1
|
Reconstruction and analysis of genome-scale metabolic model of weak Crabtree positive yeast Lachancea kluyveri. Sci Rep 2020; 10:16314. [PMID: 33004914 PMCID: PMC7530994 DOI: 10.1038/s41598-020-73253-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/04/2020] [Indexed: 01/15/2023] Open
Abstract
Lachancea kluyveri, a weak Crabtree positive yeast, has been extensively studied for its unique URC pyrimidine catabolism pathway. It produces more biomass than Saccharomyces cerevisiae due to the underlying weak Crabtree effect and resorts to fermentation only in oxygen limiting conditions that renders it as a suitable industrial host. The yeast also produces ethyl acetate as a major overflow metabolite in aerobic conditions. Here, we report the first genome-scale metabolic model, iPN730, of L. kluyveri comprising of 1235 reactions, 1179 metabolites, and 730 genes distributed in 8 compartments. The in silico viability in different media conditions and the growth characteristics in various carbon sources show good agreement with experimental data. Dynamic flux balance analysis describes the growth dynamics, substrate utilization and product formation kinetics in various oxygen-limited conditions. We have also demonstrated the effect of switching carbon sources on the production of ethyl acetate under varying oxygen uptake rates. A phenotypic phase plane analysis described the energetic cost penalty of ethyl acetate and ethanol production on the specific growth rate of L. kluyveri. We generated the context specific models of L. kluyveri growing on uracil or ammonium salts as the sole nitrogen source. Differential flux calculated using flux variability analysis helped us in highlighting pathways like purine, histidine, riboflavin and pyrimidine metabolism associated with uracil degradation. The genome-scale metabolic construction of L. kluyveri will provide a better understanding of metabolism behind ethyl acetate production as well as uracil catabolism (pyrimidine degradation) pathway. iPN730 is an addition to genome-scale metabolic models of non-conventional yeasts that will facilitate system-wide omics analysis to understand fungal metabolic diversity.
Collapse
|
2
|
Linder T. A genomic survey of nitrogen assimilation pathways in budding yeasts (sub-phylum Saccharomycotina). Yeast 2018; 36:259-273. [DOI: 10.1002/yea.3364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Tomas Linder
- Department of Molecular Sciences; Swedish University of Agricultural Sciences; Uppsala Sweden
| |
Collapse
|
3
|
Pérez-delos Santos FJ, Riego-Ruiz L. Gln3 is a main regulator of nitrogen assimilation in Candida glabrata. Microbiology (Reading) 2016; 162:1490-1499. [DOI: 10.1099/mic.0.000312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Francisco J. Pérez-delos Santos
- Laboratory of Functional and Comparative Genomics, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), A. C., San Luis Potosí, México
| | - Lina Riego-Ruiz
- Laboratory of Functional and Comparative Genomics, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), A. C., San Luis Potosí, México
| |
Collapse
|
4
|
Large-Scale Survey of Intraspecific Fitness and Cell Morphology Variation in a Protoploid Yeast Species. G3-GENES GENOMES GENETICS 2016; 6:1063-71. [PMID: 26888866 PMCID: PMC4825641 DOI: 10.1534/g3.115.026682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
It is now clear that the exploration of the genetic and phenotypic diversity of nonmodel species greatly improves our knowledge in biology. In this context, we recently launched a population genomic analysis of the protoploid yeast Lachancea kluyveri (formerly Saccharomyces kluyveri), highlighting a broad genetic diversity (π = 17 × 10−3) compared to the yeast model organism, S. cerevisiae (π = 4 × 10−3). Here, we sought to generate a comprehensive view of the phenotypic diversity in this species. In total, 27 natural L. kluyveri isolates were subjected to trait profiling using the following independent approaches: (i) analyzing growth in 55 growth conditions and (ii) investigating 501 morphological changes at the cellular level. Despite higher genetic diversity, the fitness variance observed in L. kluyveri is lower than that in S. cerevisiae. However, morphological features show an opposite trend. In addition, there is no correlation between the origins (ecological or geographical) of the isolate and the phenotypic patterns, demonstrating that trait variation follows neither population history nor source environment in L. kluyveri. Finally, pairwise comparisons between growth rate correlation and genetic diversity show a clear decrease in phenotypic variability linked to genome variation increase, whereas no such a trend was identified for morphological changes. Overall, this study reveals for the first time the phenotypic diversity of a distantly related species to S. cerevisiae. Given its genetic properties, L. kluyveri might be useful in further linkage mapping analyses of complex traits, and could ultimately provide a better insight into the evolution of the genotype–phenotype relationship across yeast species.
Collapse
|
5
|
Global expression analysis of the yeast Lachancea (Saccharomyces) kluyveri reveals new URC genes involved in pyrimidine catabolism. EUKARYOTIC CELL 2013; 13:31-42. [PMID: 24186952 DOI: 10.1128/ec.00202-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pyrimidines are important nucleic acid precursors which are constantly synthesized, degraded, and rebuilt in the cell. Four degradation pathways, two of which are found in eukaryotes, have been described. One of them, the URC pathway, has been initially discovered in our laboratory in the yeast Lachancea kluyveri. Here, we present the global changes in gene expression in L. kluyveri in response to different nitrogen sources, including uracil, uridine, dihydrouracil, and ammonia. The expression pattern of the known URC genes, URC1-6, helped to identify nine putative novel URC genes with a similar expression pattern. The microarray analysis provided evidence that both the URC and PYD genes are under nitrogen catabolite repression in L. kluyveri and are induced by uracil or dihydrouracil, respectively. We determined the function of URC8, which was found to catalyze the reduction of malonate semialdehyde to 3-hydroxypropionate, the final degradation product of the pathway. The other eight genes studied were all putative permeases. Our analysis of double deletion strains showed that the L. kluyveri Fui1p protein transported uridine, just like its homolog in Saccharomyces cerevisiae, but we demonstrated that is was not the only uridine transporter in L. kluyveri. We also showed that the L. kluyveri homologs of DUR3 and FUR4 do not have the same function that they have in S. cerevisiae, where they transport urea and uracil, respectively. In L. kluyveri, both of these deletion strains grew normally on uracil and urea.
Collapse
|
6
|
Beck H, Dobritzsch D, Piškur J. Saccharomyces kluyverias a model organism to study pyrimidine degradation. FEMS Yeast Res 2008; 8:1209-13. [DOI: 10.1111/j.1567-1364.2008.00442.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Schnackerz KD, Andersen G, Dobritzsch D, Piskur J. Degradation of pyrimidines in Saccharomyces kluyveri: transamination of beta-alanine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:794-9. [PMID: 18600542 DOI: 10.1080/15257770802145983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Beta-alanine is an intermediate in the reductive degradation of uracil. Recently we have identified and characterized the Saccharomyces kluyveri PYD4 gene and the corresponding enzyme beta -alanine aminotransferase ((Sk)Pyd4p), highly homologous to eukaryotic gamma-aminobutyrate aminotransferase (GABA-AT). S. kluyveri has two aminotransferases, GABA aminotransferase ((Sk)Uga1p) with 80% and (Sk)Pyd4p with 55% identity to S. cerevisiae GABA-AT. (Sk)Pyd4p is a typical pyridoxal phosphate-dependent aminotransferase, specific for alpha-ketoglutarate (alpha KG), beta-alanine (BAL) and gamma-aminobutyrate (GABA), showing a ping-pong kinetic mechanism involving two half-reactions and substrate inhibition. (Sk)Uga1p accepts only alpha KG and GABA but not BAL, thus only (Sk)Pydy4p belongs to the uracil degradative pathway.
Collapse
Affiliation(s)
- K D Schnackerz
- Cell- and Organism Biology, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
8
|
Andersen G, Björnberg O, Polakova S, Pynyaha Y, Rasmussen A, Møller K, Hofer A, Moritz T, Sandrini MPB, Merico AM, Compagno C, Akerlund HE, Gojković Z, Piskur J. A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes. J Mol Biol 2008; 380:656-66. [PMID: 18550080 DOI: 10.1016/j.jmb.2008.05.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/09/2008] [Accepted: 05/10/2008] [Indexed: 11/16/2022]
Abstract
Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces kluyveri, we show that during degradation, uracil is not reduced to dihydrouracil. Six loci, named URC1-6 (for uracil catabolism), are involved in the novel catabolic pathway. Four of them, URC3,5, URC6, and URC2 encode urea amidolyase, uracil phosphoribosyltransferase, and a putative transcription factor, respectively. The gene products of URC1 and URC4 are highly conserved proteins with so far unknown functions and they are present in a variety of prokaryotes and fungi. In bacteria and in some fungi, URC1 and URC4 are linked on the genome together with the gene for uracil phosphoribosyltransferase (URC6). Urc1p and Urc4p are therefore likely the core components of this novel biochemical pathway. A combination of genetic and analytical chemistry methods demonstrates that uridine monophosphate and urea are intermediates, and 3-hydroxypropionic acid, ammonia and carbon dioxide the final products of degradation. The URC pathway does not require the presence of an active respiratory chain and is therefore different from the oxidative and rut pathways described in prokaryotes, although the latter also gives 3-hydroxypropionic acid as the end product. The genes of the URC pathway are not homologous to any of the eukaryotic or prokaryotic genes involved in pyrimidine degradation described to date.
Collapse
Affiliation(s)
- Gorm Andersen
- Department of Cell and Organism Biology, Lund University, 223 62 Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Naumova ES, Serpova EV, Korshunova IV, Naumov GI. Molecular genetic characterization of the yeast Lachancea kluyveri. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707030083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Andersen G, Andersen B, Dobritzsch D, Schnackerz KD, Piskur J. A gene duplication led to specialized γ-aminobutyrate and β-alanine aminotransferase in yeast. FEBS J 2007; 274:1804-17. [PMID: 17355287 DOI: 10.1111/j.1742-4658.2007.05729.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In humans, beta-alanine (BAL) and the neurotransmitter gamma-aminobutyrate (GABA) are transaminated by a single aminotransferase enzyme. Apparently, yeast originally also had a single enzyme, but the corresponding gene was duplicated in the Saccharomyces kluyveri lineage. SkUGA1 encodes a homologue of Saccharomyces cerevisiae GABA aminotransferase, and SkPYD4 encodes an enzyme involved in both BAL and GABA transamination. SkPYD4 and SkUGA1 as well as S. cerevisiae UGA1 and Schizosaccharomyces pombe UGA1 were subcloned, over-expressed and purified. One discontinuous and two continuous coupled assays were used to characterize the substrate specificity and kinetic parameters of the four enzymes. It was found that the cofactor pyridoxal 5'-phosphate is needed for enzymatic activity and alpha-ketoglutarate, and not pyruvate, as the amino group acceptor. SkPyd4p preferentially uses BAL as the amino group donor (V(max)/K(m)=0.78 U x mg(-1) x mm(-1)), but can also use GABA (V(max)/K(m)=0.42 U x mg(-1) x mm(-1)), while SkUga1p only uses GABA (V(max)/K(m)=4.01 U x mg(-1) x mm(-1)). SpUga1p and ScUga1p transaminate only GABA and not BAL. While mammals degrade BAL and GABA with only one enzyme, but in different tissues, S. kluyveri and related yeasts have two different genes/enzymes to apparently 'distinguish' between the two reactions in a single cell. It is likely that upon duplication approximately 200 million years ago, a specialized Uga1p evolved into a 'novel' transaminase enzyme with broader substrate specificity.
Collapse
Affiliation(s)
- Gorm Andersen
- BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | |
Collapse
|
11
|
Stolz J, Caspari T, Carr AM, Sauer N. Cell division defects of Schizosaccharomyces pombe liz1- mutants are caused by defects in pantothenate uptake. EUKARYOTIC CELL 2004; 3:406-12. [PMID: 15075270 PMCID: PMC387649 DOI: 10.1128/ec.3.2.406-412.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The liz1+ gene of the fission yeast Schizosaccharomyces pombe was previously identified by complementation of a mutation that causes abnormal mitosis when ribonucleotide reductase is inhibited. Liz1 has similarity to transport proteins from Saccharomyces cerevisiae, but the potential substrate and its connection to the cell division cycle remain elusive. We report here that liz1+ encodes a plasma membrane-localized active transport protein for the vitamin pantothenate, the precursor of coenzyme A (CoA). Liz1 is required for pantothenate uptake at low extracellular concentrations. A lack of pantothenate uptake results in three phenotypes: (i) slow growth, (ii) delayed septation, and (iii) aberrant mitosis in the presence of hydroxyurea (HU). All three phenotypes are suppressed by high extracellular concentrations of pantothenate, where pantothenate uptake occurs by passive diffusion. liz1Delta mutants are viable because they can synthesize pantothenate from uracil as an endogenous source. The use of uracil for both pantothenate biosynthesis and deoxyribonucleotide generation provides an explanation for the aberrant mitosis in the presence of HU. HU blocks ribonucleotide reductase, and we propose that the accumulation of ribonucleotides reduces uracil biosynthesis by feedback inhibition of aspartate transcarbamoylase. Thus, the addition of HU to liz1Delta mutants results in a shortage of pantothenate. Because liz1Delta mutants show striking similarities to mutants with defects in fatty acid biosynthesis, we propose that the shortage of pantothenate compromises fatty acid synthesis, resulting in slow growth and mitotic defects.
Collapse
Affiliation(s)
- Jürgen Stolz
- Department of Cell Biology and Plant Physiology, Universität Regensburg, Germany.
| | | | | | | |
Collapse
|
12
|
Lundgren S, Gojković Z, Piskur J, Dobritzsch D. Yeast β-Alanine Synthase Shares a Structural Scaffold and Origin with Dizinc-dependent Exopeptidases. J Biol Chem 2003; 278:51851-62. [PMID: 14534321 DOI: 10.1074/jbc.m308674200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Alanine synthase (beta AS) is the final enzyme of the reductive pyrimidine catabolic pathway, which is responsible for the breakdown of pyrimidine bases, including several anticancer drugs. In eukaryotes, beta ASs belong to two subfamilies, which exhibit a low degree of sequence similarity. We determined the structure of beta AS from Saccharomyces kluyveri to a resolution of 2.7 A. The subunit of the homodimeric enzyme consists of two domains: a larger catalytic domain with a dizinc metal center, which represents the active site of beta AS, and a smaller domain mediating the majority of the intersubunit contacts. Both domains exhibit a mixed alpha/beta-topology. Surprisingly, the observed high structural homology to a family of dizinc-dependent exopeptidases suggests that these two enzyme groups have a common origin. Alterations in the ligand composition of the metal-binding site can be explained as adjustments to the catalysis of a different reaction, the hydrolysis of an N-carbamyl bond by beta AS compared with the hydrolysis of a peptide bond by exopeptidases. In contrast, there is no resemblance to the three-dimensional structure of the functionally closely related N-carbamyl-d-amino acid amidohydrolases. Based on comparative structural analysis and observed deviations in the backbone conformations of the eight copies of the subunit in the asymmetric unit, we suggest that conformational changes occur during each catalytic cycle.
Collapse
Affiliation(s)
- Stina Lundgren
- Division of Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
13
|
Gojkovic Z, Rislund L, Andersen B, Sandrini MPB, Cook PF, Schnackerz KD, Piskur J. Dihydropyrimidine amidohydrolases and dihydroorotases share the same origin and several enzymatic properties. Nucleic Acids Res 2003; 31:1683-92. [PMID: 12626710 PMCID: PMC152861 DOI: 10.1093/nar/gkg258] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Slime mold, plant and insect dihydropyrimidine amidohydrolases (DHPases, EC 3.5.2.2), which catalyze the second step of pyrimidine and several anti-cancer drug degradations, were cloned and shown to functionally replace a defective DHPase enzyme in the yeast Saccharomyces kluyveri. The yeast and slime mold DHPases were over-expressed, shown to contain two zinc ions, characterized for their properties and compared to those of the calf liver enzyme. In general, the kinetic parameters varied widely among the enzymes, the mammalian DHPase having the highest catalytic efficiency. The ring opening was catalyzed most efficiently at pH 8.0 and competitively inhibited by the reaction product, N-carbamyl-beta-alanine. At lower pH values DHPases catalyzed the reverse reaction, the closing of the ring. Apparently, eukaryote DHPases are enzymatically as well as phylogenetically related to the de novo biosynthetic dihydroorotase (DHOase) enzymes. Modeling studies showed that the position of the catalytically critical amino acid residues of bacterial DHOases and eukaryote DHPases overlap. Therefore, only a few modifications might have been necessary during evolution to convert the unspecialized enzyme into anabolic and catabolic ones.
Collapse
Affiliation(s)
- Zoran Gojkovic
- Eukaryote Molecular Biology, BioCentrum-DTU, Technical University of Denmark, Building 301, DK-2800 Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
14
|
Gojković Z, Sandrini MP, Piskur J. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity. Genetics 2001; 158:999-1011. [PMID: 11454750 PMCID: PMC1461717 DOI: 10.1093/genetics/158.3.999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
beta-Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamyl-beta-alanine as the sole nitrogen source and exhibits diminished beta-alanine synthase activity was used to clone analogous genes from different eukaryotes. Putative PYD3 sequences from the yeast S. kluyveri, the slime mold Dictyostelium discoideum, and the fruit fly Drosophila melanogaster complemented the pyd3 defect. When the S. kluyveri PYD3 gene was expressed in S. cerevisiae, which has no pyrimidine catabolic pathway, it enabled growth on N-carbamyl-beta-alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta-alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial N-carbamyl amidohydrolases. All three beta-alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N-carbamyl-beta-alanine, but not by uracil. This work establishes S. kluyveri as a model organism for studying pyrimidine degradation and beta-alanine production in eukaryotes.
Collapse
Affiliation(s)
- Z Gojković
- Section of Molecular Microbiology, BioCentrum DTU, DK-2800 Lyngby, Denmark
| | | | | |
Collapse
|
15
|
Neuvéglise C, Bon E, Lépingle A, Wincker P, Artiguenave F, Gaillardin C, Casarégola S. Genomic exploration of the hemiascomycetous yeasts: 9. Saccharomyces kluyveri. FEBS Lett 2000; 487:56-60. [PMID: 11152884 DOI: 10.1016/s0014-5793(00)02280-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genome of Saccharomyces kluyveri was explored through 2528 random sequence tags with an average length of 981 bp. The complete nuclear ribosomal DNA unit was found to be 8656 bp in length. Sequences homologous to retroelements of the gypsy and copia types were identified as well as numerous solo long terminal repeats. We identified at least 1406 genes homologous to Saccharomyces cerevisiae open reading frames, with on average 58.1% and 72.4% amino acid identity and similarity, respectively. In addition, by comparison with completely sequenced genomes and the SwissProt database, we found 27 novel S. kluyveri genes. Most of these genes belong to pathways or have functions absent from S. cerevisiae, such as the catabolic pathway of purines or pyrimidines, melibiose fermentation, sorbitol utilization, or degradation of pollutants. The sequences are deposited in EMBL under the accession numbers AL404849-AL407376.
Collapse
Affiliation(s)
- C Neuvéglise
- Collection de Levures d'Intérêt Biotechnologie, Laboratoire de Génétique Moléculaire et Cellulaire, INRA UMR216, CNRS URA1925, INA-PG, Thiverval-Grignon, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
Gojkovic Z, Jahnke K, Schnackerz KD, Piskur J. PYD2 encodes 5,6-dihydropyrimidine amidohydrolase, which participates in a novel fungal catabolic pathway. J Mol Biol 2000; 295:1073-87. [PMID: 10656811 DOI: 10.1006/jmbi.1999.3393] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most fungi cannot use pyrimidines or their degradation products as the sole nitrogen source. Previously, we screened several yeasts for their ability to catabolise pyrimidines. One of them, Saccharomyces kluyveri, was able to degrade the majority of pyrimidines. Here, a series of molecular techniques have been modified to clone pyrimidine catabolic genes, study their expression and purify the corresponding enzymes from this yeast. The pyd2-1 mutant, which lacked the 5,6-dihydropyrimidine amidohydrolase (DHPase) activity, was transformed with wild-type S. kluyveri genomic library. The complementing plasmid contained the full sequence of the PYD2 gene, which exhibited a high level of homology with mammalian DHPases and bacterial hydantoinases. The organisation of PYD2 showed a couple of specific features. The 542-codons open reading frame was interrupted by a 63 bp intron, which does not contain the Saccharomyces cerevisiae branch-point sequence, and the transcripts contained a long 5' untranslated leader with five or six AUG codons. The derived amino acid sequence showed similarities with dihydroorotases, allantoinases and uricases from various organisms. Surprisingly, the URA4 gene from S. cerevisiae, which encodes dihydroorotase, shows greater similarity to PYD2 and other catabolic enzymes than to dihydroorotases from several other non-fungal organisms. The S. kluyveri DHPase was purified to homogeneity and sequencing of the N-terminal region revealed that the purified enzyme corresponds to the PYD2 gene product. The enzyme is a tetramer, likely consisting of similar if not identical subunits each with a molecular mass of 59 kDa. The S. kluyveri DHPase was capable of catalysing both dihydrouracil and dihydrothymine degradation, presumably by the same reaction mechanism as that described for mammalian DHPase. On the other hand, the regulation of the yeast PYD2 gene and DHPase seem to be different from that in other organisms. DHPase activity and Northern analysis demonstrated that PYD2 expression is inducible by dihydrouracil, though not by uracil. Apparently, dihydrouracil and DHPase represent an important regulatory checkpoint of the pyrimidine catabolic pathway in S. kluyveri.
Collapse
Affiliation(s)
- Z Gojkovic
- Department of Microbiology Building 301, Technical University of Denmark, Lyngby, DK-2800, Denmark
| | | | | | | |
Collapse
|