1
|
Wu Q, Ling Y, Yuan G, La R, Xu B, Pang E, Lin C, Chen Z, Zhang Z, Jiang D, Huang L, Xu J, Mao Y. Association between lipid accumulation products and relative handgrip strength: a large population-based study. Sci Rep 2025; 15:11562. [PMID: 40185887 PMCID: PMC11971364 DOI: 10.1038/s41598-025-96481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
Given the increasing prevalence of chronic diseases in the aging population, it is of great importance to gain an understanding of how changes in body composition affect health outcomes. Handgrip strength (HGS) serves as a valuable proxy for overall muscle strength, while relative HGS (RHGS) adjusts for body size, providing a more accurate assessment of the relationship between muscle strength and metabolic disease. Lipid accumulation products (LAP) are an indicator that can reflect visceral lipid accumulation. Based on previous studies, the relationship between LAP and RHGS has not been explored. This study aims to address this gap in the literature and provide insights for public health recommendations. Data was collected and extracted from the 2011-2014 National Health and Nutrition Examination Survey (NHANES) database. LAP was calculated from the arithmetic product of waist circumference (WC) and fasting plasma triglyceride (TG), the calculation as following formulas: for females, [WC (cm) - 58] × [TG (mmol/l)], and for males, [WC (cm) - 65] × [TG (mmol/l)]; RHGS was derived from the HGS to BMI ratio. The correlation between the variables was initially explored using multivariate linear regression. Secondly, smoothed-fitted curves were used to investigate the non-linear relationship between the variables. The inflection point values were determined based on the results of the threshold effect analysis. Subgroup analyses were also conducted to assess the stability of the relationship between the variables in different populations. The study analyzed 3990 patients. After accounting for different covariates, multivariate linear regression analysis demonstrated a significant negative correlation between increased levels of LAP and increased levels of RHGS (beta coefficient = -0.0020; 95% confidence interval CI: -0.0023 to -0.0017; P < 0.0001). The interaction test did not have a statistically significant effect on this association. Furthermore, curve fit and threshold effect analysis demonstrated a non-linear relationship with a breakpoint at 49.8083 cm·mmol/L. The results of this study demonstrate an inverse relationship between LAP and RHGS in various populations in the United States. These findings provide compelling evidence of the clinical significance of LAP as a predictor of RHGS, offering valuable insights for developing early intervention strategies in high-risk populations.
Collapse
Affiliation(s)
- Qian Wu
- Department of Orthopedic Surgery, Wuxi Ninth People's Hospital Affiliated to Soochow University, Jiangsu, China
- Department of Orthopedic Surgery and Sports Medicine, Institute of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Jiangsu, China
| | - Yicheng Ling
- Department of Orthopedic Surgery and Sports Medicine, Institute of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Jiangsu, China
| | - Guiqiang Yuan
- Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Capital Medical University, Beijing, China
| | - Rui La
- Department of Orthopedic Surgery and Sports Medicine, Institute of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Jiangsu, China
| | - Bin Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Erkai Pang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Medical College, Xi'an, Shanxi, China
| | - Chuan Lin
- Department of Biomedical Sciences, Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Korea
| | - Zhanghuan Chen
- Department of Pediatric Surgery, Kunshan First People's Hospital, Kunshan, Jiangsu, China
| | - Zhigang Zhang
- Department of Orthopedic Surgery and Sports Medicine, Institute of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Jiangsu, China
| | - Dinghua Jiang
- Department of Orthopedic Surgery and Sports Medicine, Institute of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Jiangsu, China.
| | - Lixin Huang
- Department of Orthopedic Surgery and Sports Medicine, Institute of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Jiangsu, China.
| | - Jiangnan Xu
- Department of Urology, Medical School, Yancheng First Hospital, Affiliated Hospital of Nanjing University, The First People's Hospital of Yancheng, Yancheng, Jiangsu, China.
| | - Yubo Mao
- Department of Orthopedic Surgery, Wuxi Ninth People's Hospital Affiliated to Soochow University, Jiangsu, China.
| |
Collapse
|
2
|
Logesh R, Hari B, Chidambaram K, Das N. Molecular effects of Vitamin-D and PUFAs metabolism in skeletal muscle combating Type-II diabetes mellitus. Gene 2024; 904:148216. [PMID: 38307219 DOI: 10.1016/j.gene.2024.148216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Multiple post-receptor intracellular alterations such as impaired glucose transfer, glucose phosphorylation, decreased glucose oxidation, and glycogen production contribute to insulin resistance (IR) in skeletal muscle, manifested by diminished insulin-stimulated glucose uptake. Type-2 diabetes mellites (T2DM) has caused by IR, which is also seen in obese patients and those with metabolic syndrome. The Vitamin-D receptor (VDR) and poly unsaturated fatty acids (PUFAs) roles in skeletal muscle growth, shapes, and function for combating type-2 diabetes have been clarified throughout this research. VDR and PUFAs appears to show a variety of effects on skeletal muscle, in addition it shows a promising role on bone and mineral homeostasis. Individuals having T2DM are reported to suffer from severe muscular weakness and alterations in shape of the muscle. Several studies have investigated the effect on VDR on muscular strength and mass, which leads to Vitamin-D deficiency (VDD) in individuals, in which most commonly seen in elderly. VDR has been shown to affect skeletal cellular proliferation, intracellular calcium handling, as well as genomic activity in a variety of different ways such as muscle metabolism, insulin sensitivity, which is the major characteristic pathogenesis for IR in combating T2DM. The identified VDR gene polymorphisms are ApaI, TaqI, FokI, and BsmI that are associated with T2DM. This review collates informations on the mechanisms by which VDR activation takes place in skeletal muscles. Despite the significant breakthroughs made in recent decades, various studies show that IR affects VDR and PUFAs metabolism in skeletal muscle. Therefore, this review collates the data to show the role of VDR and PUFAs in the skeletal muscles to combat T2DM.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Karnataka, India.
| | - Balaji Hari
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, The Nilgiris, Ooty 643001, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Al-Qara, Asir Province, Saudi Arabia
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799155, Tripura, India
| |
Collapse
|
3
|
Al Saedi A, Debruin DA, Hayes A, Hamrick M. Lipid metabolism in sarcopenia. Bone 2022; 164:116539. [PMID: 36007811 DOI: 10.1016/j.bone.2022.116539] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/10/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
Sarcopenia is an age-related disease associated with loss of muscle mass and strength. This geriatric syndrome predisposes elderly individuals to a disability, falls, fractures, and death. Fat infiltration in muscle is one of the hallmarks of sarcopenia and aging. Alterations in fatty acid (FA) metabolism are evident in aging, type 2 diabetes, and obesity, with the accumulation of lipids inside muscle cells contributing to muscle insulin resistance and ceramide accumulation. These lipids include diacylglycerol, lipid droplets, intramyocellular lipids, intramuscular triglycerides, and polyunsaturated fatty acids (PUFAs). In this review, we examine the regulation of lipid metabolism in skeletal muscle, including lipid metabolization and storage, intervention, and the types of lipases expressed in skeletal muscle responsible for the breakdown of adipose triglyceride fats. In addition, we address the role of FAs in sarcopenia and the potential benefits of PUFAs.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia; Institute of Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia.
| | - Danielle A Debruin
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia; Institute of Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia
| | - Alan Hayes
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia; Institute of Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia
| | - Mark Hamrick
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA 30912, USA
| |
Collapse
|
4
|
The effect of sport and physical activity on transport proteins: implications for cancer prevention and control. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021. [PMID: 33485483 DOI: 10.1016/bs.apcsb.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The present contribution briefly overviews the major biological functions of the plasma membrane and of the transport proteins (transporters), which enable the movement of different molecules and substrates (either charged or uncharged) by passive (facilitated diffusion) or active transport. In particular, transporters are overviewed at the level of the skeletal muscles, which represent a highly complex, heterogeneous, plastic and dynamic tissue and are one of the most abundant tissues in humans, accounting for up to 40% of their total weight and containing up to 50%-75% of all body proteins. Moreover, it is shown how sport and physical activity finely tune and modulate human proteome, especially in terms of structural and functional improvements concerning the density of the transport proteins. These changes are among the factors responsible for the positive outcomes of training, which involve mainly the cardiovascular and the endocrine/metabolic systems. Different kinds of training (strength and endurance) enable to achieve such improvements, even though there seems to exist a dose-relationship intensity-dependent effect, with responses after 6-8 weeks of exercise and disappearing in the chronic period (years of training). Finally, exercise-induced changes at the level of transporters can play a role in terms of cancer prevention and management. Regular physical activity and exercise can, indeed, counteract the side-effects of chemotherapy drugs, including doxorubicin and other anthracycline derivatives, which may impair the functions of cardiac and skeletal muscles, probably modulating the expression of multidrug resistance proteins.
Collapse
|
5
|
Excess Accumulation of Lipid Impairs Insulin Sensitivity in Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21061949. [PMID: 32178449 PMCID: PMC7139950 DOI: 10.3390/ijms21061949] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Both glucose and free fatty acids (FFAs) are used as fuel sources for energy production in a living organism. Compelling evidence supports a role for excess fatty acids synthesized in intramuscular space or dietary intermediates in the regulation of skeletal muscle function. Excess FFA and lipid droplets leads to intramuscular accumulation of lipid intermediates. The resulting downregulation of the insulin signaling cascade prevents the translocation of glucose transporter to the plasma membrane and glucose uptake into skeletal muscle, leading to metabolic disorders such as type 2 diabetes. The mechanisms underlining metabolic dysfunction in skeletal muscle include accumulation of intracellular lipid derivatives from elevated plasma FFAs. This paper provides a review of the molecular mechanisms underlying insulin-related signaling pathways after excess accumulation of lipids.
Collapse
|
6
|
Noland RC. Exercise and Regulation of Lipid Metabolism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:39-74. [PMID: 26477910 DOI: 10.1016/bs.pmbts.2015.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The increased prevalence of hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, and fatty liver disease has provided increasingly negative connotations toward lipids. However, it is important to remember that lipids are essential components supporting life. Lipids are a class of molecules defined by their inherent insolubility in water. In biological systems, lipids are either hydrophobic (containing only polar groups) or amphipathic (possess polar and nonpolar groups). These characteristics lend lipids to be highly diverse with a multitude of functions including hormone and membrane synthesis, involvement in numerous signaling cascades, as well as serving as a source of metabolic fuel supporting energy production. Exercise can induce changes in the lipid composition of membranes that effect fluidity and cellular function, as well as modify the cellular and circulating environment of lipids that regulate signaling cascades. The purpose of this chapter is to focus on lipid utilization as metabolic fuel in response to acute and chronic exercise training. Lipids utilized as an energy source during exercise include circulating fatty acids bound to albumin, triglycerides stored in very-low-density lipoprotein, and intramuscular triglyceride stores. Dynamic changes in these lipid pools during and after exercise are discussed, as well as key factors that may be responsible for regulating changes in fat oxidation in response to varying exercise conditions.
Collapse
Affiliation(s)
- Robert C Noland
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA.
| |
Collapse
|
7
|
Song GY, Ren LP, Chen SC, Wang C, Liu N, Wei LM, Li F, Sun W, Peng LB, Tang Y. Similar changes in muscle lipid metabolism are induced by chronic high-fructose feeding and high-fat feeding in C57BL/J6 mice. Clin Exp Pharmacol Physiol 2014; 39:1011-8. [PMID: 23039229 DOI: 10.1111/1440-1681.12017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 09/14/2012] [Accepted: 09/30/2012] [Indexed: 01/08/2023]
Abstract
The aim of the present study was to investigate the effects of high fructose and high fat feeding on muscle lipid metabolism and to illustrate the mechanisms by which the two different dietary factors induce muscle lipid accumulation. C57BL/J6 mice were fed either a standard, high-fructose (HFru) or high-fat diet. After 16 weeks feeding, mice were killed and plasma triglyceride (TG) and free fatty acid (FFA) levels were detected. In addition, muscle TG and long chain acyl CoA (LCACoA) content was determined, glucose tolerance was evaluated and the protein content of fatty acid translocase CD36 (FATCD36) in muscle was measured. Mitochondrial oxidative function in the muscle was evaluated by estimating the activity of oxidative enzymes, namely cytochrome oxidase (COx), citrate synthase (CS) and β-hydroxyacyl CoA dehydrogenase (β-HAD), and the muscle protein content of carnitine palmitoyltransferase-1 (CPT-1), cyclo-oxygenase (COX)-1 and proliferator-activated receptor coactivator (PGC)-1α was determined. Finally, sterol regulatory element-binding protein-1c (SREBP-1c) gene expression and fatty acid synthase (FAS) protein content were determined in muscle tissues. After 16 weeks, plasma TG and FFA levels were significantly increased in both the HFru and HF groups. In addition, mice in both groups exhibited significant increases in muscle TG and LCACoA content. Compared with mice fed the standard diet (control group), those in the HFru and HF groups developed glucose intolerance and exhibited increased FATCD36 protein levels, enzyme activity related to fatty acid utilization in the mitochondria and protein expressions of CPT-1, COX-1 and PGC-1α in muscle tissue. Finally, mice in both the HFru and HF groups exhibited increase SREBP-1c expression and FAS protein content. In conclusion, high fructose and high fat feeding lead to similar changes in muscle lipid metabolism in C57BL/J6 mice. Lipid accumulation in the muscle may be associated with increased expression of proteins related to lipid transportation and synthesis.
Collapse
Affiliation(s)
- Guang-Yao Song
- Department of Endocrinology, General Hospital of Hebei, Hebei, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cheng IS, Liao SF, Liu KL, Liu HY, Wu CL, Huang CY, Mallikarjuna K, Smith RW, Kuo CH. Effect of dietary glycemic index on substrate transporter gene expression in human skeletal muscle after exercise. Eur J Clin Nutr 2009; 63:1404-10. [DOI: 10.1038/ejcn.2009.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Bonen A, Han XX, Tandon NN, Glatz JFC, Lally J, Snook LA, Luiken JJFP. FAT/CD36 expression is not ablated in spontaneously hypertensive rats. J Lipid Res 2008; 50:740-8. [PMID: 19066404 DOI: 10.1194/jlr.m800237-jlr200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is doubt whether spontaneously hypertensive rats (SHR; North American strain) are null for fatty acid translocase (FAT/CD36). Therefore, we examined whether FAT/CD36 is expressed in heart, muscle, liver and adipose tissue in SHR. Insulin resistance was present in SHR skeletal muscle. We confirmed that SHR expressed aberrant FAT mRNAs in key metabolic tissues; namely, the major 2.9 kb transcript was not expressed, but 3.8 and 5.4 kb transcripts were present. Despite this, FAT/CD36 protein was expressed in all tissues, although there were tissue-specific reductions in FAT/CD36 protein expression and plasmalemmal content, ranging from 26-85%. Fatty acid transport was reduced in adipose tissue (-50%) and was increased in liver (+47%). Normal rates of fatty acid transport occurred in heart and muscle, possibly due to compensatory upregulation of plasmalemmal fatty acid binding protein (FABPpm) in red (+123%) and white muscle (+110%). In conclusion, SHRs (North American strain) are not a natural FAT/CD36 null model, the North American strain of SHR express FAT/CD36, albeit at reduced levels.
Collapse
Affiliation(s)
- Arend Bonen
- Department of Human Health and Nutritional Sciences University of -Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The purpose of this review is to provide information about the role of exercise in the prevention of skeletal muscle insulin resistance, that is, the inability of insulin to properly cause glucose uptake into skeletal muscle. Insulin resistance is associated with high levels of stored lipids in skeletal muscle cells. Aerobic exercise training decreases the amounts of these lipid products and increases the lipid oxidative capacity of muscle cells. Thus, aerobic exercise training may prevent insulin resistance by correcting a mismatch between fatty acid uptake and fatty acid oxidation in skeletal muscle. Additionally, a single session of aerobic exercise increases glucose uptake by muscle during exercise, increases the ability of insulin to promote glucose uptake, and increases glycogen accumulation after exercise, all of which are important to blood glucose control. There also is some indication that resistance exercise may be effective in preventing insulin resistance. The information provided is intended to help clinicians understand and explain the roles of exercise in reducing insulin resistance.
Collapse
|
11
|
Sandoval A, Fraisl P, Arias-Barrau E, Dirusso CC, Singer D, Sealls W, Black PN. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking. Arch Biochem Biophys 2008; 477:363-71. [PMID: 18601897 DOI: 10.1016/j.abb.2008.06.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/11/2008] [Accepted: 06/14/2008] [Indexed: 11/29/2022]
Abstract
These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis-Menten kinetics; the apparent efficiency (k(cat)/K(T)) of this process increases over 2-fold (2.1 x 10(6)-4.5 x 10(6)s(-1)M(-1)) upon adipocyte differentiation. The V(max) values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 x 10(6)s(-1)M(-1) versus 1.5 x 10(6)s(-1)M(-1)). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving V(max) values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The same cells had reduced efficiency for fatty acid transport (ranging from 0.82 x 10(6)s(-1)M(-1) to 1.35 x 10(6)s(-1)M(-1)).
Collapse
Affiliation(s)
- Angel Sandoval
- Center for Metabolic Disease, Ordway Research Institute, 150 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Pelsers MMAL, Stellingwerff T, van Loon LJC. The Role of Membrane Fatty-Acid Transporters in Regulating Skeletal Muscle Substrate Use during Exercise. Sports Med 2008; 38:387-99. [DOI: 10.2165/00007256-200838050-00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Pelsers MMAL, Tsintzas K, Boon H, Jewell K, Norton L, Luiken JJFP, Glatz JFC, van Loon LJC. Skeletal muscle fatty acid transporter protein expression in type 2 diabetes patients compared with overweight, sedentary men and age-matched, endurance-trained cyclists. Acta Physiol (Oxf) 2007; 190:209-19. [PMID: 17394567 DOI: 10.1111/j.1748-1716.2007.01698.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIM Membrane fatty acid transporters can modulate the balance between fatty acid uptake and subsequent storage and/or oxidation in muscle tissue. As such, skeletal muscle fatty acid transporter protein expression could play an important role in the etiology of insulin resistance and/or type 2 diabetes. METHODS In the present study, fatty acid translocase (FAT/CD36), plasma membrane-bound fatty acid-binding protein (FABPpm) and fatty acid transport protein 1 (FATP1) mRNA and protein expression were assessed in muscle tissue obtained from 10 sedentary, overweight type 2 diabetes patients (60 +/- 2 years), 10 sedentary, weight-matched normoglycemic controls (60 +/- 2 years) and 10 age-matched, endurance trained cyclists (57 +/- 1 years). RESULTS Both FAT/CD36 and FATP1 mRNA and protein expression did not differ between groups. In contrast, FABPpm mRNA and protein expression were approx. 30-40% higher in the trained men compared with the diabetes patients (P < 0.01) and sedentary controls (P < 0.05). CONCLUSIONS Skeletal muscle FAT/CD36, FABPpm and FATP1 mRNA and protein expression are not up- or downregulated in a sedentary and/or insulin resistant state. In contrast, FABPpm expression is upregulated in the endurance trained state and likely instrumental to allow greater fatty acid oxidation rates.
Collapse
Affiliation(s)
- M M A L Pelsers
- Department of Movement Sciences, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Bonen A, Nickerson JG, Momken I, Chabowski A, Calles-Escandon J, Tandon NN, Glatz JFC, Luiken JJFP. Tissue-Specific and Fatty Acid Transporter-Specific Changes in Heart and Soleus Muscle Over a 1-yr Period. Mol Cell Biochem 2006; 291:145-54. [PMID: 16718359 DOI: 10.1007/s11010-006-9208-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 03/30/2006] [Indexed: 11/25/2022]
Abstract
Rates of fatty acid oxidation increase rapidly in both rat heart and skeletal muscle in the early postnatal period. Therefore, we examined in heart and soleus muscle, (a) whether there were rapid changes in fatty acid transporter (FAT/CD36, FABPpm) mRNA and protein expression early in life (days 10 -36) and thereafter (days 84, 160, 365), and (b) whether the rates of fatty acid transport and the plasmalemmal content of FAT/CD36 and FABPpm were altered. Protein expression was altered rapidly from day 10-36 in both heart (FAT/CD36 only, +21%, P < 0.05)) and soleus muscle (FAT/CD36 + 100%, P < 0.05; FABPpm -20%, P < 0.05), with no further changes thereafter (P < 0.05). Rates of fatty acid transport (day 10 vs day 160) were increased in heart (+33%, P < 0.05) and muscle (+85%, P < 0.05), and were associated with concomitant increases in plasmalemmal FABPpm (+44%, P < 0.05) and FAT/CD36 (+16%, P < 0.05) in the heart, and only plasmalemmal FAT/CD36 in muscle (+90%, P < 0.05). Therefore, known changes in the rates of fatty acid oxidation in heart and muscle early in life appear to be accompanied by a concurrent upregulation in the rates of fatty acid transport and the expression of FAT/CD36 in heart and muscle, as well as an increase in plasmalemmal FAT/CD36 and FABPpm in the heart, and only plasmalemmal FAT/CD36 in soleus muscle. We speculate that the rapid upregulation of fatty acid transport rates in heart and muscle are needed to support the increased rates of fatty oxidation that have been previously observed in these tissues.
Collapse
Affiliation(s)
- Arend Bonen
- Department of Human Health and Nutritional Sciences University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Koonen DPY, Glatz JFC, Bonen A, Luiken JJFP. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1736:163-80. [PMID: 16198626 DOI: 10.1016/j.bbalip.2005.08.018] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 08/18/2005] [Accepted: 08/30/2005] [Indexed: 12/22/2022]
Abstract
Cellular long-chain fatty acid (LCFA) uptake constitutes a process that is not yet fully understood. LCFA uptake likely involves both passive diffusion and protein-mediated transport. Several lines of evidence support the involvement of a number of plasma membrane-associated proteins, including fatty acid translocase (FAT)/CD36, plasma membrane-bound fatty acid binding protein (FABPpm), and fatty acid transport protein (FATP). In heart and skeletal muscle primary attention has been given to unravel the mechanisms by which FAT/CD36 expression and function are regulated. It appears that both insulin and contractions induce the translocation of intracellular stored FAT/CD36 to the plasma membrane to increase cellular LCFA uptake. This review focuses on this novel mechanism of regulation of LCFA uptake in heart and skeletal muscle in health and disease. The distinct signaling pathways underlying insulin-induced and contraction-induced FAT/CD36 translocation will be discussed and a comparison will be made with the well-defined glucose transport system involving the glucose transporter GLUT4. Finally, it is hypothesized that malfunctioning of recycling of these transporters may lead to intracellular triacylglycerol (TAG) accumulation and cellular insulin resistance. Current data indicate a pivotal role for FAT/CD36 in the regulation of LCFA utilization in heart and skeletal muscle under normal conditions as well as during the altered LCFA utilization observed in obesity and insulin resistance. Hence, FAT/CD36 might provide a useful therapeutic target for the prevention or treatment of insulin resistance.
Collapse
Affiliation(s)
- Debby P Y Koonen
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, NL-6200 MD Maastricht, The Netherlands
| | | | | | | |
Collapse
|
16
|
Roepstorff C, Helge JW, Vistisen B, Kiens B. Studies of plasma membrane fatty acid-binding protein and other lipid-binding proteins in human skeletal muscle. Proc Nutr Soc 2005; 63:239-44. [PMID: 15294037 DOI: 10.1079/pns2004332] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The first putative fatty acid transporter identified was plasma membrane fatty acid-binding protein (FABPpm). Later it was demonstrated that this protein is identical to the mitochondrial isoform of the enzyme aspartate aminotransferase. In recent years data from several cell types have emerged, indicating that FABPpm plays a role in the transport of long-chain saturated and unsaturated fatty acids. In the limited number of studies in human skeletal muscle it has been demonstrated that dietary composition and exercise training can influence the content of FABPpm. Ingestion of a fat-rich diet induces an increase in FABPpm protein content in human skeletal muscle in contrast to the decrease seen during consumption of a carbohydrate-rich diet. A similar effect of a fat-rich diet is also observed for cytosolic fatty acid-binding protein and fatty acid translocase/CD36 protein expression. Exercise training up regulates FABPpm protein content in skeletal muscle, but only in male subjects; no significant differences were observed in muscle FABPpm content in a cross-sectional study of female volunteers of varying training status, even though muscle FABPpm content did not depend on gender in the untrained state. A higher utilization of plasma long-chain fatty acids during exercise in males compared with females could explain the gender-dependent influence of exercise training on FABPpm. The mechanisms involved in the regulation of the function and expression of FABPpm protein remain to be clarified.
Collapse
Affiliation(s)
- C Roepstorff
- Copenhagen Muscle Research Centre, Department of Human Physiology, Institute of Exercise and Sport Sciences, University of Copenhagen, 13 Universitetsparken, 2100 Copenhagen Ø, Denmark
| | | | | | | |
Collapse
|
17
|
Shearer J, Fueger PT, Rottman JN, Bracy DP, Binas B, Wasserman DH. Heart-type fatty acid-binding protein reciprocally regulates glucose and fatty acid utilization during exercise. Am J Physiol Endocrinol Metab 2005; 288:E292-7. [PMID: 15454399 DOI: 10.1152/ajpendo.00287.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of heart-type cytosolic fatty acid-binding protein (H-FABP) in mediating whole body and muscle-specific long-chain fatty acid (LCFA) and glucose utilization was examined using exercise as a phenotyping tool. Catheters were chronically implanted in a carotid artery and jugular vein of wild-type (WT, n = 8), heterozygous (H-FABP(+/-), n = 8), and null (H-FABP(-/-), n = 7) chow-fed C57BL/6J mice, and mice were allowed to recover for 7 days. After a 5-h fast, conscious, unrestrained mice were studied during 30 min of treadmill exercise (0.6 mph). A bolus of [(125)I]-15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid and 2-deoxy-[(3)H]glucose was administered to obtain rates of whole body metabolic clearance (MCR) and indexes of muscle LCFA (R(f)) and glucose (R(g)) utilization. Fasting, nonesterified fatty acids (mM) were elevated in H-FABP(-/-) mice (2.2 +/- 0.9 vs. 1.3 +/- 0.1 and 1.3 +/- 0.2 for WT and H-FABP(+/-)). During exercise, blood glucose (mM) increased in WT (11.7 +/- 0.8) and H-FABP(+/-) (12.6 +/- 0.9) mice, whereas H-FABP(-/-) mice developed overt hypoglycemia (4.8 +/- 0.8). Examination of tissue-specific and whole body glucose and LCFA utilization demonstrated a dependency on H-FABP with exercise in all tissues examined. Reductions in H-FABP led to decreasing exercise-stimulated R(f) and increasing R(g) with the most pronounced effects in heart and soleus muscle. Similar results were seen for MCR with decreasing LCFA and increasing glucose clearance with declining levels of H-FABP. These results show that, in vivo, H-FABP has reciprocal effects on glucose and LCFA utilization and whole body fuel homeostasis when metabolic demands are elevated by exercise.
Collapse
Affiliation(s)
- Jane Shearer
- Dept. of Molecular Physiology and Biophysics, Vanderbilt University, 823 Light Hall, Nashville, TN 37232-0615, USA
| | | | | | | | | | | |
Collapse
|
18
|
Kiens B, Roepstorff C, Glatz JFC, Bonen A, Schjerling P, Knudsen J, Nielsen JN. Lipid-binding proteins and lipoprotein lipase activity in human skeletal muscle: influence of physical activity and gender. J Appl Physiol (1985) 2004; 97:1209-18. [PMID: 15155715 DOI: 10.1152/japplphysiol.01278.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The protein and mRNA levels of several muscle lipid-binding proteins and the activity and mRNA level of muscle lipoprotein lipase (mLPL) were investigated in healthy, nonobese, nontrained (NT), moderately trained, and endurance-trained (ET) women and men. FAT/CD36 protein level was 49% higher ( P < 0.05) in women than in men, irrespective of training status, whereas FAT/CD36 mRNA was only higher ( P < 0.05) in women than in men in NT subjects (85%). Plasma membrane-bound fatty acid binding protein (FABPpm) content was higher in ET men compared with all other groups, whereas training status did not affect FABPpmcontent in women. FABPpmmRNA was higher ( P < 0.05) in NT women than in ET women and NT men. mLPL activity was not different between gender, but mLPL mRNA was 160% higher ( P < 0.001) in women than in men. mLPL activity was 48% higher ( P < 0.05) in ET than in NT subjects, irrespective of gender, in accordance with 49% higher ( P < 0.05) mLPL mRNA in ET than in NT subjects. A 90-min exercise bout induced an increase ( P < 0.05) in FAT/CD36 mRNA (∼25%) and FABPpmmRNA (∼15%) levels in all groups. The present study demonstrated that, in the NT state, women had higher muscle mRNA levels of several proteins related to muscle lipid metabolism compared with men. In the ET state, only the gender difference in mLPL mRNA persisted. FAT/CD36 protein in muscle was higher in women than in men, irrespective of training status. These findings may help explain gender differences in lipid metabolism and, furthermore, suggest that the balance between gene transcription, translation, and possibly breakdown of several proteins in muscle lipid metabolism depend on gender.
Collapse
Affiliation(s)
- Bente Kiens
- Department of Human Physiology, The Copenhagen Muscle Research Centre, Institute of Exercise and Sport Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
19
|
ØRngreen MC, Nørgaard MG, Sacchetti M, van Engelen BGM, Vissing J. Fuel utilization in patients with very long-chain acyl-coa dehydrogenase deficiency. Ann Neurol 2004; 56:279-83. [PMID: 15293280 DOI: 10.1002/ana.20168] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fuel utilization in two adult patients with the myopathic form of very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency and five healthy subjects was investigated with stable isotopes during exercise at 50% of VO2max. The findings indicate that residual VLCAD activity in the patients is sufficient to maintain normal oxidation of fat at rest, but that fat oxidation rate cannot increase above basal levels during exercise. This can cause an energy deficit and intramuscular accumulation of fat intermediates that may induce the exercise-induced symptoms.
Collapse
Affiliation(s)
- Mette C ØRngreen
- The Copenhagen Muscle Research Center and the Department of Neurology, National University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
20
|
Johnson NA, Stannard SR, Thompson MW. Muscle triglyceride and glycogen in endurance exercise: implications for performance. Sports Med 2004; 34:151-64. [PMID: 14987125 DOI: 10.2165/00007256-200434030-00002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The importance of muscle glycogen as a metabolic substrate in sustaining prolonged exercise is well acknowledged. Being stored in proximity to the site of contraction and able to sustain high rates of adenosine diphosphate (ADP) phosphorylation, glycogen is viewed as the primary fuel for the maintenance of exercise of a moderate to intense nature. As such, to ensure optimal exercise performance, endurance athletes are encouraged to maximise the availability of muscle glycogen through the ingestion of a high carbohydrate (CHO) diet prior to competition. The skeletal muscle cell also contains significant quantities of triglyceride. Recent improvements in the ability to measure these intramyocellular triglyceride (IMTG) stores have confirmed that IMTG acts as a significant fuel substrate during prolonged exercise. While early research of the role of muscle glycogen in endurance exercise provided clear prescriptive information for the endurance-trained athlete, no such direction for optimising exercise performance is yet apparent from research concerning IMTG. In this article, we review the processes of muscle glycogen and triglyceride storage and metabolism. Attention is given to the effects of short-term alterations in diet on muscle substrate, particularly IMTG storage, and the implications of this to endurance exercise performance and competition preparation. We demonstrate that like glycogen, IMTG formation may be relatively rapid, and its storage predominates under conditions that promote minimal glycogen formation. This observation suggests that the role of IMTG is to maintain a readily available substrate to ensure that physical activity of a moderate nature can be performed when glycogen availability is not optimal. Under these conditions, IMTG may offer a similar availability of energy as glycogen in the endurance-trained athlete. Given the potential value of this substrate, the possibility of maximising IMTG storage without compromising glycogen availability prior to competition is considered.
Collapse
Affiliation(s)
- Nathan A Johnson
- The School of Exercise and Sport Science, The University of Sydney, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
21
|
Arkinstall MJ, Tunstall RJ, Cameron-Smith D, Hawley JA. Regulation of metabolic genes in human skeletal muscle by short-term exercise and diet manipulation. Am J Physiol Endocrinol Metab 2004; 287:E25-31. [PMID: 14761878 DOI: 10.1152/ajpendo.00557.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in dietary macronutrient intake alter muscle and blood substrate availability and are important for regulating gene expression. However, few studies have examined the effects of diet manipulation on gene expression in human skeletal muscle. The aim of this study was to quantify the extent to which altering substrate availability impacts on subsequent mRNA abundance of a subset of carbohydrate (CHO)- and fat-related genes. Seven subjects consumed either a low- (LOW; 0.7 g/kg body mass CHO) or high- (HIGH; 10 g/kg body mass CHO) CHO diet for 48 h after performing an exhaustive exercise bout to deplete muscle glycogen stores. After intervention, resting muscle and blood samples were taken. Muscle was analyzed for the gene abundances of GLUT4, glycogenin, pyruvate dehydrogenase kinase-4 (PDK-4), fatty acid translocase (FAT/CD36), carnitine palmitoyltransferase I (CPT I), hormone-sensitive lipase (HSL), beta-hydroxyacyl-CoA dehydrogenase (beta-HAD), and uncoupling binding protein-3 (UCP3), and blood samples for glucose, insulin, and free fatty acid (FFA) concentrations. Glycogen-depleting exercise and HIGH-CHO resulted in a 300% increase in muscle glycogen content (P < 0.001) relative to the LOW-CHO condition. FFA concentrations were twofold higher after LOW- vs. HIGH-CHO (P < 0.05). The exercise-diet manipulation exerted a significant effect on transcription of all carbohydrate-related genes, with an increase in GLUT4 and glycogenin mRNA abundance and a reduction in PDK-4 transcription after HIGH-CHO (all P < 0.05). FAT/CD36 (P < 0.05) and UCP3 (P < 0.01) gene transcriptions were increased following LOW-CHO. We conclude that 1) there was a rapid capacity for a short-term exercise and diet intervention to exert coordinated changes in the mRNA transcription of metabolic related genes, and 2) genes involved in glucose regulation are increased following a high-carbohydrate diet.
Collapse
Affiliation(s)
- Melissa J Arkinstall
- School of Medical Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia
| | | | | | | |
Collapse
|
22
|
Shearer J, Fueger PT, Vorndick B, Bracy DP, Rottman JN, Clanton JA, Wasserman DH. AMP kinase-induced skeletal muscle glucose but not long-chain fatty acid uptake is dependent on nitric oxide. Diabetes 2004; 53:1429-35. [PMID: 15161745 DOI: 10.2337/diabetes.53.6.1429] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this study was to examine the effects of AMP kinase (AMPK) activation on in vivo glucose and long-chain fatty acid (LCFA) uptake in skeletal muscle and to examine the nitric oxide (NO) dependence of any putative effects. Catheters were chronically implanted in the carotid artery and jugular vein of male Sprague-Dawley rats. After 4 days of recovery, rats were given either water or water containing 1 mg/ml nitro-l-arginine methylester (l-NAME) for 2.5 days. After an overnight fast, rats underwent one of five protocols: saline, 5-aminoimidazole-4-carboxamide-1-B-d-ribofuranoside (AICAR) (10 mg. kg(-1). min(-1)), l-NAME, AICAR + l-NAME, or AICAR + Intralipid (20%, 0.02 ml. kg(-1). min(-1)). Glucose was clamped at approximately 6.5 mmol/l in all groups, and an intravenous bolus of 2-deoxy[(3)H]glucose and [(125)I]-15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid was administered to obtain indexes of glucose (K(g)) and LCFA (K(f)) uptake and clearance. At 150 min, soleus, gastrocnemius, and superficial vastus lateralis were excised for tracer determination. Both K(g) and K(f) increased with AICAR in all muscles studied. K(g) decreased with increasing muscle composition of type 1 slow-twitch fibers, whereas K(f) increased. In addition, AICAR-induced increases in K(g) but not K(f) were abolished by l-NAME in the majority of muscles examined. This shows that the mechanisms by which AMPK stimulates glucose and LCFA uptake are distinct.
Collapse
Affiliation(s)
- Jane Shearer
- Department of Molecular Physiology and Biophysics, 702 Light Hall, Vanderbilt University, Nashville, TN, 37232-0615, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Koonen DPY, Benton CR, Arumugam Y, Tandon NN, Calles-Escandon J, Glatz JFC, Luiken JJFP, Bonen A. Different mechanisms can alter fatty acid transport when muscle contractile activity is chronically altered. Am J Physiol Endocrinol Metab 2004; 286:E1042-9. [PMID: 15140757 DOI: 10.1152/ajpendo.00531.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined whether skeletal muscle transport rates of long-chain fatty acids (LCFAs) were altered when muscle activity was eliminated (denervation) or increased (chronic stimulation). After 7 days of chronically stimulating the hindlimb muscles of female Sprague-Dawley rats, the LCFA transporter proteins fatty acid translocase (FAT)/CD36 (+43%) and plasma membrane-associated fatty acid-binding protein (FABPpm; +30%) were increased (P < 0.05), which resulted in the increased plasmalemmal content of these proteins (FAT/CD36, +42%; FABPpm +13%, P < 0.05) and a concomitant increase in the LCFA transport rate into giant sarcolemmal vesicles (+44%, P < 0.05). Although the total muscle contents of FAT/CD36 and FABPpm were not altered (P > 0.05) after 7 days of denervation, the LCFA transport rate was markedly decreased (-39%). This was associated with reductions in plasmalemmal FAT/CD36 (-24%) and FABPpm (-28%; P < 0.05). These data suggest that these LCFA transporters were resequestered to their intracellular depot(s) within the muscle. Combining the results from these experiments indicated that changes in rates of LCFA transport were correlated with concomitant changes in plasmalemmal FAT/CD36 and FABPpm, but not necessarily with their total muscle content. Thus chronic alterations in muscle activity can alter the rates of LCFA transport via different mechanisms, either 1) by increasing the total muscle content of FAT/CD36 and FABPpm, resulting in a concomitant increase at the sarcolemma, or 2) by reducing the plasma membrane content of these proteins in the absence of any changes in their total muscle content.
Collapse
Affiliation(s)
- Debby P Y Koonen
- Department of Molecular Genetics, Cardiovascular Reseasrch Institute Maastricht, Maastricht University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lange KHW. Fat metabolism in exercise - with special reference to training and growth hormone administration. Scand J Med Sci Sports 2004; 14:74-99. [PMID: 15043630 DOI: 10.1111/j.1600-0838.2004.381.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite abundance of fat, exclusive dependency on fat oxidation can only sustain a metabolic rate corresponding to 50-60% of VO(2max) in humans. This puzzling finding has been subject to intense research for many years. Lately, it has gained renewed interest as a consequence of increased obesity and physical inactivity imposed by Western lifestyle. Why are humans so poor at metabolizing fat? Can fat metabolism be manipulated by exercise, training, diet and hormones? And why is fat stored in specialized adipose tissue and not just as lipid droplets inside muscle cells? In the present review, human fat metabolism is discussed in relation to how human fat metabolism is designed. Limitations in this design are explored and examples of different designs for fat metabolism from animal physiology are included to illustrate these limitations. Various means of manipulating fat metabolism are discussed with special emphasis on exercise, training, growth hormone (GH) physiology and GH administration. It is concluded that fat stores, non-esterified fatty acids (NEFAs) availability and enzymes for fat oxidation can be increased substantially. However, it is almost impossible to increase fat oxidation during endurance exercise at higher intensities. It seems that, for some reason, the human being is far from optimally designed for fat oxidation during exercise. Acute GH administration has several unexpected effects on fat and carbohydrate metabolism during aerobic exercise, and future research in this area is likely to provide valuable information with respect to GH physiology and the regulation of fat and carbohydrate metabolism during aerobic exercise.
Collapse
|
25
|
Zhang J, Phillips DIW, Wang C, Byrne CD. Human skeletal muscle PPARalpha expression correlates with fat metabolism gene expression but not BMI or insulin sensitivity. Am J Physiol Endocrinol Metab 2004; 286:E168-75. [PMID: 14519597 DOI: 10.1152/ajpendo.00232.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor-alpha (PPARalpha) is a key regulator of fatty acid oxidation in skeletal muscle, but few data exist from humans in vivo. To investigate whether insulin sensitivity in skeletal muscle and body mass index (BMI) were associated with skeletal muscle expression of PPARalpha and with important genes regulating lipid metabolism in humans in vivo, we undertook hyperinsulinemic-euglycemic clamps and measured PPARalpha mRNA levels and mRNA levels of lipid regulating PPARalpha response genes in skeletal muscle biopsies. mRNA levels were measured in 16 men, using a novel highly sensitive and specific medium throughput quantitative competitive PCR that allows reproducible measurement of multiple candidate mRNAs simultaneously. mRNA levels of PPARalpha were positively correlated with mRNA levels of CD36 (r = 0.77, P = 0.001), lipoprotein lipase (r = 0.54, P = 0.024), muscle-type carnitine palmitoyltransferase-I (r = 0.54, P = 0.024), uncoupling protein-2 (r = 0.63, P = 0.008), and uncoupling protein-3 (r = 0.53, P = 0.026), but not with measures of insulin sensitivity, BMI, or GLUT4, which plays an important role in insulin-mediated glucose uptake. Thus our data suggest that in humans skeletal muscle PPARalpha expression and genes regulating lipid metabolism are tightly linked, but there was no association between both insulin sensitivity and BMI with PPARalpha expression in skeletal muscle.
Collapse
Affiliation(s)
- Junlong Zhang
- Endocrinology & Metabolism Unit, Fetal Origins of Adult Disease Division, School of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | | | | | | |
Collapse
|
26
|
Richards JG, Bonen A, Heigenhauser GJF, Wood CM. Palmitate movement across red and white muscle membranes of rainbow trout. Am J Physiol Regul Integr Comp Physiol 2004; 286:R46-53. [PMID: 12969874 DOI: 10.1152/ajpregu.00319.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the movement of [3H]palmitate across giant sarcolemmal vesicles prepared from red and white muscle of rainbow trout (Oncorhynchus mykiss). Red and white muscle fatty acid carriers have similar affinities for palmitate (apparent Km = 26 +/- 6 and 33 +/- 8 nM, respectively); however, red muscle has a higher maximal uptake compared with white muscle (Vmax = 476 +/- 41 vs. 229 +/- 23 pmol.mg protein-1.s-1, respectively). Phloretin (250 microM) inhibited palmitate influx in red and white muscle vesicles by approximately 40%, HgCl2 (2.5 mM) inhibited palmitate uptake by 20-30%, and the anion-exchange inhibitor DIDS (250 microM) inhibited palmitate influx in red and white muscle vesicles by approximately 15 and 30%, respectively. Western blot analysis of red and white muscle vesicles did not detect a mammalian-type fatty acid transporter (FAT); however, preincubation of vesicles with sulfo-N-succinimidyloleate, a specific inhibitor of FAT in rats, reduced palmitate uptake in red and white muscle vesicles by approximately 15 and 25%, respectively. A mammalian-type plasma membrane fatty acid-binding protein was identified in trout muscle using Western blotting, but the protein differed in size between red and white muscle. At low concentrations of free palmitate (2.5 nM), addition of high concentrations (111 microM total) of oleate (18:0) caused approximately 50% reduction in palmitate uptake by red and white muscle vesicles, but high concentrations (100 microM) of octanoate (8:0) caused no inhibition of uptake. Five days of aerobic swimming at approximately 2 body lengths/s and 9 days of chronic cortisol elevation in vivo, both of which stimulate lipid metabolism, had no effect on the rate of palmitate movement in red or white muscle vesicles.
Collapse
Affiliation(s)
- Jeff G Richards
- Department of Zoology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | | | | | | |
Collapse
|
27
|
Kiens B, Roepstorff C. Utilization of long-chain fatty acids in human skeletal muscle during exercise. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 178:391-6. [PMID: 12864744 DOI: 10.1046/j.1365-201x.2003.01156.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Long-chain fatty acids (LCFA) are important sources of energy in contracting skeletal muscle: during the course of endurance exercise the contribution of LCFA in energy metabolism increases whereas when the intensity of exercise increases, the energy need is covered more and more by carbohydrates. Although this has been known for nearly 100 years, the mechanisms controlling fatty acid uptake and oxidation during various exercise modes are still not completely elucidated. Besides passive diffusion, data suggest that both membrane-associated and cytosolic fatty acid binding proteins are involved in the uptake of LCFA into skeletal muscle. However, data from human studies suggest that the regulation of fatty acid utilization in skeletal muscle during exercise lies mainly within the entrance into the mitochondria or metabolism within the mitochondria. Although possible compartmentalization within the cell makes definitive conclusions difficult, available evidence suggests that changes in malonyl CoA concentration in muscle do not play a major regulatory role in controlling LCFA oxidation during exercise in man. In contrast, it is suggested that the availability of free carnitine may play a major regulatory role in oxidation of LCFA during exercise.
Collapse
Affiliation(s)
- B Kiens
- Department of Human Physiology, The Copenhagen Muscle Research Centre, Institute of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
28
|
Cameron-Smith D, Burke LM, Angus DJ, Tunstall RJ, Cox GR, Bonen A, Hawley JA, Hargreaves M. A short-term, high-fat diet up-regulates lipid metabolism and gene expression in human skeletal muscle. Am J Clin Nutr 2003; 77:313-8. [PMID: 12540388 DOI: 10.1093/ajcn/77.2.313] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dietary fatty acids may be important in regulating gene expression. However, little is known about the effect of changes in dietary fatty acids on gene regulation in human skeletal muscle. OBJECTIVE The objective was to determine the effect of altered dietary fat intake on the expression of genes encoding proteins necessary for fatty acid transport and beta-oxidation in skeletal muscle. DESIGN Fourteen well-trained male cyclists and triathletes with a mean (+/- SE) age of 26.9 +/- 1.7 y, weight of 73.7 +/- 1.7 kg, and peak oxygen uptake of 67.0 +/- 1.3 mL x kg(-1) x min(-1) consumed either a high-fat diet (HFat: > 65% of energy as lipids) or an isoenergetic high-carbohydrate diet (HCho: 70-75% of energy as carbohydrate) for 5 d in a crossover design. On day 1 (baseline) and again after 5 d of dietary intervention, resting muscle and blood samples were taken. Muscle samples were analyzed for gene expression [fatty acid translocase (FAT/CD36), plasma membrane fatty acid binding protein (FABPpm), carnitine palmitoyltransferase I (CPT I), beta-hydroxyacyl-CoA dehydrogenase (beta-HAD), and uncoupling protein 3 (UCP3)] and concentrations of the proteins FAT/CD36 and FABPpm. RESULTS The gene expression of FAT/CD36 and beta -HAD and the gene abundance of FAT/CD36 were greater after the HFat than after the HCho diet (P < 0.05). Messenger RNA expression of FABPpm, CPT I, and UCP-3 did not change significantly with either diet. CONCLUSIONS A rapid and marked capacity for changes in dietary fatty acid availability to modulate the expression of mRNA-encoding proteins is necessary for fatty acid transport and oxidative metabolism. This finding is evidence of nutrient-gene interactions in human skeletal muscle.
Collapse
|
29
|
Luiken JJFP, Arumugam Y, Bell RC, Calles-Escandon J, Tandon NN, Glatz JFC, Bonen A. Changes in fatty acid transport and transporters are related to the severity of insulin deficiency. Am J Physiol Endocrinol Metab 2002; 283:E612-21. [PMID: 12169456 DOI: 10.1152/ajpendo.00011.2002] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the effects of streptozotocin (STZ)-induced diabetes (moderate and severe) on fatty acid transport and fatty acid transporter (FAT/CD36) and plasma membrane-bound fatty acid binding protein (FABPpm) expression, at the mRNA and protein level, as well as their plasmalemmal localization. These studies have shown that, with STZ-induced diabetes, 1) fatty acid transport across the plasma membrane is increased in heart, skeletal muscle, and adipose tissue and is reduced in liver; 2) changes in fatty acid transport are generally not associated with changes in fatty acid transporter mRNAs, except in the heart; 3) increases in fatty acid transport in heart and skeletal muscle occurred with concomitant increases in plasma membrane FAT/CD36, whereas in contrast, the increase and decrease in fatty acid transport in adipose tissue and liver, respectively, were accompanied by concomitant increments and reductions in plasma membrane FABPpm; and finally, 4) the increases in plasma membrane transporters (FAT/CD36 in heart and skeletal muscle; FABPpm in adipose tissue) were attributable to their increased expression, whereas in liver, the reduced plasma membrane FABPpm appeared to be due to its relocation within the cell in the face of slightly increased expression. Taken together, STZ-induced changes in fatty acid uptake demonstrate a complex and tissue-specific pattern, involving different fatty acid transporters in different tissues, in combination with different underlying mechanisms to alter their surface abundance.
Collapse
Affiliation(s)
- Joost J F P Luiken
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Regulation of carbohydrate and fat utilization by skeletal muscle at rest and during exercise has been the subject of investigation since the early 1960s when Randle et al. proposed the so-called glucose-fatty acid cycle to explain the reciprocal relationship between carbohydrate and fat metabolism. The suggested mechanisms were based on the premise that an increase in fatty acid (FA) availability would result in increased fat metabolism and inhibition of carbohydrate metabolism. Briefly, accumulation of acetyl-CoA would result in inhibition of pyruvate dehydrogenase (PDH), accumulation of citrate would inhibit phosphofructokinase (PFK), and accumulation of glucose-6-phosphate (G6P) would reduce hexokinase (HK) activity. Ultimately, this would inhibit carbohydrate metabolism with increasing availability and oxidation of FA. Although there is some evidence for the existence of the glucose-FA cycle at rest and during low-intensity exercise, it cannot explain substrate use at moderate to high exercise intensities. More recently, evidence has accumulated that increases in glycolytic flux may decrease fat metabolism. Potential sites of regulation are the transport of FA into the sarcoplasma, lipolysis of intramuscular triacylglycerol (IMTG) by hormone-sensitive lipase (HSL), and transport of FA across the mitochondrial membrane. There are several potential regulators of fat oxidation: first, malonyl-CoA concentration, which is formed from acetyl-CoA, catalyzed by the enzyme acetyl-CoA carboxylase (ACC), which in turn will inhibit carnitine palmitoyl transferase I (CPT I). Another possible mechanism is accumulation of acetyl-CoA that will result in acetylation of the carnitine pool, reducing the free carnitine concentration. This could theoretically reduce FA transport into the mitochondria. There is also some recent evidence that CPT I is inhibited by small reductions in pH that might be observed during exercise at high intensities. It is also possible that FA entry into the sarcolemma is regulated by translocation of FAT/CD36 in a similar manner to glucose transport by GLUT-4. Studies suggest that the regulatory mechanisms may be different at rest and during exercise and may change as the exercise intensity increases. Regulation of skeletal muscle fat metabolism is clearly multifactorial, and different mechanisms may dominate in different conditions.
Collapse
Affiliation(s)
- Asker E Jeukendrup
- School of Sport and Exercise Sciences, University of Birmingham, United Kingdom.
| |
Collapse
|
31
|
Luiken JJ, Arumugam Y, Dyck DJ, Bell RC, Pelsers MM, Turcotte LP, Tandon NN, Glatz JF, Bonen A. Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J Biol Chem 2001; 276:40567-73. [PMID: 11504711 DOI: 10.1074/jbc.m100052200] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Giant vesicles were used to study the rates of uptake of long-chain fatty acids by heart, skeletal muscle, and adipose tissue of obese and lean Zucker rats. With obesity there was an increase in vesicular fatty acid uptake of 1.8-fold in heart, muscle and adipose tissue. In some tissues only fatty acid translocase (FAT) mRNA (heart, +37%; adipose, +80%) and fatty acid-binding protein (FABPpm) mRNA (heart, +148%; adipose, +196%) were increased. At the protein level FABPpm expression was not changed in any tissues except muscle (+14%), and FAT/CD36 protein content was altered slightly in adipose tissue (+26%). In marked contrast, the plasma membrane FAT/CD36 protein was increased in heart (+60%), muscle (+80%), and adipose tissue (+50%). The plasma membrane FABPpm was altered only in heart (+50%) and adipose tissues (+70%). Thus, in obesity, alterations in fatty acid transport in metabolically important tissues are not associated with changes in fatty acid transporter mRNAs or altered fatty acid transport protein expression but with their increased abundance at the plasma membrane. We speculate that in obesity fatty acid transporters are relocated from an intracellular pool to the plasma membrane in heart, muscle, and adipose tissues.
Collapse
Affiliation(s)
- J J Luiken
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Malincíková J, Stejskal D, Hrebícek J. Serum leptin and leptin receptors in healthy prepubertal children: relations to insulin resistance and lipid parameters, body mass index (BMI), tumor necrosis factor alpha (TNF alpha), heart fatty acid binding protein (hFABP), and IgG anticardiolipin (ACL-IgG). ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS FACULTATIS MEDICAE 2001; 143:51-7. [PMID: 11144119 DOI: 10.5507/bp.2000.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In a group of randomly selected 29 healthy prepubertal children (16 boys, mean age 9.56 +/- 0.7 years, 13 girls, mean age 9.96 +/- 0.9 years) fasting serum leptin and leptin receptor concentrations were measured by ELISA and compared with insulin parameters (homeostatic model of assessment insulin resistance = HOMA IR, insulin, intact proinsulin, C-peptide) and some metabolic parameters and factors that contribute to insulin resistance: triacylglycerols, high density lipoprotein cholesterol (HDL cholesterol), low density lipoprotein cholesterol, body mass index, tumor necrosis factor, heart fatty acid binding protein, and IgG fraction of anticardiolipin. Statistical analysis was performed using SAS/STAT software and included analysis of normality, analysis of variance, Spearman's correlations, linear and multiple regression analysis with insulin parameters as dependent variables. The subgroups of boys and girls did not differ significantly in any of parameters studied. Serum concentrations of insulin, intact proinsulin, HOMA IR, C-peptide and triacylglycerols appeared to be primarily influenced by serum leptin concentration. Serum leptin concentrations were tightly correlated with body mass indexes and negatively correlated with leptin receptor concentrations, probably as a manifestation of down regulation. The role of other factors studied appeared to be complementary or less significant (hFABP, ACL IgG), or absent (TNF alpha). We concluded that in healthy prepubertal children of both genders serum leptin concentration contributes to insulin resistance and to insulin resistance-related metabolic changes.
Collapse
Affiliation(s)
- J Malincíková
- Clinic of Exercise Medicine, Faculty of Medicine, Palacký University, Olomouc, Czech Republic
| | | | | |
Collapse
|
33
|
Zorzano A, Fandos C, Palacín M. Role of plasma membrane transporters in muscle metabolism. Biochem J 2000; 349 Pt 3:667-88. [PMID: 10903126 PMCID: PMC1221192 DOI: 10.1042/bj3490667] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Muscle plays a major role in metabolism. Thus it is a major glucose-utilizing tissue in the absorptive state, and changes in muscle insulin-stimulated glucose uptake alter whole-body glucose disposal. In some conditions, muscle preferentially uses lipid substrates, such as fatty acids or ketone bodies. Furthermore, muscle is the main reservoir of amino acids and protein. The activity of many different plasma membrane transporters, such as glucose carriers and transporters of carnitine, creatine and amino acids, play a crucial role in muscle metabolism by catalysing the influx or the efflux of substrates across the cell surface. In some cases, the membrane transport process is subjected to intense regulatory control and may become a potential pharmacological target, as is the case with the glucose transporter GLUT4. The goal of this review is the molecular characterization of muscle membrane transporter proteins, as well as the analysis of their possible regulatory role.
Collapse
Affiliation(s)
- A Zorzano
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | | | | |
Collapse
|
34
|
Abstract
Older studies in humans seem to suggest a correlation between plasma long chain fatty acid (LCFA) turnover and oxidation on the one hand and plasma LCFA concentration on the other hand during submaximal exercise. However, recent studies in man, in which higher concentrations of plasma LCFA have been reached during prolonged submaximal exercise, have revealed a levelling off in net uptake in spite of increasing plasma LCFA concentrations. Furthermore, this relationship between plasma LCFA concentration and plasma LCFA uptake and oxidation was altered by endurance training such that levelling off was not apparent in the trained state. These recent findings in man give support to the notion from other cell types that transport of fatty acids from the vascular compartment to the cytosolic space in the muscle cell is not only due to simple diffusion, but is predominantly carrier-mediated. During prolonged submaximal knee-extension exercise it has been demonstrated that the total oxidation of LCFA was approximately 60% higher in trained compared to nontrained subjects. The training-induced adaptations responsible for this increased utilization of plasma fatty acids by the muscle could be located at several steps from the mobilization of fatty acids to skeletal muscle metabolism in the mitochondria. To what extent triacylglycerol located in the muscle cell contribute to the overall lipid utilisation during exercise is still not clear. However, due to underestimation of the contribution of plasma LCFA and fatty acids liberated from the circulating VLDL-triacylglycerols to the overall fatty acid oxidation during exercise there is increasing understanding that muscle triacylglycerol contributes to a lesser extent as fuel during exercise in man than mostly stated.
Collapse
Affiliation(s)
- B Kiens
- Copenhagen Muscle Research Centre, August Krogh Institute, University of Copenhagen, Denmark
| |
Collapse
|
35
|
Glatz JF, Van Breda E, Van der Vusse GJ. Intracellular transport of fatty acids in muscle. Role of cytoplasmic fatty acid-binding protein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 441:207-18. [PMID: 9781327 DOI: 10.1007/978-1-4899-1928-1_19] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Long-chain fatty acids represent a major substrate for energy production in striated muscles, especially in those muscles which have a high oxidative enzymatic capacity. Following their uptake from the extracellular compartment the fatty acids have to translocate through the aqueous cytoplasm of the myocytes to reach the mitochondria where they undergo oxidative degradation. This intracellular transport is assisted by cytoplasmic fatty acid-binding protein (FABPc), a small (15 kD) protein which shows a high affinity for the non-covalent binding of long-chain fatty acids, and of which several types occur. So-called heart-type or muscle-type FABPc is found in muscle cells, and is abundant especially in oxidative fibers. The muscular FABPc content appears to relate to the rate of fatty acid utilization, and also changes in concert to modulations in fatty acid utilization induced by (patho)physiological stimuli (e.g. endurance training, diabetes). The facilitation of intracellular fatty acid transport by FABPc is accomplished by increasing the concentration of the diffusing fatty acids in the aqueous cytoplasm and, most likely, also by interacting directly with membranes to promote transfer of fatty acids to and from the cytosolic binding protein.
Collapse
Affiliation(s)
- J F Glatz
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | | | | |
Collapse
|