1
|
Meda P. Gap junction proteins are key drivers of endocrine function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:124-140. [PMID: 28284720 DOI: 10.1016/j.bbamem.2017.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
It has long been known that the main secretory cells of exocrine and endocrine glands are connected by gap junctions, made by a variety of connexin species that ensure their electrical and metabolic coupling. Experiments in culture systems and animal models have since provided increasing evidence that connexin signaling contributes to control the biosynthesis and release of secretory products, as well as to the life and death of secretory cells. More recently, genetic studies have further provided the first lines of evidence that connexins also control the function of human glands, which are central to the pathogenesis of major endocrine diseases. Here, we summarize the recent information gathered on connexin signaling in these systems, since the last reviews on the topic, with particular regard to the pancreatic beta cells which produce insulin, and the renal cells which produce renin. These cells are keys to the development of various forms of diabetes and hypertension, respectively, and combine to account for the exploding, worldwide prevalence of the metabolic syndrome. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland.
| |
Collapse
|
2
|
Parnaud G, Lavallard V, Bedat B, Matthey-Doret D, Morel P, Berney T, Bosco D. Cadherin engagement improves insulin secretion of single human β-cells. Diabetes 2015; 64:887-96. [PMID: 25277393 DOI: 10.2337/db14-0257] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to assess whether cadherin-mediated adhesion of human islet cells was affected by insulin secretagogues and explore the role of cadherins in the secretory activity of β-cells. Experiments were carried out with single islet cells adherent to chimeric proteins made of functional E-, N-, or P-cadherin ectodomains fused to the Fc fragment of immunoglobulin (E-cad/Fc, N-cad/Fc, and P-cad/Fc) and immobilized on an inert substrate. We observed that cadherin expression in islet cells was not affected by insulin secretagogues. Adhesion tests showed that islet cells attached to N-cad/Fc and E-cad/Fc acquired, in a time- and secretagogue-dependent manner, a spreading form that was inhibited by blocking cadherin antibodies. By reverse hemolytic plaque assay, we showed that glucose-stimulated insulin secretion of single β-cells was increased by N-cad/Fc and E-cad/Fc adhesion compared with control. In the presence of E-cad/Fc and after glucose stimulation, we showed that total insulin secretion was six times higher in spreading β-cells compared with round β-cells. Furthermore, cadherin-mediated adhesion induced an asymmetric distribution of cortical actin in β-cells. Our results demonstrate that adhesion of β-cells to E- and N-cadherins is regulated by insulin secretagogues and that E- and N-cadherin engagement promotes stimulated insulin secretion.
Collapse
Affiliation(s)
- Geraldine Parnaud
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Vanessa Lavallard
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Benoît Bedat
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - David Matthey-Doret
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Philippe Morel
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Therapeutic cell encapsulation techniques and applications in diabetes. Adv Drug Deliv Rev 2014; 67-68:74-83. [PMID: 24103903 DOI: 10.1016/j.addr.2013.09.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 12/27/2022]
Abstract
The encapsulation of therapeutic cells permits the implantation of allogeneic and xenogeneic cells for the regulation of certain physiological processes damaged by the death or senescence of host tissues. The encapsulation of pancreatic cells for the treatment of diabetes is emphasized; however, many of the techniques are applicable to a wide array of mammalian cell applications. The summary of both established and novel encapsulation techniques, clinical trials, and commercial product developments highlights the metered but steady pace of therapeutic cell encapsulation towards implementation.
Collapse
|
4
|
Abstract
The appearance of multicellular organisms imposed the development of several mechanisms for cell-to-cell communication, whereby different types of cells coordinate their function. Some of these mechanisms depend on the intercellular diffusion of signal molecules in the extracellular spaces, whereas others require cell-to-cell contact. Among the latter mechanisms, those provided by the proteins of the connexin family are widespread in most tissues. Connexin signaling is achieved via direct exchanges of cytosolic molecules between adjacent cells at gap junctions, for cell-to-cell coupling, and possibly also involves the formation of membrane "hemi-channels," for the extracellular release of cytosolic signals, direct interactions between connexins and other cell proteins, and coordinated influence on the expression of multiple genes. Connexin signaling appears to be an obligatory attribute of all multicellular exocrine and endocrine glands. Specifically, the experimental evidence we review here points to a direct participation of the Cx36 isoform in the function of the insulin-producing β-cells of the endocrine pancreas, and of the Cx40 isoform in the function of the renin-producing juxtaglomerular epithelioid cells of the kidney cortex.
Collapse
Affiliation(s)
- Domenico Bosco
- Department of Surgery, University of Geneva Medical School, Geneva, Switzerland
| | | | | |
Collapse
|
5
|
Serre-Beinier V, Bosco D, Zulianello L, Charollais A, Caille D, Charpantier E, Gauthier BR, Diaferia GR, Giepmans BN, Lupi R, Marchetti P, Deng S, Buhler L, Berney T, Cirulli V, Meda P. Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression. Hum Mol Genet 2009; 18:428-39. [PMID: 19000992 PMCID: PMC2638800 DOI: 10.1093/hmg/ddn370] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous studies have documented that the insulin-producing beta-cells of laboratory rodents are coupled by gap junction channels made solely of the connexin36 (Cx36) protein, and have shown that loss of this protein desynchronizes beta-cells, leading to secretory defects reminiscent of those observed in type 2 diabetes. Since human islets differ in several respects from those of laboratory rodents, we have now screened human pancreas, and islets isolated thereof, for expression of a variety of connexin genes, tested whether the cognate proteins form functional channels for islet cell exchanges, and assessed whether this expression changes with beta-cell function in islets of control and type 2 diabetics. Here, we show that (i) different connexin isoforms are differentially distributed in the exocrine and endocrine parts of the human pancreas; (ii) human islets express at the transcript level different connexin isoforms; (iii) the membrane of beta-cells harbors detectable levels of gap junctions made of Cx36; (iv) this protein is concentrated in lipid raft domains of the beta-cell membrane where it forms gap junctions; (v) Cx36 channels allow for the preferential exchange of cationic molecules between human beta-cells; (vi) the levels of Cx36 mRNA correlated with the expression of the insulin gene in the islets of both control and type 2 diabetics. The data show that Cx36 is a native protein of human pancreatic islets, which mediates the coupling of the insulin-producing beta-cells, and contributes to control beta-cell function by modulating gene expression.
Collapse
Affiliation(s)
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Laurence Zulianello
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Anne Charollais
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Dorothée Caille
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Eric Charpantier
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Benoit R. Gauthier
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Giuseppe R. Diaferia
- Islet Research Laboratory, The Whittier Institute for Diabetes, University of California San Diego, La Jolla, CA, USA
| | - Ben N. Giepmans
- Department of Cell Biology, University of Groningen, Groningen, The Netherlands
| | - Roberto Lupi
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Shaoping Deng
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Léo Buhler
- Surgical Research Unit, Department of Surgery
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Vincenzo Cirulli
- Islet Research Laboratory, The Whittier Institute for Diabetes, University of California San Diego, La Jolla, CA, USA
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| |
Collapse
|
6
|
Nakashima K, Kanda Y, Hirokawa Y, Kawasaki F, Matsuki M, Kaku K. MIN6 is not a pure beta cell line but a mixed cell line with other pancreatic endocrine hormones. Endocr J 2009; 56:45-53. [PMID: 18845907 DOI: 10.1507/endocrj.k08e-172] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
MIN6 cells retains glucose-stimulated insulin secretion (GSIS) as isolated islets. We comprehensively evaluated the gene expression and production of other islet hormones in MIN6 cells. Islet hormones were demonstrated by immunohistochemical staining and measured by ELISA. The gene expression profiles of MIN6 cells were compared with those in the mouse islets obtained by the laser capture micro-dissection (LCM). MIN6 cells excreted insulin, glucagon, somatostatin and ghrelin. They expressed mRNAs of insulin I and II, proglucagon, somatostatin, pancreatic polypeptide (PP) and ghrelin which were shown in the mouse pancreatic islet core and periphery obtained by LCM. A variety of genes closely related to the islet hormone producing cells were expressed in MIN6. Confocal laser scanning microscopy revealed that MIN6 cells included not only insulin positive cells but also insulin and glucagon or somatostin double positive cells. Glucagon, somatostatin and ghrelin were detectable in the culture medium. The present study clearly demonstrated that MIN6 produce pancreatic endocrine cells. It would be possible to use this cell line as a model to research the development, cell differentiation and function of pancreatic islets.
Collapse
Affiliation(s)
- Koji Nakashima
- Diabetes and Endocrine Division, Department of Medicine, Kawasaki Medical School, Okayama, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Charpantier E, Cancela J, Meda P. Beta cells preferentially exchange cationic molecules via connexin 36 gap junction channels. Diabetologia 2007; 50:2332-41. [PMID: 17828386 DOI: 10.1007/s00125-007-0807-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 07/19/2007] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cells are connected by gap junction channels made of connexin 36 (Cx36), which permit intercellular exchanges of current-carrying ions (ionic coupling) and other molecules (metabolic coupling). Previous studies have suggested that ionic coupling may extend to larger regions of pancreatic islets than metabolic coupling. The aim of the present study was to investigate whether this apparent discrepancy reflects a difference in the sensitivity of the techniques used to evaluate beta cell communication or a specific characteristic of the Cx36 channels themselves. METHODS We microinjected several gap junction tracers, differing in size and charge, into individual insulin-producing cells and evaluated their intercellular exchange either within intact islets of control, knockout and transgenic mice featuring beta cells with various levels of Cx36, or in cultures of wild-type and Cx36-transfected MIN6 cells. RESULTS We found that (1) Cx36 channels favour the exchange of cations and larger positively charged molecules between beta cells at the expense of anionic molecules; (2) this exchange occurs across sizable portions of pancreatic islets; and (3) during glibenclamide (known as glyburide in the USA and Canada) stimulation beta cell coupling increases to an extent that varies for different gap junction-permeant molecules. CONCLUSIONS/INTERPRETATION The data show that beta cells are extensively coupled within pancreatic islets via exchanges of mostly positively charged molecules across Cx36 channels. These exchanges selectively increase during stimulation of insulin secretion. The identification of this permselectivity is expected to facilitate the identification of endogenous permeant molecules and of the mechanism whereby Cx36 signalling significantly contributes to the modulation of insulin secretion.
Collapse
Affiliation(s)
- E Charpantier
- Department of Cell Physiology and Metabolism, University of Geneva, C.M.U., 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
8
|
Bavamian S, Klee P, Britan A, Populaire C, Caille D, Cancela J, Charollais A, Meda P. Islet-cell-to-cell communication as basis for normal insulin secretion. Diabetes Obes Metab 2007; 9 Suppl 2:118-32. [PMID: 17919186 DOI: 10.1111/j.1463-1326.2007.00780.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The emergence of pancreatic islets has necessitated the development of a signalling system for the intra- and inter-islet coordination of beta cells. With evolution, this system has evolved into a complex regulatory network of partially cross-talking pathways, whereby individual cells sense the state of activity of their neighbours and, accordingly, regulate their own level of functioning. A consistent feature of this network in vertebrates is the expression of connexin (Cx)-36-made cell-to-cell channels, which cluster at gap junction domains of the cell membrane, and which adjacent beta cells use to share cytoplasmic ions and small metabolites within individual islets. This chapter reviews what is known about Cx36, and the mechanism whereby this beta-cell connexin significantly regulates insulin secretion. It further outlines other less established functions of the protein and evaluates its potential relevance for the development of novel therapeutic approaches to diabetes.
Collapse
Affiliation(s)
- S Bavamian
- Department of Cell Physiology and Metabolism, University of Geneva, Medical School, Genève, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Jones PM, Kitsou-Mylona I, Gray E, Squires PE, Persaud SJ. Expression and function of the extracellular calcium-sensing receptor in pancreatic beta-cells. Arch Physiol Biochem 2007; 113:98-103. [PMID: 17852049 DOI: 10.1080/13813450701531185] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The extracellular calcium-sensing receptor (CaR) was first identified in tissues involved in systemic Ca2+ homeostasis, where it acts to sense changes in circulating Ca2+. It has since been reported that the CaR is expressed in many tissues that are not associated with Ca2+ homeostasis, including the endocrine cells in pancreatic islets of Langerhans. In the present study we have used an insulin-secreting pancreatic beta-cell line (MIN6) to investigate the expression and function of CaR, using the calcimimetic A568, a CaR agonist that activates the CaR at physiological concentrations of extracellular Ca2+ ([Ca2+]o). Immunocytochemistry, Western blotting and RT-PCR confirmed the expression of CaR in MIN6 cells. CaR activation was associated with rapid and transient increases in [Ca2+]o, which were accompanied by the initiation of a marked but transient insulin secretory response. Stimulation of beta-cell secretory activity had no detectable effect on CaR mRNA levels, but CaR mRNA was markedly reduced by configuring MIN6 cells into islet- like structures. Our data are consistent with an important function for the beta-cell CaR in cell - cell communication within islets to co-ordinate insulin secretory responses.
Collapse
Affiliation(s)
- Peter M Jones
- Beta Cell Development and Function Group, Division of Reproduction and Endocrinology, King's College London, London, UK.
| | | | | | | | | |
Collapse
|
10
|
Luther MJ, Hauge-Evans A, Souza KLA, Jörns A, Lenzen S, Persaud SJ, Jones PM. MIN6 beta-cell-beta-cell interactions influence insulin secretory responses to nutrients and non-nutrients. Biochem Biophys Res Commun 2006; 343:99-104. [PMID: 16529716 DOI: 10.1016/j.bbrc.2006.02.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 02/02/2006] [Indexed: 11/17/2022]
Abstract
Insulin-secreting MIN6 cells show greatly enhanced secretory responsiveness to nutrients when grown as islet-like structures (pseudoislets). Since beta-cells use different mechanisms to respond to nutrient and non-nutrient stimuli, we have now investigated the role of homotypic beta-cell interactions in secretory responses to pharmacological or receptor-operated non-nutrient stimuli in MIN6 pseudoislets. In addition to an enhanced secretory responsiveness to glucose, insulin secretion from MIN6 pseudoislets was also enhanced by non-nutrients, including carbachol, tolbutamide, PMA, and forskolin. The improved secretory responsiveness was dependent on the cells being configured as pseudoislets and was lost on dispersal of the pseudoislets into single cells and regained on the re-formation of pseudoislet structures. These observations emphasise the importance of islet anatomy on secretory responsiveness, and demonstrate that homotypic beta-cell interactions play an important role in generating physiologically appropriate insulin secretory responses to both nutrient and non-nutrient stimuli.
Collapse
Affiliation(s)
- Melanie J Luther
- Beta Cell Development and Function Group, King's College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
11
|
Brenner MB, Mest HJ. A buffer temperature controlled perifusion system to study temperature dependence and kinetics of insulin secretion in MIN6 pseudoislets. J Pharmacol Toxicol Methods 2004; 50:53-7. [PMID: 15233968 DOI: 10.1016/j.vascn.2004.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Accepted: 01/16/2004] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The perifusion of pancreatic islets is a well-known method to investigate the kinetics of insulin secretion. Nevertheless, little interest has been attributed to a precise temperature control in perifusion systems. Insulin secretion from MIN6 cells, cultured as monolayers, differs substantially from pancreatic islets, at least partly due to missing beta-to-beta cell contacts. These cellular contacts are abundant in MIN6 pseudoislets, which show a more pronounced glucose-induced insulin release. Here, a perifusion system that directly and dynamically controls the perifusion buffer temperature inside the reaction chamber is described. Additionally, the influence of small temperature changes, glucagon-like peptide 1 (GLP-1) and tolbutamide on insulin release from MIN6 pseudoislets is examined. METHODS MIN6 cells were cultured in suspension culture dishes to generate MIN6 pseudoislets. The pseudoislets were perifused using a newly developed 12-channel perifusion system. The buffer temperature inside the reaction chambers was dynamically controlled by a programmable proportional plus integral plus differential (PID) controller. Insulin was determined by radioimmunoassay. RESULTS After adjusting the PID controller, the temperature inside the reaction chambers was constant in a very narrow range. The first phase of the glucose-induced insulin secretion was enhanced from 1.0+/-0.1 to 2.8+/-0.2 ng insulin/ml and the second phase from 5.4+/-0.9 to 17.8+/-1.3 ng insulin/ml, when the temperature was elevated by 1 degrees C, from 37 to 38 degrees C. GLP-1 concentration dependently increased insulin release at 15.0 mM and was ineffective at 0.0 mM glucose. Tolbutamide induced a concentration-dependent increase in both phases of the insulin secretion. DISCUSSION MIN6 pseudoislets are a useful tool to study insulin secretion from beta-cells, which are arranged in clusters like pancreatic beta-cells in the islet. The strong influence of temperature on insulin release from these pseudoislets requires a perifusion system, which precisely controls the buffer temperature.
Collapse
Affiliation(s)
- Martin B Brenner
- Lilly Research Laboratories, Essener Strasse 93, D-22419 Hamburg, Germany
| | | |
Collapse
|
12
|
Hauge-Evans AC, Squires PE, Belin VD, Roderigo-Milne H, Ramracheya RD, Persaud SJ, Jones PM. Role of adenine nucleotides in insulin secretion from MIN6 pseudoislets. Mol Cell Endocrinol 2002; 191:167-76. [PMID: 12062900 DOI: 10.1016/s0303-7207(02)00051-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Insulin secretion from MIN6 cells configured as cell aggregates by culture on a gelatin substrate (pseudoislets) is enhanced compared to that of MIN6 cells grown as monolayers on tissue culture plastic, indicating the importance of beta-cell-to-beta-cell proximity for insulin release. In this study we have shown that glucose induced a biphasic release of insulin from pseudoislets, whereas the amplitude and duration of the responses of equivalent monolayer cells were much reduced. Purinergic aqonists have been implicated in intercellular communication between beta-cells, so we investigated whether adenine nucleotides co-released with insulin are responsible for the enhanced secretory responses of pseudoislets. We have demonstrated that MIN6 cells express purinergic A(1) and P2Y receptors, and that adenine nucleotides increased [Ca(2+)](i) with an efficacy of agonists being ATP > ADP > AMP. However, neither suramin nor the more selective A(1) antagonist 1,3-dipropyl-8-cyclopentylxanthine reduced glucose-induced insulin secretion from pseudoislets, and stimulation of monolayer cells with a range of adenine nucleotides did not enhance glucose-induced secretion. These results suggest that enhanced secretion from MIN6 pseudoislets is not due to increased paracrine/autocrine action of adenine nucleotides.
Collapse
Affiliation(s)
- A C Hauge-Evans
- Endocrinology and Reproduction Research Group, Biomedical Sciences, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Prelle K, Zink N, Wolf E. Pluripotent stem cells--model of embryonic development, tool for gene targeting, and basis of cell therapy. Anat Histol Embryol 2002; 31:169-86. [PMID: 12479360 DOI: 10.1046/j.1439-0264.2002.00388.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Embryonic stem (ES) cells are pluripotent cell lines with the capacity of self-renewal and a broad differentiation plasticity. They are derived from pre-implantation embryos and can be propagated as a homogeneous, uncommitted cell population for an almost unlimited period of time without losing their pluripotency and their stable karyotype. Murine ES cells are able to reintegrate fully into embryogenesis when returned into an early embryo, even after extensive genetic manipulation. In the resulting chimeric offspring produced by blastocyst injection or morula aggregation, ES cell descendants are represented among all cell types, including functional gametes. Therefore, mouse ES cells represent an important tool for genetic engineering, in particular via homologous recombination, to introduce gene knock-outs and other precise genomic modifications into the mouse germ line. Because of these properties ES cell technology is of high interest for other model organisms and for livestock species like cattle and pigs. However, in spite of tremendous research activities, no proven ES cells colonizing the germ line have yet been established for vertebrate species other than the mouse (Evans and Kaufman, 1981; Martin, 1981) and chicken (Pain et al., 1996). The in vitro differentiation capacity of ES cells provides unique opportunities for experimental analysis of gene regulation and function during cell commitment and differentiation in early embryogenesis. Recently, pluripotent stem cells were established from human embryos (Thomson et al., 1998) and early fetuses (Shamblott et al., 1998), opening new scenarios both for research in human developmental biology and for medical applications, i.e. cell replacement strategies. At about the same time, research activities focused on characteristics and differentiation potential of somatic stem cells, unravelling an unexpected plasticity of these cell types. Somatic stem cells are found in differentiated tissues and can renew themselves in addition to generating the specialized cell types of the tissue from which they originate. Additional to discoveries of somatic stem cells in tissues that were previously not thought to contain these kinds of cells, they also appear to be capable of developing into cell types of other tissues, but have a reduced differentiation potential as compared to embryo-derived stem cells. Therefore, somatic stem cells are referred to as multipotent rather than pluripotent. This review summarizes characteristics of pluripotent stem cells in the mouse and in selected livestock species, explains their use for genetic engineering and basic research on embryonic development, and evaluates their potential for cell therapy as compared to somatic stem cells.
Collapse
Affiliation(s)
- Katja Prelle
- Department of Molecular Animal Breeding and Biotechnology, Ludwig Maximilian University Munich, Hackerstrasse 27, 85764 Oberschleissheim, Germany.
| | | | | |
Collapse
|
14
|
Affiliation(s)
- S K Kim
- Department of Developmental Biology and Medicine, Division of Oncology, Stanford University, Stanford, California, 94305-5329, USA.
| | | |
Collapse
|
15
|
Meda P, Spray DC. Gap junction function. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1569-2558(00)30008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|