1
|
Masoudi-Sobhanzadeh Y, Salemi A, Pourseif MM, Jafari B, Omidi Y, Masoudi-Nejad A. Structure-based drug repurposing against COVID-19 and emerging infectious diseases: methods, resources and discoveries. Brief Bioinform 2021; 22:bbab113. [PMID: 33993214 PMCID: PMC8194848 DOI: 10.1093/bib/bbab113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/15/2021] [Accepted: 03/13/2021] [Indexed: 01/09/2023] Open
Abstract
To attain promising pharmacotherapies, researchers have applied drug repurposing (DR) techniques to discover the candidate medicines to combat the coronavirus disease 2019 (COVID-19) outbreak. Although many DR approaches have been introduced for treating different diseases, only structure-based DR (SBDR) methods can be employed as the first therapeutic option against the COVID-19 pandemic because they rely on the rudimentary information about the diseases such as the sequence of the severe acute respiratory syndrome coronavirus 2 genome. Hence, to try out new treatments for the disease, the first attempts have been made based on the SBDR methods which seem to be among the proper choices for discovering the potential medications against the emerging and re-emerging infectious diseases. Given the importance of SBDR approaches, in the present review, well-known SBDR methods are summarized, and their merits are investigated. Then, the databases and software applications, utilized for repurposing the drugs against COVID-19, are introduced. Besides, the identified drugs are categorized based on their targets. Finally, a comparison is made between the SBDR approaches and other DR methods, and some possible future directions are proposed.
Collapse
Affiliation(s)
- Yosef Masoudi-Sobhanzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Salemi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Jafari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Yadollah Omidi
- Nova Southeastern University College of Pharmacy, Florida, USA
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Tang S, Pan Y, Lou D, Ji S, Zhu L, Tan J, Qi N, Yang Q, Zhang Z, Yang B, Zhao W, Wang B. Structural and functional characterization of a novel acidophilic 7α-hydroxysteroid dehydrogenase. Protein Sci 2019; 28:910-919. [PMID: 30839141 PMCID: PMC6460000 DOI: 10.1002/pro.3599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/09/2022]
Abstract
7α-Hydroxysteroid dehydrogenase (7α-HSDH) is an NAD(P)H-dependent oxidoreductase belonging to the short-chain dehydrogenases/reductases. In vitro, 7α-HSDH is involved in the efficient biotransformation of taurochenodeoxycholic acid (TCDCA) to tauroursodeoxycholic acid (TUDCA). In this study, a gene encoding novel 7α-HSDH (named as St-2-1) from fecal samples of black bear was cloned and heterologously expressed in Escherichia coli. The protein has subunits of 28.3 kDa and a native size of 56.6 kDa, which suggested a homodimer. We studied the relevant properties of the enzyme, including the optimum pH, optimum temperature, thermal stability, activators, and inhibitors. Interestingly, the data showed that St-2-1 differs from the 7α-HSDHs reported in the literature, as it functions under acidic conditions. The enzyme displayed its optimal activity at pH 5.5 (TCDCA). The acidophilic nature of 7α-HSDH expands its application environment and the natural enzyme bank of HSDHs, providing a promising candidate enzyme for the biosynthesis of TUDCA or other related chemical entities.
Collapse
Affiliation(s)
- Shijin Tang
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Yinping Pan
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir RegionSchool of Biological & Chemical Engineering, Chongqing University of EducationChongqing 400067China
| | - Shunlin Ji
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
- Modern Life Science Experiment Teaching CenterCollege of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir RegionSchool of Biological & Chemical Engineering, Chongqing University of EducationChongqing 400067China
| | - Na Qi
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Qiong Yang
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
- Chongqing Key Laboratory of Inorganic Special Functional MaterialsCollaborative Innovation Center for Green Development in Wuling Mountain Areas, Yangtze Normal UniversityChongqing 408100China
| | - Zhi Zhang
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Biling Yang
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Wenyan Zhao
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| |
Collapse
|
3
|
Chao N, Li S, Li N, Qi Q, Jiang WT, Jiang XN, Gai Y. Two distinct cinnamoyl-CoA reductases in Selaginella moellendorffii offer insight into the divergence of CCRs in plants. PLANTA 2017; 246:33-43. [PMID: 28321576 DOI: 10.1007/s00425-017-2678-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Two distinct cinnamoyl-coenzyme A reductases (CCRs) from Selaginella moellendorffii were evaluated, and of these, SmCCR2-1, which has both distinct sequence motifs and catalytic properties, was clustered into a new CCR subgroup. Cinnamoyl-coenzyme A reductases (CCRs) have been reported in many land plants to have critical functions in monolignol biosynthesis. In this study, we performed a genome-wide screen and obtained two distinct SmCCRs from S. moellendorffii. Phylogenetic analysis indicated that SmCCR2 (both SmCCR2-1 and 2-2) and SmCCR3 together with PpaCCR belong to a distinct subgroup of genuine CCRs with variations in the NAD(P)H-binding motif. Enzymatic assays showed detectable activity by both SmCCR1 and SmCCR2-1 toward four hydroxycinnamoyl-CoA esters. SmCCR1, which clustered with reported CCRs from angiosperms and gymnosperms, exhibited specificity toward feruloyl-CoA, while SmCCR2-1 showed a preference for sinapoyl-CoA. Interestingly, the reaction temperature profiles for SmCCR1 and SmCCR2-1 are complementary. Homology models and molecular simulations suggest that the variations in NADPH-binding motifs, especially R(X)6K instead of R(X)5K, affect the NADP+ conformation. Notably, the signature motif NWYCY was replaced with NGYCL in SmCCR1 and with EWYCL in SmCCR2-1, while the signature residues H202 and R253, reported in a previous study, were conserved in SmCCR1 and SmCCR2-1 but varied in SmCCR-like genes. It is likely that NWYCY is not a reliable signature for CCRs in plants. The detectable activity of site-direct mutant S123T of SmCCR1 suggested that S123 which consists of catalytic triad is changeable. Possible evolution process for the emergence of two subgroups of genuine CCRs was also revealed. Altogether, these findings revise our understanding of CCRs with regard to divergence and active sites.
Collapse
Affiliation(s)
- Nan Chao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Shuang Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ning Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Qi Qi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Wen-Ting Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiang-Ning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, National Engineering Laboratory for Tree Breeding, Beijing, 100083, China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, National Engineering Laboratory for Tree Breeding, Beijing, 100083, China.
| |
Collapse
|
4
|
Chao N, Li N, Qi Q, Li S, Lv T, Jiang XN, Gai Y. Characterization of the cinnamoyl-CoA reductase (CCR) gene family in Populus tomentosa reveals the enzymatic active sites and evolution of CCR. PLANTA 2017; 245:61-75. [PMID: 27580618 DOI: 10.1007/s00425-016-2591-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 08/23/2016] [Indexed: 05/18/2023]
Abstract
Two distinct cinnamoyl-coenzyme A reductases (CCRs) from Populus tomentosa were cloned and studied and active sites in CCRs were further identified based on sequence divergence, molecular simulation, and site-directed mutants. Cinnamoyl-coenzyme A (CoA) reductase (CCR) is the first committed gene in the lignin-specific pathway and plays a role in the lignin biosynthesis pathway. In this study, we cloned 11 genes encoding CCR or CCR-like proteins in Populus tomentosa. An enzymatic assay of the purified recombinant P. tomentosa (Pto) CCR and PtoCCR-like proteins indicated that only PtoCCR1 and PtoCCR7 had detectable activities toward hydroxycinnamoyl-CoA esters. PtoCCR1 exhibited specificity for feruloyl-CoA, with no detectable activity for any other hydroxycinnamoyl-CoA esters. However, PtoCCR7 catalyzed p-coumaroyl-CoA, caffeoyl-CoA, feruloyl-CoA, and sinapoyl-CoA with a preference for feruloyl-CoA. Site-directed mutations of selected amino acids divergent between PtoCCR1 and 7, combined with modeling and docking, showed that A132 in CCR7 combined with the catalytic triad might comprise the catalytic center. In CCR7, L192, F155, and H208 were identified as the substrate-binding sites, and site-directed mutations of these amino acids showed obvious changes in catalytic efficiency with respect to both feruloyl-CoA and sinapoyl-CoA. Mutant F155Y exhibited greater catalytic efficiency for sinapoyl-CoA compared with that of wild-type PtoCCR7. Finally, recent genome duplication events provided the foundation for CCR divergence. This study further identified the active sites in CCRs and the evolutionary process of CCRs in terrestrial plants.
Collapse
Affiliation(s)
- Nan Chao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Ning Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Qi Qi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Shuang Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tong Lv
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiang-Ning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing, 100083, China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing, 100083, China.
| |
Collapse
|
5
|
Hofmann L, Tsybovsky Y, Alexander NS, Babino D, Leung NY, Montell C, Banerjee S, von Lintig J, Palczewski K. Structural Insights into the Drosophila melanogaster Retinol Dehydrogenase, a Member of the Short-Chain Dehydrogenase/Reductase Family. Biochemistry 2016; 55:6545-6557. [PMID: 27809489 DOI: 10.1021/acs.biochem.6b00907] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The 11-cis-retinylidene chromophore of visual pigments isomerizes upon interaction with a photon, initiating a downstream cascade of signaling events that ultimately lead to visual perception. 11-cis-Retinylidene is regenerated through enzymatic transformations collectively called the visual cycle. The first and rate-limiting enzymatic reaction within this cycle, i.e., the reduction of all-trans-retinal to all-trans-retinol, is catalyzed by retinol dehydrogenases. Here, we determined the structure of Drosophila melanogaster photoreceptor retinol dehydrogenase (PDH) isoform C that belongs to the short-chain dehydrogenase/reductase (SDR) family. This is the first reported structure of a SDR that possesses this biologically important activity. Two crystal structures of the same enzyme grown under different conditions revealed a novel conformational change of the NAD+ cofactor, likely representing a change during catalysis. Amide hydrogen-deuterium exchange of PDH demonstrated changes in the structure of the enzyme upon dinucleotide binding. In D. melanogaster, loss of PDH activity leads to photoreceptor degeneration that can be partially rescued by transgenic expression of human RDH12. Based on the structure of PDH, we analyzed mutations causing Leber congenital amaurosis 13 in a homology model of human RDH12 to obtain insights into the molecular basis of RDH12 disease-causing mutations.
Collapse
Affiliation(s)
- Lukas Hofmann
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Yaroslav Tsybovsky
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nathan S Alexander
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Darwin Babino
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nicole Y Leung
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14850, United States.,Northeastern Collaborative Access Team, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Johannes von Lintig
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
6
|
Insight into S-adenosylmethionine biosynthesis from the crystal structures of the human methionine adenosyltransferase catalytic and regulatory subunits. Biochem J 2013; 452:27-36. [PMID: 23425511 PMCID: PMC3793261 DOI: 10.1042/bj20121580] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MAT (methionine adenosyltransferase) utilizes L-methionine and ATP to form SAM (S-adenosylmethionine), the principal methyl donor in biological methylation. Mammals encode a liver-specific isoenzyme, MAT1A, that is genetically linked with an inborn metabolic disorder of hypermethioninaemia, as well as a ubiquitously expressed isoenzyme, MAT2A, whose enzymatic activity is regulated by an associated subunit MAT2B. To understand the molecular mechanism of MAT functions and interactions, we have crystallized the ligand-bound complexes of human MAT1A, MAT2A and MAT2B. The structures of MAT1A and MAT2A in binary complexes with their product SAM allow for a comparison with the Escherichia coli and rat structures. This facilitates the understanding of the different substrate or product conformations, mediated by the neighbouring gating loop, which can be accommodated by the compact active site during catalysis. The structure of MAT2B reveals an SDR (short-chain dehydrogenase/reductase) core with specificity for the NADP/H cofactor, and harbours the SDR catalytic triad (YxxxKS). Extended from the MAT2B core is a second domain with homology with an SDR sub-family that binds nucleotide-sugar substrates, although the equivalent region in MAT2B presents a more open and extended surface which may endow a different ligand/protein-binding capability. Together, the results of the present study provide a framework to assign structural features to the functional and catalytic properties of the human MAT proteins, and facilitate future studies to probe new catalytic and binding functions.
Collapse
|
7
|
Moon HJ, Tiwari M, Jeya M, Lee JK. Cloning and characterization of a ribitol dehydrogenase from Zymomonas mobilis. Appl Microbiol Biotechnol 2010; 87:205-14. [PMID: 20127234 DOI: 10.1007/s00253-010-2444-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 11/26/2022]
Abstract
Ribitol dehydrogenase (RDH) catalyzes the conversion of ribitol to D-ribulose. A novel RDH gene was cloned from Zymomonas mobilis subsp. mobilis ZM4 and overexpressed in Escherichia coli BL21(DE3). DNA sequence analysis revealed an open reading frame of 795 bp, capable of encoding a polypeptide of 266 amino acid residues with a calculated molecular mass of 28,426 Da. The gene was overexpressed in E. coli BL21(DE3) and the protein was purified as an active soluble form using glutathione S-transferase affinity chromatography. The molecular mass of the purified enzyme was estimated to be approximately 28 kDa by sodium dodecyl sulfate-polyacrylamide gel and approximately 58 KDa with gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had an optimal pH and temperature of 9.5 and 65 degrees C, respectively. Unlike previously characterized RDHs, Z. mobilis RDH (ZmRDH) showed an unusual dual coenzyme specificity, with a k(cat) of 4.83 s(-1) for NADH (k(cat)/K(m) = 27.3 s(-1) mM(-1)) and k(cat) of 2.79 s(-1) for NADPH (k(cat)/K(m) = 10.8 s(-1) mM(-1)). Homology modeling and docking studies of NAD+ and NADP+ into the active site of ZmRDH shed light on the dual coenzyme specificity of ZmRDH.
Collapse
Affiliation(s)
- Hee-Jung Moon
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, South Korea 143-701
| | | | | | | |
Collapse
|
8
|
Theoretical calculations of the catalytic triad in short-chain alcohol dehydrogenases/reductases. Biophys J 2007; 94:1412-27. [PMID: 17981907 DOI: 10.1529/biophysj.107.111096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three highly conserved active site residues (Ser, Tyr, and Lys) of the family of short-chain alcohol dehydrogenases/reductases (SDRs) were demonstrated to be essential for catalytic activity and have been denoted the catalytic triad of SDRs. In this study computational methods were adopted to study the ionization properties of these amino acids in SDRs from Drosophila melanogaster and Drosophila lebanonensis. Three enzyme models, with different ionization scenarios of the catalytic triad that might be possible when inhibitors bind to the enzyme cofactor complex, were constructed. The binding of the two alcohol competitive inhibitors were studied using automatic docking by the Internal Coordinate Mechanics program, molecular dynamic (MD) simulations with the AMBER program package, calculation of the free energy of ligand binding by the linear interaction energy method, and the hydropathic interactions force field. The calculations indicated that deprotonated Tyr acts as a strong base in the binary enzyme-NAD(+) complex. Molecular dynamic simulations for 5 ns confirmed that deprotonated Tyr is essential for anchoring and orientating the inhibitors at the active site, which might be a general trend for the family of SDRs. The findings here have implications for the development of therapeutically important SDR inhibitors.
Collapse
|
9
|
Puyaubert J, Dieryck W, Costaglioli P, Chevalier S, Breton A, Lessire R. Temporal gene expression of 3-ketoacyl-CoA reductase is different in high and in low erucic acid Brassica napus cultivars during seed development. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1687:152-63. [PMID: 15708363 DOI: 10.1016/j.bbalip.2004.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/15/2004] [Accepted: 11/19/2004] [Indexed: 10/26/2022]
Abstract
The membrane-bound acyl-CoA elongase complex is a key enzyme responsible for erucoyl-CoA synthesis. Among the four putative genes encoding the four moieties of this complex in Brassica napus seeds, only one has been characterized, the Bn-fae1 gene, which encodes the 3-ketoacyl-CoA synthase. The genes encoding the other enzymes (3-ketoacyl-CoA reductase, 3-hydroxyacyl-CoA dehydratase and trans-2,3-enoyl-CoA reductase) have not been identified. We cloned two 3-ketoacyl-CoA reductase cDNA isoforms, Bn-kcr1 and Bn-kcr2, from B. napus seeds. Their function was identified by heterologous complementation in yeast by restoring elongase activities. The comparison of Bn-kcr mRNA expression in different B. napus tissues showed that the genes were preferentially expressed in seeds and roots. We also investigated the regulation of gene expression in High Erucic Acid Rapeseed (HEAR) and in Low Erucic Acid Rapeseed (LEAR) cultivars during seed development. The co-expression of Bn-fae1 and Bn-kcr observed in HEAR cultivar during seed development was different in LEAR cultivar, suggesting that expression of both genes was directly or indirectly linked.
Collapse
Affiliation(s)
- Juliette Puyaubert
- Laboratoire de Biogenèse Membranaire, CNRS FRE 2694, Université V. Segalen Bordeaux 2, 146, Rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
10
|
Mindnich R, Möller G, Adamski J. The role of 17 beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 2004; 218:7-20. [PMID: 15130507 DOI: 10.1016/j.mce.2003.12.006] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 12/09/2003] [Accepted: 12/15/2003] [Indexed: 11/17/2022]
Abstract
The biological activity of steroid hormones is regulated at the pre-receptor level by several enzymes including 17 beta-hydroxysteroid dehydrogenases (17 beta -HSD). The latter are present in many microorganisms, invertebrates and vertebrates. Dysfunctions in human 17 beta-hydroxysteroid dehydrogenases result in disorders of biology of reproduction and neuronal diseases, the enzymes are also involved in the pathogenesis of various cancers. 17 beta-hydroxysteroid dehydrogenases reveal a remarkable multifunctionality being able to modulate concentrations not only of steroids but as well of fatty and bile acids. Current knowledge on genetics, biochemistry and medical implications is presented in this review.
Collapse
Affiliation(s)
- R Mindnich
- GSF-National Research Center for Environment and Health, Institute of Experimental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | | | | |
Collapse
|
11
|
Mindnich R, Deluca D, Adamski J. Identification and characterization of 17 beta-hydroxysteroid dehydrogenases in the zebrafish, Danio rerio. Mol Cell Endocrinol 2004; 215:19-30. [PMID: 15026171 DOI: 10.1016/j.mce.2003.11.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 17 beta-hydroxysteroid dehydrogenases (17 beta-HSDs) are key enzymes in the final steps of steroid hormone synthesis. 17beta-HSD type 1 (HSD17B1) catalyzes the reduction of estrone to estradiol, while type 3 (HSD17B3) performs the conversion of androstenedione to testosterone. Here we present a functional genomics study of putative candidates of these enzymes in the zebrafish. By an in silico screen of zebrafish EST databases we identified three candidate homologs for both HSD17B1 and HSD17B3. Phylogenetic analysis, unique expression patterns (RT-PCR) during embryogenesis and adulthood, as well as activity measurements revealed that one of the HSD17B1 candidates is the zebrafish homolog, while the other two are paralogous photoreceptor-associated retinol dehydrogenases. All three HSD17B3 candidate genes showed nearly identical, ubiquitous expressions in embryogenesis and adult tissues and were identified to be paralogs of HSD17B12 and a yet uncharacterized putative steroid dehydrogenase. Phylogenetic analysis shows that HSD17B3 and HSD17B12 are descendants from a common ancestor.
Collapse
Affiliation(s)
- R Mindnich
- GSF-National Research Center for Environment and Health, Institute of Experimental Genetics, Ingolstaedter Landstr.1, Neuherberg 85764, Germany
| | | | | |
Collapse
|
12
|
Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B, Jörnvall H. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact 2003; 143-144:247-53. [PMID: 12604210 DOI: 10.1016/s0009-2797(02)00164-3] [Citation(s) in RCA: 495] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Short-chain dehydrogenases/reductases (SDR) form a large, functionally heterogeneous protein family presently with about 3000 primary and about 30 3D structures deposited in databases. Despite low sequence identities between different forms (about 15-30%), the 3D structures display highly similar alpha/beta folding patterns with a central beta-sheet, typical of the Rossmann-fold. Based on distinct sequence motifs functional assignments and classifications are possible, making it possible to build a general nomenclature system. Recent mutagenetic and structural studies considerably extend the knowledge on the general reaction mechanism, thereby establishing a catalytic tetrad of Asn-Ser-Tyr-Lys residues, which presumably form the framework for a proton relay system including the 2'-OH of the nicotinamide ribose, similar to the mechanism found in horse liver ADH. Based on their cellular functions, several SDR enzymes appear as possible and promising pharmacological targets with application areas spanning hormone-dependent cancer forms or metabolic diseases such as obesity and diabetes, and infectious diseases.
Collapse
Affiliation(s)
- Udo Oppermann
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Haapalainen AM, Koski MK, Qin YM, Hiltunen JK, Glumoff T. Binary structure of the two-domain (3R)-hydroxyacyl-CoA dehydrogenase from rat peroxisomal multifunctional enzyme type 2 at 2.38 A resolution. Structure 2003; 11:87-97. [PMID: 12517343 DOI: 10.1016/s0969-2126(02)00931-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The crystal structure of (3R)-hydroxyacyl-CoA dehydrogenase of rat peroxisomal multifunctional enzyme type 2 (MFE-2) was solved at 2.38 A resolution. The catalytic entity reveals an alpha/beta short chain alcohol dehydrogenase/reductase (SDR) fold and the conformation of the bound nicotinamide adenine dinucleotide (NAD(+)) found in other SDR enzymes. Of great interest is the separate COOH-terminal domain, which is not seen in other SDR structures. This domain completes the active site cavity of the neighboring monomer and extends dimeric interactions. Peroxisomal diseases that arise because of point mutations in the dehydrogenase-coding region of the MFE-2 gene can be mapped to changes in amino acids involved in NAD(+) binding and protein dimerization.
Collapse
Affiliation(s)
- Antti M Haapalainen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, P.O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland
| | | | | | | | | |
Collapse
|
14
|
Wu Q, Xu M, Cheng C, Zhou Z, Huang Y, Zhao W, Zeng L, Xu J, Fu X, Ying K, Xie Y, Mao Y. Molecular cloning and characterization of a novel Dehydrogenase/reductase (SDR family) member 1 genea from human fetal brain. Mol Biol Rep 2002; 28:193-8. [PMID: 12153138 DOI: 10.1023/a:1015722001960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Short-chain dehydrogenases/reductases (SDR) constitute a large protein family of NAD(P)(H)-dependent oxidoreductase. They are defined by distinct, common sequence motifs and show a wide range of substrate specialisms. By large-scale sequencing analysis of a human fetal brain cDNA library, we isolated a novel human SDR-type dehydrogenase/reductase gene named Dehydrogenase/reductase (SDR family) member 1 (DHRS1). The DHRS1 cDNA is 1411 base pair in length, encoding a 314-amino-acid polypeptide which has a SDR motif. Northern blot reveals two bands, of about 0.9 and 1.4 kb in size. These two forms are expressed in many tissues. The DHRS1 gene is localized on chromosome 14q21.3. It has 9 exons and spans 9.2 kb of the genomic DNA.
Collapse
Affiliation(s)
- Q Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, Ladenstein R, Jörnvall H, Oppermann U. Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem 2002; 277:25677-84. [PMID: 11976334 DOI: 10.1074/jbc.m202160200] [Citation(s) in RCA: 439] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Short-chain dehydrogenases/reductases form a large, evolutionarily old family of NAD(P)(H)-dependent enzymes with over 60 genes found in the human genome. Despite low levels of sequence identity (often 10-30%), the three-dimensional structures display a highly similar alpha/beta folding pattern. We have analyzed the role of several conserved residues regarding folding, stability, steady-state kinetics, and coenzyme binding using bacterial 3beta/17beta-hydroxysteroid dehydrogenase and selected mutants. Structure determination of the wild-type enzyme at 1.2-A resolution by x-ray crystallography and docking analysis was used to interpret the biochemical data. Enzyme kinetic data from mutagenetic replacements emphasize the critical role of residues Thr-12, Asp-60, Asn-86, Asn-87, and Ala-88 in coenzyme binding and catalysis. The data also demonstrate essential interactions of Asn-111 with active site residues. A general role of its side chain interactions for maintenance of the active site configuration to build up a proton relay system is proposed. This extends the previously recognized catalytic triad of Ser-Tyr-Lys residues to form a tetrad of Asn-Ser-Tyr-Lys in the majority of characterized short-chain dehydrogenases/reductase enzymes.
Collapse
Affiliation(s)
- Charlotta Filling
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kallberg Y, Oppermann U, Jörnvall H, Persson B. Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes. Protein Sci 2002; 11:636-41. [PMID: 11847285 PMCID: PMC2373483 DOI: 10.1110/ps.26902] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The progress in genome characterizations has opened new routes for studying enzyme families. The availability of the human genome enabled us to delineate the large family of short-chain dehydrogenase/reductase (SDR) members. Although the human genome releases are not yet final, we have already found 63 members. We have also compared these SDR forms with those of three model organisms: Caenorhabditis elegans, Drosophila melanogaster, and Arabidopsis thaliana. We detect eight SDR ortholog clusters in a cross-genome comparison. Four of these clusters represent extended SDR forms, a subgroup found in all life forms. The other four are classical SDRs with activities involved in cellular differentiation and signalling. We also find 18 SDR genes that are present only in the human genome of the four genomes studied, reflecting enzyme forms specific to mammals. Close to half of these gene products represent steroid dehydrogenases, emphasizing the regulatory importance of these enzymes.
Collapse
Affiliation(s)
- Yvonne Kallberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
17
|
Nordling E, Oppermann UC, Jörnvall H, Persson B. Human type 10 17 beta-hydroxysteroid dehydrogenase: molecular modelling and substrate docking. J Mol Graph Model 2002; 19:514-20, 591-3. [PMID: 11552679 DOI: 10.1016/s1093-3263(00)00098-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
17 beta-hydroxysteroid dehydrogenases catalyze the oxidoreduction of hydroxy/oxo groups at position C17 of steroid hormones, thereby constituting a prereceptor control mechanism of hormone action. At present, 11 different mammalian 17 beta-hydroxysteroid dehydrogenases have been identified, catalyzing the cell- and steroid-specific activation and inactivation of estrogens and androgens. The human type 10 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD-10) is a multifunctional mitochondrial enzyme that efficiently catalyzes the oxidative inactivation at C17 of androgens and estrogens. However, it also mediates oxidation of 3 alpha-hydroxy groups of androgens, thereby reactivating androgen metabolites. Finally, it is involved in beta-oxidation of fatty acids by catalyzing the L-hydroxyacyl CoA dehydrogenase reaction of the beta-oxidation cycle. These features and expression profiles suggest a critical role of 17 beta-HSD-10 in neurodegenerative and steroid-dependent cancer forms. Since no three-dimensional structure of 17 beta-HSD-10 is available, homology modelling was carried out to understand the molecular basis of these substrate specificities. The structure obtained displays the properties of a one-domain, alpha/beta fold enzyme of the SDR family. The active site is located within a large, hydrophobic cleft, which forms optimal contacts with the different steroid surfaces. The data provide explanations for the substrate specificities toward the various classes of sex steroid hormones. The model is suitable to explore substrate and inhibitor characteristics that may be used in the development of novel strategies in the treatment of degenerative or malignant diseases.
Collapse
Affiliation(s)
- E Nordling
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
18
|
Filling C, Nordling E, Benach J, Berndt KD, Ladenstein R, Jörnvall H, Oppermann U. Structural role of conserved Asn179 in the short-chain dehydrogenase/reductase scaffold. Biochem Biophys Res Commun 2001; 289:712-7. [PMID: 11726206 DOI: 10.1006/bbrc.2001.6032] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Short-chain dehydrogenases/reductases (SDR) constitute a large family of enzymes found in all forms of life. Despite a low level of sequence identity, the three-dimensional structures determined display a nearly superimposable alpha/beta folding pattern. We identified a conserved asparagine residue located within strand betaF and analyzed its role in the short-chain dehydrogenase/reductase architecture. Mutagenetic replacement of Asn179 by Ala in bacterial 3beta/17beta-hydroxysteroid dehydrogenase yields a folded, but enzymatically inactive enzyme, which is significantly more resistant to denaturation by guanidinium hydrochloride. Crystallographic analysis of the wild-type enzyme at 1.2-A resolution reveals a hydrogen bonding network, including a buried and well-ordered water molecule connecting strands betaE to betaF, a common feature found in 16 of 21 known three-dimensional structures of the family. Based on these results, we hypothesize that in mammalian 11beta-hydroxysteroid dehydrogenase the essential Asn-linked glycosylation site, which corresponds to the conserved segment, displays similar structural features and has a central role to maintain the SDR scaffold.
Collapse
Affiliation(s)
- C Filling
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
19
|
Nobel S, Abrahmsen L, Oppermann U. Metabolic conversion as a pre-receptor control mechanism for lipophilic hormones. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4113-25. [PMID: 11488903 DOI: 10.1046/j.1432-1327.2001.02359.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The majority of physiological effects mediated by steroids, retinoids and thyroids is accomplished by binding to members of the nuclear receptor superfamily of ligand activated transcription factors. The complex specific effects of lipid hormones depend not only on receptor expression, distribution and interactions, but also on the availability and metabolic conversion of the hormone itself. The cell-specific metabolic activation of inactive hormone precursors introduces a further level of hormonal regulation, and constitutes an important concept in endocrinology. The metabolic reactions carried out are achieved by dehydrogenases/reductases, hydroxylases and other enzymes, acting on ligands of the steroid/thyroid/retinoic hormone receptor superfamily. The concept implies that these tissue- and cell-specific metabolic conversions contribute to lipid hormone action, thus pointing to novel targets in drug development. All components of this signalling system, the hormone compounds, the receptor proteins, and modifying enzyme families originate from an early metazoan date, emphasizing the essential nature of all elements for development and diversification of vertebrate life.
Collapse
Affiliation(s)
- S Nobel
- Biovitrum AB, Division of Pharmaceuticals, Department of Assay Development and Screening, Stockholm, Sweden
| | | | | |
Collapse
|
20
|
Blum A, Raum A, Martin H, Maser E. Human 11beta-hydroxysteroid dehydrogenase 1/carbonyl reductase: additional domains for membrane attachment? Chem Biol Interact 2001; 130-132:749-59. [PMID: 11306091 DOI: 10.1016/s0009-2797(00)00305-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD 1) is a membrane integrated glycoprotein, which physiologically performs the interconversion of active and inactive glucocorticoid hormones and which also participates in xenobiotic carbonyl compound detoxification. Since 11beta-HSD 1 is fixed to the endoplasmic reticulum (ER) with a N-terminal membrane spanning domain, the enzyme is very difficult to purify in an active state. Upon expression experiments in Escherichia coli, 11beta-HSD 1 turns out to be hardly soluble without detergents. This study describes attempts to increase the solubility of 11beta-HSD 1 via mutagenesis experiments by generating several truncated forms expressed in E. coli and the yeast Pichia pastoris. Furthermore, we investigated if the codon for methionine 31 in human 11beta-HSD 1 could serve as an alternative start codon, thereby leading to a soluble form of the enzyme, which lacks the membrane spanning segment. Our results show that deletion of the hydrophobic membrane spanning domain did not alter the solubility of the enzyme. In contrast, the enzyme remained bound to the ER membrane even without the N-terminal membrane anchor. However, activity could not be found, neither with the truncated protein expressed in E. coli nor with that expressed in P. pastoris. Hydrophobicity plots proved the hydrophobic nature of 11beta-HSD 1 and indicated the existence of additional membrane attachment sites within its primary structure.
Collapse
Affiliation(s)
- A Blum
- Department of Pharmacology and Toxicology, School of Medicine, Philipps-University of Marburg, Karl-von-Frisch-Strasse 1, D-35033, Marburg, Germany
| | | | | | | |
Collapse
|
21
|
Abstract
Short-chain dehydrogenases/reductases (SDR) are defined by distinct, common sequence motifs but constitute a functionally heterogenous superfamily of enzymes. At present, well over 1600 members from all forms of life are annotated in databases. Using the defined sequence motifs as queries, 37 distinct human members of the SDR family can be retrieved. The functional assignments of these forms fall minimally into three main groups, enzymes involved in intermediary metabolism, enzymes participating in lipid hormone and mediator metabolism, and open reading frames (ORFs) of yet undeciphered function. This overview, prepared just before completion of the human genome project, gives the different human SDR forms and relates them to human diseases.
Collapse
Affiliation(s)
- U C Oppermann
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S 171 77, Stockholm, Sweden.
| | | | | |
Collapse
|
22
|
Filling C, Marschall HU, Prozorovski T, Nordling E, Persson B, Jörnvall H, Oppermann UC. Structure-function relationships of 3 beta-hydroxysteroid dehydrogenases involved in bile acid metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 463:389-94. [PMID: 10352710 DOI: 10.1007/978-1-4615-4735-8_48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- C Filling
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
23
|
Su J, Chai X, Kahn B, Napoli JL. cDNA cloning, tissue distribution, and substrate characteristics of a cis-Retinol/3alpha-hydroxysterol short-chain dehydrogenase isozyme. J Biol Chem 1998; 273:17910-6. [PMID: 9651397 DOI: 10.1074/jbc.273.28.17910] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here a mouse cDNA that encodes a 316-amino acid short-chain dehydrogenase that prefers NAD+ as its cofactor and recognizes as substrates androgens and retinols, i.e. has steroid 3alpha- and 17beta-dehydrogenase and cis/trans-retinol catalytic activities. This cis-retinol/androgen dehydrogenase type 2 (CRAD2) shares close amino acid similarity with mouse retinol dehydrogenase isozyme types 1 and 2 and CRAD1 (86, 84, and 87%, respectively). CRAD2 exhibits cooperative kinetics with 3alpha-adiol (3alpha-hydroxysteroid dehydrogenase activity) and testosterone (17beta-hydroxysteroid dehydrogenase activity), but Michaelis-Menten kinetics with androsterone (3alpha-hydroxysteroid dehydrogenase activity), 11-cis-retinol, all-trans-retinol, and 9-cis-retinol, with V/K0.5 values of 1.6, 0.2, 0.1, 0.04, 0.005, and not saturated, respectively. Carbenoxolone (IC50 = 2 microM) and 4-methylpyrazole (IC50 = 5 mM) inhibited CRAD2, but neither ethanol nor phosphatidylcholine had marked effects on its activity. Liver expressed CRAD2 mRNA intensely, with expression in lung, eye, kidney, and brain (2.9, 2, 1.6, and 0.6% of liver mRNA, respectively). CRAD2 represents the fifth isozyme in a group of short-chain dehydrogenase/reductase isozymes (retinol dehydrogenases 1-3 and CRAD1), closely related in primary amino acid sequence (approximately 85%), that are expressed in different quantities in various tissues, have different substrate specificities, and may serve different physiological functions. CRAD2 may alter the amounts of active and inactive androgens and/or convert retinols into retinals. These data expand insight into the multifunctional nature of short-chain dehydrogenases/reductases and into the enzymology of steroid and retinoid metabolism.
Collapse
Affiliation(s)
- J Su
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
24
|
Oppermann UC, Persson B, Jörnvall H. Function, gene organization and protein structures of 11beta-hydroxysteroid dehydrogenase isoforms. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:355-60. [PMID: 9370340 DOI: 10.1111/j.1432-1033.1997.t01-1-00355.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Enzymatic interconversion of active and inactive glucocorticoid hormone is important, and is carried out physiologically by 11beta-hydroxysteroid dehydrogenase (11beta-HSD) isoforms, explaining their role in cellular and toxicological processes. Two forms of the enzyme, 11beta-HSD-1 and 11beta-HSD-2, belonging to the protein superfamily of short-chain dehydrogenases/reductases, have been structurally and functionally characterised. Although displaying dehydrogenase and reductase activities in vitro, the dominant in vivo function of the type-1 enzyme might be to work as a reductase, thus generating active cortisol from inactive cortisone precursors. On the other hand, for adrenal glucocorticoids the type-2 enzyme seems to be exclusively a dehydrogenase and, by inactivating glucocorticoids, confers specificity to peripheral mineralocorticoid receptors.
Collapse
Affiliation(s)
- U C Oppermann
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|