1
|
Uner OE, Elsharawi R, Reynolds M, Bacci GM, Bargiacchi S, Birch DG, Chen FK, Jain N, Heath Jeffery RC, Lamey TM, Mustafi D, da Palma MM, Sallum JMF, Torres Soto M, Jones K, Yang P, Pennesi ME, Everett LA. Phosphoribosyl pyrophosphate synthetase 1 ( PRPS1) associated retinal degeneration: an international study. Ophthalmic Genet 2025; 46:133-143. [PMID: 39763288 PMCID: PMC12064003 DOI: 10.1080/13816810.2024.2444619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 12/14/2024] [Indexed: 04/17/2025]
Abstract
INTRODUCTION Phosphoribosyl pyrophosphate synthetase 1 (PRPS1) is an X-linked gene critical for nucleotide metabolism. Pathogenic PRPS1 variants cause three overlapping phenotypes: Arts syndrome (severe neurological disease), Charcot-Marie-Tooth type 5 [CMTX5] (peripheral neuropathy), and non-syndromic sensorineural hearing loss (SNHL). Each may be associated with retinal dystrophy. Multicenter phenotypic studies are limited. METHODS A multicenter retrospective clinical case series of 15 patients from 12 pedigrees with PRPS1-associated retinal degeneration is presented. RESULTS Of 15 patients, 11 (73.3%) were female. Mean age of ocular disease onset was 8.5 years (range, 0.5-35 years). Many were diagnosed with Leber congenital amaurosis prior to genetic testing (n = 5). Five patients had clinical diagnoses of CMTX5 and Arts syndrome, two had isolated ocular disease, and one was asymptomatic. Mean initial VA (LogMAR) was 0.74, 0.74, 0.83, and 0.85 for isolated ocular disease, CMTX5, Arts, and SNHL, respectively. Ten patients were hyperopic and eight had asymmetric VA. Macular atrophy (n = 13), optic atrophy (n = 13), bone spicules (n = 10), and parafoveal outer retinal atrophy (n = 12) were common findings. Electroretinogram showed delayed and attenuated photopic and scotopic responses (n = 10). Median follow-up of 2.9 years (range, 1.5-11.6 years) in six patients showed retinal disease progression in two patients. DISCUSSION PRPS1-associated retinal degeneration predominantly manifests as a bilateral asymmetric cone and rod dystrophy, commonly associated with hyperopia and optic atrophy.
Collapse
Affiliation(s)
- Ogul E Uner
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Radwa Elsharawi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Margaret Reynolds
- Department of Ophthalmology, St. Louis Children's Hospital, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Giacomo M Bacci
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Firenze, Toscana, Italy
| | - Sara Bargiacchi
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Firenze, Toscana, Italy
| | - David G Birch
- Ophthalmology, Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Nieraj Jain
- Department of Ophthalmology, Emory School of Medicine, Atlanta, Georgia, USA
| | - Rachael C Heath Jeffery
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Tina M Lamey
- Australian Inherited Retinal Diseases Registry, Medical Technology and Physics Department, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Debarshi Mustafi
- Department of Ophthalmology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | - Mariam Torres Soto
- Department of Ophthalmology, Emory School of Medicine, Atlanta, Georgia, USA
| | - Kaylie Jones
- Ophthalmology, Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
- Ophthalmology, Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Lesley A Everett
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Ugbogu EA, Schweizer LM, Schweizer M. Contribution of Model Organisms to Investigating the Far-Reaching Consequences of PRPP Metabolism on Human Health and Well-Being. Cells 2022; 11:1909. [PMID: 35741038 PMCID: PMC9221600 DOI: 10.3390/cells11121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Phosphoribosyl pyrophosphate synthetase (PRS EC 2.7.6.1) is a rate-limiting enzyme that irreversibly catalyzes the formation of phosphoribosyl pyrophosphate (PRPP) from ribose-5-phosphate and adenosine triphosphate (ATP). This key metabolite is required for the synthesis of purine and pyrimidine nucleotides, the two aromatic amino acids histidine and tryptophan, the cofactors nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), all of which are essential for various life processes. Despite its ubiquity and essential nature across the plant and animal kingdoms, PRPP synthetase displays species-specific characteristics regarding the number of gene copies and architecture permitting interaction with other areas of cellular metabolism. The impact of mutated PRS genes in the model eukaryote Saccharomyces cerevisiae on cell signalling and metabolism may be relevant to the human neuropathies associated with PRPS mutations. Human PRPS1 and PRPS2 gene products are implicated in drug resistance associated with recurrent acute lymphoblastic leukaemia and progression of colorectal cancer and hepatocellular carcinoma. The investigation of PRPP metabolism in accepted model organisms, e.g., yeast and zebrafish, has the potential to reveal novel drug targets for treating at least some of the diseases, often characterized by overlapping symptoms, such as Arts syndrome and respiratory infections, and uncover the significance and relevance of human PRPS in disease diagnosis, management, and treatment.
Collapse
Affiliation(s)
- Eziuche A. Ugbogu
- School of Life Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK; (E.A.U.); (L.M.S.)
| | - Lilian M. Schweizer
- School of Life Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK; (E.A.U.); (L.M.S.)
| | - Michael Schweizer
- Institute of Biological Chemistry, Biophysics & Engineering (IB3), School of Engineering &Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
3
|
PRPS-Associated Disorders and the Drosophila Model of Arts Syndrome. Int J Mol Sci 2020; 21:ijms21144824. [PMID: 32650483 PMCID: PMC7403961 DOI: 10.3390/ijms21144824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 11/18/2022] Open
Abstract
While a plethora of genetic techniques have been developed over the past century, modifying specific sequences of the fruit fly genome has been a difficult, if not impossible task. clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 truly redefined molecular genetics and provided new tools to model human diseases in Drosophila melanogaster. This is particularly true for genes whose protein sequences are highly conserved. Phosphoribosyl pyrophosphate synthetase (PRPS) is a rate-limiting enzyme in nucleotide metabolism whose missense mutations are found in several neurological disorders, including Arts syndrome. In addition, PRPS is deregulated in cancer, particularly those that become resistant to cancer therapy. Notably, DrosophilaPRPS shares about 90% protein sequence identity with its human orthologs, making it an ideal gene to study via CRISPR/Cas9. In this review, we will summarize recent findings on PRPS mutations in human diseases including cancer and on the molecular mechanisms by which PRPS activity is regulated. We will also discuss potential applications of Drosophila CRISPR/Cas9 to model PRPS-dependent disorders and other metabolic diseases that are associated with nucleotide metabolism.
Collapse
|
4
|
Association of PRPS1 Mutations with Disease Phenotypes. DISEASE MARKERS 2015; 2015:127013. [PMID: 26089585 PMCID: PMC4458296 DOI: 10.1155/2015/127013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/06/2015] [Indexed: 01/01/2023]
Abstract
Phosphoribosylpyrophosphate synthetase 1 (PRPS1) codes for PRS-I enzyme that catalyzes the first step of nucleotide synthesis. PRPS1 gene mutations have been implicated in a number of human diseases. Recently, new mutations in PRPS1 have been identified that have been associated with novel phenotypes like diabetes insipidus expanding the spectrum of PRPS1-related diseases. The purpose of this review is to evaluate current literature on PRPS1-related syndromes and summarize potential therapies. The overexpression of PRPS1 results in PRS-I superactivity resulting in purine overproduction. Patients with PRS-I superactivity demonstrate uric acid overproduction, hypotonia, ataxia, neurodevelopment abnormalities, and postlingual hearing impairment. On the other hand, decreased activity leads to X-linked nonsyndromic sensorineural deafness (DFNX-2), Charcot-Marie-Tooth disease-5 (CMTX5), and Arts syndrome depending on the residual activity of PRS-I. Mild PRS-I deficiency (DFNX-2) results in non-syndromic progressive hearing loss whereas moderate PRS-I deficiency (CMTX5) and severe PRS-I deficiency (Arts syndrome) present with peripheral or optic neuropathy, prelingual progressive sensorineural hearing loss, and central nervous system impairment. Currently, purine replacement via S-adenosylmethionine (SAM) supplementation in patients with Arts syndrome appears to improve their condition. This suggests that SAM supplementation can alleviate symptoms of PRPS1 deficient patients and open new avenues of therapeutic intervention.
Collapse
|
5
|
Coutelier M, Stevanin G, Brice A. Genetic landscape remodelling in spinocerebellar ataxias: the influence of next-generation sequencing. J Neurol 2015; 262:2382-95. [DOI: 10.1007/s00415-015-7725-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/23/2022]
|
6
|
Chen P, Li J, Ma J, Teng M, Li X. A small disturbance, but a serious disease: the possible mechanism of D52H-mutant of human PRS1 that causes gout. IUBMB Life 2013; 65:518-25. [PMID: 23509005 DOI: 10.1002/iub.1154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/31/2013] [Indexed: 11/06/2022]
Abstract
Phosphoribosyl pyrophosphate synthetase isoform 1 (PRS1) has an essential role in the de novo and salvage synthesis of human purine and pyrimidine nucleotides. The dysfunction of PRS1 will dramatically influence nucleotides' concentration in patient's body and lead to different kinds of disorders (such as hyperuricemia, gout and deafness). The D52H missense mutation of PRS1 will lead to a conspicuous phosphoribosyl pyrophosphate content elevation in the erythrocyte of patients and finally induce hyperuricemia and serious gout. In this study, the enzyme activity analysis indicated that D52H-mutant possessed similar catalytic activity to the wild-type PRS1, and the 2.27 Å resolution D52H-mutant crystal structure revealed that the stable interaction network surrounding the 52 position of PRS1 would be completely destroyed by the substitution of histidine. These interaction variations would further influence the conformation of ADP-binding pocket of D52H-mutant and reduced the inhibitor sensitivity of PRS1 in patient's body.
Collapse
Affiliation(s)
- Peng Chen
- University of Science and Technology of China, School of Life Sciences, Hefei, Anhui, People's Republic of China
| | | | | | | | | |
Collapse
|
7
|
Liu XZ, Xie D, Yuan HJ, de Brouwer APM, Christodoulou J, Yan D. Hearing loss and PRPS1 mutations: Wide spectrum of phenotypes and potential therapy. Int J Audiol 2012. [PMID: 23190330 DOI: 10.3109/14992027.2012.736032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The purpose of this review was to evaluate the current literature on phosphoribosylpyrophosphate synthetase 1 (PRPS1)-related diseases and their consequences on hearing function. DESIGN A literature search of peer-reviewed, published journal articles was conducted in online bibliographic databases. STUDY SAMPLE Three databases for medical research were included in this review. RESULTS Mutations in PRPS1 are associated with a spectrum of non-syndromic to syndromic hearing loss. Hearing loss in male patients with PRPS1 mutations is bilateral, moderate to profound, and can be prelingual or postlingual, progressive or non-progressive. Audiogram shapes associated with PRPS1 deafness are usually residual and flat. Female carriers can have unilateral or bilateral hearing impairment. Gain of function mutations in PRPS1 cause a superactivity of the PRS-I protein whereas the loss-of-function mutations result in X-linked nonsyndromic sensorineural deafness type 2 (DFN2), or in syndromic deafness including Arts syndrome and X-linked Charcot-Marie-Tooth disease-5 (CMTX5). CONCLUSIONS Lower residual activity in PRS-I leads to a more severe clinical manifestation. Clinical and molecular findings suggest that the four PRPS1 disorders discovered to date belong to the same disease spectrum. Dietary supplementation with S-adenosylmethionine (SAM) appeared to alleviate the symptoms of Arts syndrome patients, suggesting that SAM could compensate for PRS-I deficiency.
Collapse
Affiliation(s)
- Xue Zhong Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Zhong G, Wei W, Guan Q, Ma Z, Wei H, Xu X, Zhang S, Lu L. Phosphoribosyl pyrophosphate synthetase, as a suppressor of thesepHmutation inAspergillus nidulans, is required for the proper timing of septation. Mol Microbiol 2012; 86:894-907. [DOI: 10.1111/mmi.12026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Guowei Zhong
- Jiangsu Key Laboratory for Microbes and Functional Genomics; Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing; 210046; China
| | - Wenfan Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics; Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing; 210046; China
| | - Qi Guan
- Jiangsu Key Laboratory for Microbes and Functional Genomics; Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing; 210046; China
| | - Zhaofei Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics; Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing; 210046; China
| | - Hua Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics; Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing; 210046; China
| | - Xushi Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics; Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing; 210046; China
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics; Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing; 210046; China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics; Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing; 210046; China
| |
Collapse
|
9
|
de Brouwer AP, van Bokhoven H, Nabuurs SB, Arts WF, Christodoulou J, Duley J. PRPS1 mutations: four distinct syndromes and potential treatment. Am J Hum Genet 2010; 86:506-18. [PMID: 20380929 DOI: 10.1016/j.ajhg.2010.02.024] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/19/2010] [Accepted: 02/23/2010] [Indexed: 11/26/2022] Open
Abstract
Phosphoribosylpyrophosphate synthetases (PRSs) catalyze the first step of nucleotide synthesis. Nucleotides are central to cell function, being the building blocks of nucleic acids and serving as cofactors in cellular signaling and metabolism. With this in mind, it is remarkable that mutations in phosphoribosylpyrophosphate synthetase 1 (PRPS1), which is the most ubiquitously expressed gene of the three PRS genes, are compatible with life. Mutations described thus far in PRPS1 are all missense mutations that result in PRS-I superactivity or in variable levels of decreased activity, resulting in X-linked Charcot-Marie-Tooth disease-5 (CMTX5), Arts syndrome, and X-linked nonsyndromic sensorineural deafness (DFN2). Patients with PRS-I superactivity primarily present with uric acid overproduction, mental retardation, ataxia, hypotonia, and hearing impairment. Postlingual progressive hearing loss is found as an isolated feature in DFN2 patients. Patients with CMTX5 and Arts syndrome have peripheral neuropathy, including hearing impairment and optic atrophy. However, patients with Arts syndrome are more severely affected because they also have central neuropathy and an impaired immune system. The neurological phenotype in all four PRPS1-related disorders seems to result primarily from reduced levels of GTP and possibly other purine nucleotides including ATP, suggesting that these disorders belong to the same disease spectrum. Preliminary results of S-adenosylmethionine (SAM) supplementation in two Arts syndrome patients show improvement of their condition, indicating that SAM supplementation in the diet could alleviate some of the symptoms of patients with PRPS1 spectrum diseases by replenishing purine nucleotides (J.C., unpublished data).
Collapse
|
10
|
Torres RJ, Mateos FA, Puig JG, Becker MA. Determination of phosphoribosylpyrophosphate synthetase activity in human cells by a non-isotopic, one step method. Clin Chim Acta 1996; 245:105-12. [PMID: 8646809 DOI: 10.1016/0009-8981(95)06178-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- R J Torres
- Clinical Biochemistry Section, La Paz University Hospital, Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Torres R, Mateos F, Puig JG, Becker MA. Determination of the activity of recombinant human phosphoribosylpyrophosphate synthetase isoform 1 by a non-isotopic, one-step method. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 370:821-4. [PMID: 7661031 DOI: 10.1007/978-1-4615-2584-4_172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- R Torres
- Division of Clinical Biochemistry, La Paz University Hospital, Madrid, Spain
| | | | | | | |
Collapse
|
12
|
García Puig J, Mateos FA. Clinical and biochemical aspects of uric acid overproduction. PHARMACY WORLD & SCIENCE : PWS 1994; 16:40-54. [PMID: 8032341 DOI: 10.1007/bf01880655] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Purine nucleotides are synthesized and degraded through a regulated series of reactions which end in the formation of uric acid. Increased uric acid synthesis may be the result of two major pathophysiological disorders: increased de novo purine synthesis and enhanced purine nucleotide degradation, both of which may be the result of an increased or decreased enzyme activity. In addition, some conditions and disorders associated with uric acid overproduction have been recognized as the result of increased ATP degradation or decreased synthesis of ATP. The clinical manifestations of the diseases leading to excess uric acid synthesis are heterogenous, but symptoms related to uric acid overproduction are always secondary to the precipitation of crystals in soft tissues, joints, and the kidney excretory system. In clinical practice, serum urate concentration and urinary uric acid excretion are used to assess uric acid synthesis, taking into account that a purine-rich diet can be a confounding variable. Quantification of uric acid precursors, such as adenosine, inosine, guanosine, hypoxanthine, and xanthine, in biological fluids and intracellular nucleotides has provided further insight into the metabolic disturbances underlying disorders associated with uric acid overproduction. Additional studies are necessary to define precisely the metabolic derangement in idiopathic uric acid overproduction and to assess fully the consequences of increased purine nucleotide degradation, such as free-radical formation, increased adenosine synthesis, and reduced synthesis of signal transducers.
Collapse
Affiliation(s)
- J García Puig
- Division of Internal Medicine, La Paz Hospital, Universidad Autónoma, Madrid, Spain
| | | |
Collapse
|
13
|
Abstract
Although gout and hyperuricaemia are usually thought of as conditions of indulgent male middle age, in addition to the well-known uricosuria of the newborn, there is much of importance for the paediatric nephrologist in this field. Children and infants may present chronically with stones or acutely with renal failure from crystal nephropathy, as a result of inherited deficiencies of the purine salvage enzymes hypoxanthine-guanine phosphoribosyltransferase (HPRT) and adenine phosphoribosyltransferase (APRT) or of the catabolic enzyme xanthine dehydrogenase (XDH). Genetic purine overproduction in phosphoribosylpyrophosphate synthetase superactivity, or secondary to glycogen storage disease, can also present in infancy with renal complications. Children with APRT deficiency may be difficult to distinguish from those with HPRT deficiency because the insoluble product excreted, 2,8-dihydroxyadenine (2,8-DHA), is chemically very similar to uric acid. Moreover, because of the high uric acid clearance prior to puberty, hyperuricosuria rather than hyperuricaemia may provide the only clue to purine overproduction in childhood. Hyperuricaemic renal failure may be seen also in treated childhood leukaemia and lymphoma, and iatrogenic xanthine nephropathy is a potential complication of allopurinol therapy in these conditions. The latter is also an under-recognised complication of treatment in the Lesch-Nyhan syndrome or partial HPRT deficiency. The possibility of renal complications in these three situations is enhanced by infection, the use of uricosuric antibiotics and dehydration consequent upon fever, vomiting or diarrhoea. Disorders of urate transport in the renal tubule may also present in childhood. A kindred with X-linked hereditary nephrolithiasis, renal urate wasting and renal failure has been identified, but in general, the various rare types of net tubular wasting of urate into the urine are recessive and relatively benign, being found incidentally or presenting as colic from crystalluria. However, the opposite condition of a dominantly inherited increase in net urate reabsorption is far from benign, presenting as familial renal failure, with hyperuricaemia either preceding renal dysfunction or disproportionate to it. Paediatricians need to be aware of the lower plasma urate concentrations in children compared with adults when assessing plasma urate concentrations in childhood and infancy, so that early hyperuricosuria is not missed. This is of importance because most of the conditions mentioned above can be treated successfully using carefully controlled doses of allopurinol or means to render urate more soluble in the urine. Xanthine and 2,8-DHA are extremely insoluble at any pH. Whilst 2,8-DHA formation can also be controlled by allopurinol, alkali is contraindicated. A high fluid, low purine intake is the only possible therapy for XDH deficiency.
Collapse
Affiliation(s)
- J S Cameron
- Department of Renal Medicine, United Medical School, Guy's Hospital, London, UK
| | | | | |
Collapse
|