1
|
He J, Zhang Y, Hu Z, Zhang L, Shao G, Xie Z, Nie Y, Li W, Li Y, Chen L, Huang B, Chu F, Feng K, Lin W, Li H, Chen W, Zhang X, Xie Q. Recombinant Muscovy Duck Parvovirus Led to Ileac Damage in Muscovy Ducklings. Viruses 2022; 14:v14071471. [PMID: 35891451 PMCID: PMC9315717 DOI: 10.3390/v14071471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Waterfowl parvovirus (WPFs) has multiple effects on the intestinal tract, but the effects of recombinant Muscovy duck parvovirus (rMDPV) have not been elucidated. In this study, 48 one-day-old Muscovy ducklings were divided into an infected group and a control group. Plasma and ileal samples were collected from both groups at 2, 4, 6, and 8 days post-infection (dpi), both six ducklings at a time. Next, we analyzed the genomic sequence of the rMDPV strain. Results showed that the ileal villus structure was destroyed seriously at 4, 6, 8 dpi, and the expression of ZO-1, Occludin, and Claudin-1 decreased at 4, 6 dpi; 4, 6, 8 dpi; and 2, 6 dpi, respectively. Intestinal cytokines IFN-α, IL-1β and IL-6 increased at 6 dpi; 8 dpi; and 6, 8 dpi, respectively, whereas IL-2 decreased at 6, 8 dpi. The diversity of ileal flora increased significantly at 4 dpi and decreased at 8 dpi. The bacteria Ochrobactrum and Enterococcus increased and decreased at 4, 8 dpi; 2, 4 dpi, respectively. Plasma MDA increased at 2 dpi, SOD, CAT, and T-AOC decreased at 2, 4, 8 dpi; 4, 8 dpi; and 4, 6, 8 dpi, respectively. These results suggest that rMDPV infection led to early intestinal barrier dysfunction, inflammation, ileac microbiota disruption, and oxidative stress.
Collapse
Affiliation(s)
- Jiahui He
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Yukun Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Zezhong Hu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Luxuan Zhang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China;
| | - Guanming Shao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Zi Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Yu Nie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Wenxue Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Yajuan Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Liyi Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Benli Huang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Fengsheng Chu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Keyu Feng
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
| | - Wencheng Lin
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
| | - Hongxin Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
| | - Weiguo Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
- Correspondence: (X.Z.); (Q.X.)
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
- Correspondence: (X.Z.); (Q.X.)
| |
Collapse
|
2
|
Effect of Replacing in-Feed Antibiotic Growth Promoters with a Combination of Egg Immunoglobulins and Phytomolecules on the Performance, Serum Immunity, and Intestinal Health of Weaned Pigs Challenged with Escherichia coli K88. Animals (Basel) 2021; 11:ani11051292. [PMID: 33946355 PMCID: PMC8146111 DOI: 10.3390/ani11051292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/17/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Post-weaning diarrhea (PWD) in pigs caused by Escherichia coli (E. coli) is a global problem which results in substantial economic losses, due to decreased performance and a high incidence of mortality and morbidity. Due to the banning of antibiotic growth promoters (AGPs) by many countries, it would be valuable to find environmentally friendly and non-antibiotic alternatives to AGPs and to evaluate their effectiveness. Both immunoglobulins and phytomolecules are separately reported as benefiting animal growth, but the efficiency of combinations of immunoglobulins and phytomolecules as AGP alternatives is largely unknown. In this study, the results showed that a mixture of immunoglobulin and phytomolecule administration had positive effects on feed efficiency, diarrhea reduction, intestinal morphology, and coliform control. Combinations of immunoglobulins and phytomolecules can be used as a potential alternative to AGPs in weanling piglets. Abstract The study was conducted to investigate the effects of replacing antibiotic growth promoters (AGPs) with an egg immunoglobulin (IgY) combined with phytomolecules (PM) on the growth rate, serum immunity, and intestinal health of weaned pigs challenged with Escherichia coli K88 (E. coli K88). A total of 192 piglets were weaned at 28 days old with an average weight of 7.29 (± 0.04) kg. They were randomly divided into four treatments containing eight replicates with six piglets per replicate. The treatment groups were NC and PC fed a basal diet, AGP fed a basal diet supplemented with 75 mg/kg chlortetracycline, 50 mg/kg oxytetracycline calcium, and 40 mg/kg zinc bacitracin, IPM fed a basal diet supplemented with IgY at dose of 2.5 g/kg and 1.0 g/kg and PM at dose of 300 mg/kg and 150 mg/kg during days 1 to 17 and 18 to 42, respectively. On days 7 to 9 of the experiment, piglets in the PC, AGP, and IPM groups were orally challenged with 20 mL E. coli K88 (109 CFU/mL), while piglets in the NC group were challenged with 20 mL medium without E. coli K88. The E. coli K88 challenge model was successful as the incidence of post-weaning diarrhea (PWD) of piglets challenged with E. coli K88 was significantly higher than that of those unchallenged piglets during the challenge time (days 7 to 9) and days 1 to 7 of post-challenge (p < 0.05). A diet with combinations of IgY and PM and AGPs significantly decreased the incidence of PWD during the challenge time and days 1 to 7 of post-challenge (p < 0.05) compared to the PC group and significantly improved the ratio of feed to weight gain (F:G) during days 1 to 17 of the experiment compared to the NC and PC groups (p < 0.05). In comparison with the PC group, piglets in the IPM group had significantly higher serum levels of IgA, IgG, and IgM (p < 0.05), but lower serum IL-1β on day 17 of experiement (p < 0.05). Besides, diet supplementation with AGP significantly decreased serum IL-1β, IL-6, and TNF-α on days 17 and 42 (p < 0.05) with comparison to the PC group. Piglets in the IPM group showed a significantly lower level of fecal coliforms (p < 0.05), but a higher villus height of jejunum and ileum and higher ratio of villus height to crypt depth of duodenum and jejunum (p < 0.05) than those piglets in the PC group. In summary, diet supplementation with a mixture of IgY and PM decreased the incidence of PWD and coliforms, increased feed conversion ratio, and improved intestinal histology and immune function.
Collapse
|
14
|
Marchès O, Nougayrède JP, Boullier S, Mainil J, Charlier G, Raymond I, Pohl P, Boury M, De Rycke J, Milon A, Oswald E. Role of tir and intimin in the virulence of rabbit enteropathogenic Escherichia coli serotype O103:H2. Infect Immun 2000; 68:2171-82. [PMID: 10722617 PMCID: PMC97401 DOI: 10.1128/iai.68.4.2171-2182.2000] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Attaching and effacing (A/E) rabbit enteropathogenic Escherichia coli (REPEC) strains belonging to serogroup O103 are an important cause of diarrhea in weaned rabbits. Like human EPEC strains, they possess the locus of enterocyte effacement clustering the genes involved in the formation of the A/E lesions. In addition, pathogenic REPEC O103 strains produce an Esp-dependent but Eae (intimin)-independent alteration of the host cell cytoskeleton characterized by the formation of focal adhesion complexes and the reorganization of the actin cytoskeleton into bundles of stress fibers. To investigate the role of intimin and its translocated coreceptor (Tir) in the pathogenicity of REPEC, we have used a newly constructed isogenic tir null mutant together with a previously described eae null mutant. When human HeLa epithelial cells were infected, the tir mutant was still able to induce the formation of stress fibers as previously reported for the eae null mutant. When the rabbit epithelial cell line RK13 was used, REPEC O103 produced a classical fluorescent actin staining (FAS) effect, whereas both the eae and tir mutants were FAS negative. In a rabbit ligated ileal loop model, neither mutant was able to induce A/E lesions. In contrast to the parental strain, which intimately adhered to the enterocytes and destroyed the brush border microvilli, bacteria of both mutants were clustered in the mucus without reaching and damaging the microvilli. The role of intimin and Tir was then analyzed in vivo by oral inoculation of weaned rabbits. Although both mutants were still present in the intestinal flora of the rabbits 3 weeks after oral inoculation, neither mutant strain induced any clinical signs or significant weight loss in the inoculated rabbits whereas the parental strain caused the death of 90% of the inoculated rabbits. Nevertheless, an inflammatory infiltrate was present in the lamina propria of the rabbits infected with both mutants, with an inflammatory response greater for the eae null mutant. In conclusion, we have confirmed the role of intimin in virulence, and we have shown, for the first time, that Tir is also a key factor in vivo for pathogenicity.
Collapse
Affiliation(s)
- O Marchès
- Unité Mixte de Microbiologie Moléculaire, Institut National de la Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, 31076 Toulouse Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|