V, Checchi M, Sharpe D, Wilson ME. Estradiol effects on behavior and serum oxytocin are modified by social status and polymorphisms in the serotonin transporter gene in female rhesus monkeys. Horm Behav 2011; 59:528-35. [PMID: 21316367 PMCID: PMC3081406 DOI: 10.1016/j.yhbeh.2011.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 01/31/2011] [Accepted: 02/02/2011] [Indexed: 12/17/2022]
Abstract
Despite the well-documented relation between estradiol (E2) and behavior, exposure to stressors may modify sensitivity to E2. The effects of E2 on behavior are, in part, likely related to their modulation of the serotonin (5HT) and oxytocin systems. The short allele (s-variant) polymorphism found in the promoter region of the SLC6A4 gene that encodes the 5HT transporter (5HTT) modulates responsivity to stressors. The current study used ovariectomized adult female rhesus monkeys to evaluate how exposure to the psychosocial stressor of social subordination and polymorphisms in the gene encoding 5HTT influence the behavioral effects of E2 and immunoreactive serum oxytocin. Dominant females had higher levels of oxytocin than subordinate animals even though E2 increased immunoreactive serum oxytocin in all females. E2 increased affiliative behaviors in all animals, with even more of these prosocial behaviors directed at dominant females. S-variant females, regardless of social status, were more aggressive toward more subordinate cage mates and these behaviors too were increased by E2. Subordinate s-variant females are most often involved in agonistic behavior, less affiliative behavior, and were less responsive to the anxiolytic action of E2. The results show that the short allele of the 5HTT gene synergizes with psychosocial stress exposure to affect the behavioral efficacy of E2 while confirming the actions of E2 for producing generalized behavioral arousal in females. Whether differences in the central action of 5HT and/or oxytocin are responsible for this effect requires further study.
Collapse
Affiliation(s)
- Vasiliki Michopoulos
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
47
|
Abstract
Prairie voles (Microtus ochrogaster) are socially monogamous rodents that form pair bonds-a behavior composed of several social interactions including attachment with a familiar mate and aggression toward conspecific strangers. Therefore, this species has provided an excellent opportunity for the study of pair bonding behavior and its underlying neural mechanisms. In this chapter, we discuss the utility of this unique animal model in the study of aggression and review recent findings illustrating the neurochemical mechanisms underlying pair bonding-induced aggression. Implications of this research for our understanding of the neurobiology of human violence are also discussed.
Collapse
Affiliation(s)
- Kyle L Gobrogge
- Department of Psychology and Program in Neuroscience, Florida StateUniversity, Tallahassee, Florida, USA
| | | |
Collapse
|
48
|
Seltzer LJ, Ziegler TE, Pollak SD. Social vocalizations can release oxytocin in humans. Proc Biol Sci 2010; 277:2661-6. [PMID: 20462908 PMCID: PMC2982050 DOI: 10.1098/rspb.2010.0567] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 04/20/2010] [Indexed: 01/15/2023] Open
Abstract
Vocalizations are important components of social behaviour in many vertebrate species, including our own. Less well-understood are the hormonal mechanisms involved in response to vocal cues, and how these systems may influence the course of behavioural evolution. The neurohormone oxytocin (OT) partly governs a number of biological and social processes critical to fitness, such as attachment between mothers and their young, and suppression of the stress response after contact with trusted conspecfics. Rodent studies suggest that OT's release is contingent upon direct tactile contact with such individuals, but we hypothesized that vocalizations might be capable of producing the same effect. To test our hypothesis, we chose human mother-daughter dyads and applied a social stressor to the children, following which we randomly assigned participants into complete contact, speech-only or no-contact conditions. Children receiving a full complement of comfort including physical, vocal and non-verbal contact showed the highest levels of OT and the swiftest return to baseline of a biological marker of stress (salivary cortisol), but a strikingly similar hormonal profile emerged in children comforted solely by their mother's voice. Our results suggest that vocalizations may be as important as touch to the neuroendocrine regulation of social bonding in our species.
Collapse
Affiliation(s)
- Leslie J Seltzer
- Departmentsof Psychology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | | |
Collapse
|
49
|
Koolhaas JM, de Boer SF, Coppens CM, Buwalda B. Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Front Neuroendocrinol 2010; 31:307-21. [PMID: 20382177 DOI: 10.1016/j.yfrne.2010.04.001] [Citation(s) in RCA: 610] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/01/2010] [Accepted: 04/04/2010] [Indexed: 01/29/2023]
Abstract
Individual variation in behavior and physiology is a widespread and ecologically functional phenomenon in nature in virtually all vertebrate species. Due to domestication of laboratory animals, studies may suffer from a strong selection bias. This paper summarizes behavioral, neuroendocrine and neurobiological studies using the natural individual variation in rats and mice. Individual behavioral characteristics appear to be consistent over time and across situations. The individual variation has at least two dimensions in which the quality of the response to a challenging condition (coping style) is independent from the quantity of that response (stress reactivity). The neurobiology reveals important differences in the homeostatic control of the serotonergic neuron and the neuropeptides vasopressin and oxytocin in relation to coping style. It is argued that a careful exploitation of the broad natural and biologically functional individual variation in behavior and physiology may help in developing better animal models for understanding individual disease vulnerability.
Collapse
Affiliation(s)
- J M Koolhaas
- Dept. of Behavioural Physiology, University Groningen, 9750 AA Haren, The Netherlands.
| | | | | | | |
Collapse
|
50
|
|