1
|
Jang BG, Choi B, Kim MJ. Pyrogallol intermediates elicit beta-amyloid secretion via radical formation and alterations in intracellular trafficking, distinct from pyrogallol-generated superoxide. Redox Biol 2024; 73:103180. [PMID: 38795546 PMCID: PMC11140794 DOI: 10.1016/j.redox.2024.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024] Open
Abstract
This study unveils a novel role of pyrogallol (PG), a recognized superoxide generator, in inducing beta-amyloid (Aβ) secretion in an Alzheimer's disease (AD) cellular model. Contrary to expectations, the analysis of dihydroethidium fluorescence and UV-VIS spectrum scanning reveals that Aβ secretion arises from PG reaction intermediates rather than superoxide or other by-products. Investigation into Aβ secretion mechanisms identifies dynasore-dependent endocytosis and BFA-dependent exocytosis as independent pathways, regulated by tiron, tempol, and superoxide dismutase. Cell-type specificity is observed, with 293sw cells showing both pathways, while H4sw cells and primary astrocytes from an AD animal model exclusively exhibit the Aβ exocytosis pathway. This exploration contributes to understanding PG's chemical reactions and provides insights into the interplay between environmental factors, free radicals, and AD, linking occupational PG exposure to AD risk as reported in the literature.
Collapse
Affiliation(s)
- Bong-Geum Jang
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Boyoung Choi
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Min-Ju Kim
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea; Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
2
|
Silva SV, Lima MA, Hodgson L, Freitas VM, Rodríguez-Manzaneque JC. ADAMTS-1 has nuclear localization in cells with epithelial origin and leads to decreased cell migration. Exp Cell Res 2023; 433:113852. [PMID: 37951335 PMCID: PMC10841765 DOI: 10.1016/j.yexcr.2023.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
In the study of tumorigenesis, the involvement of molecules within the extracellular matrix (ECM) is crucial. ADAMTSs (A Disintegrin and Metalloproteinase with Thrombospondin motifs), a group of secreted proteases known for their role in ECM remodeling, were primarily considered to be extracellular proteases. However, our research specifically detected ADAMTS-1, a member of this family, predominantly within the nucleus of mammary cells. Our main objective was to understand the mechanism of ADAMTS-1 translocation to the nucleus and its functional significance in this cellular compartment. Our investigation uncovered that nuclear ADAMTS-1 was present in cells exhibiting an epithelial phenotype, while cells of mesenchymal origin contained the protease in the cytoplasm. Moreover, disruption of ADAMTS-1 secretion, induced by Monensin treatment, resulted in its accumulation in the cytoplasm. Notably, our research indicated that alterations in the secretory pathways could influence the protease's compartmentalization. Additionally, experiments with conditioned medium from cells containing nuclear ADAMTS-1 demonstrated its internalization into the nucleus by HT-1080 cells and fibroblasts. Furthermore, heightened levels of ADAMTS-1 within the ECM reduced the migratory potential of mesenchymal cells. This highlights the potential significance of nuclear ADAMTS-1 as a critical component within the tumor microenvironment due to its functional activity in this specific cellular compartment.
Collapse
Affiliation(s)
- Suély V Silva
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil.
| | - Maíra A Lima
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Vanessa M Freitas
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil.
| | | |
Collapse
|
3
|
Uriarte SM, Hajishengallis G. Neutrophils in the periodontium: Interactions with pathogens and roles in tissue homeostasis and inflammation. Immunol Rev 2023; 314:93-110. [PMID: 36271881 PMCID: PMC10049968 DOI: 10.1111/imr.13152] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neutrophils are of key importance in periodontal health and disease. In their absence or when they are functionally defective, as occurs in certain congenital disorders, affected individuals develop severe forms of periodontitis in early age. These observations imply that the presence of immune-competent neutrophils is essential to homeostasis. However, the presence of supernumerary or hyper-responsive neutrophils, either because of systemic priming or innate immune training, leads to imbalanced host-microbe interactions in the periodontium that culminate in dysbiosis and inflammatory tissue breakdown. These disease-provoking imbalanced interactions are further exacerbated by periodontal pathogens capable of subverting neutrophil responses to their microbial community's benefit and the host's detriment. This review attempts a synthesis of these findings for an integrated view of the neutrophils' ambivalent role in periodontal disease and, moreover, discusses how some of these concepts underpin the development of novel therapeutic approaches to treat periodontal disease.
Collapse
Affiliation(s)
- Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Vandorpe DH, Heneghan JF, Waitzman JS, McCarthy GM, Blasio A, Magraner JM, Donovan OG, Schaller LB, Shah SS, Subramanian B, Riella CV, Friedman DJ, Pollak MR, Alper SL. Apolipoprotein L1 (APOL1) cation current in HEK-293 cells and in human podocytes. Pflugers Arch 2023; 475:323-341. [PMID: 36449077 DOI: 10.1007/s00424-022-02767-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022]
Abstract
Two heterozygous missense variants (G1 and G2) of Apolipoprotein L1 (APOL1) found in individuals of recent African ancestry can attenuate the severity of infection by some forms of Trypanosoma brucei. However, these two variants within a broader African haplotype also increase the risk of kidney disease in Americans of African descent. Although overexpression of either variant G1 or G2 causes multiple pathogenic changes in cultured cells and transgenic mouse models, the mechanism(s) promoting kidney disease remain unclear. Human serum APOL1 kills trypanosomes through its cation channel activity, and cation channel activity of recombinant APOL1 has been reconstituted in lipid bilayers and proteoliposomes. Although APOL1 overexpression increases whole cell cation currents in HEK-293 cells, the ion channel activity of APOL1 has not been assessed in glomerular podocytes, the major site of APOL1-associated kidney diseases. We characterize APOL1-associated whole cell and on-cell cation currents in HEK-293 T-Rex cells and demonstrate partial inhibition of currents by anti-APOL antibodies. We detect in primary human podocytes a similar cation current inducible by interferon-γ (IFNγ) and sensitive to inhibition by anti-APOL antibody as well as by a fragment of T. brucei Serum Resistance-Associated protein (SRA). CRISPR knockout of APOL1 in human primary podocytes abrogates the IFNγ-induced, antibody-sensitive current. Our novel characterization in HEK-293 cells of heterologous APOL1-associated cation conductance inhibited by anti-APOL antibody and our documentation in primary human glomerular podocytes of endogenous IFNγ-stimulated, APOL1-mediated, SRA and anti-APOL-sensitive ion channel activity together support APOL1-mediated channel activity as a therapeutic target for treatment of APOL1-associated kidney diseases.
Collapse
Affiliation(s)
- David H Vandorpe
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - John F Heneghan
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Joshua S Waitzman
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Gizelle M McCarthy
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Vertex Pharmaceuticals, Boston, MA, 02210, USA
| | - Angelo Blasio
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Vertex Pharmaceuticals, Boston, MA, 02210, USA
| | - Jose M Magraner
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,, San Diego, CA, USA
| | - Olivia G Donovan
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA
| | - Lena B Schaller
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Ludwig-Maximilians-Universitaet, 80336, Munich, Germany
| | - Shrijal S Shah
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Chroma Medicine, Cambridge, MA, 02142, USA
| | - Balajikarthick Subramanian
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Cristian V Riella
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - David J Friedman
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
| | - Martin R Pollak
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
| | - Seth L Alper
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA.
| |
Collapse
|
5
|
Kotzampasi DM, Premeti K, Papafotika A, Syropoulou V, Christoforidis S, Cournia Z, Leondaritis G. The orchestrated signaling by PI3Kα and PTEN at the membrane interface. Comput Struct Biotechnol J 2022; 20:5607-5621. [PMID: 36284707 PMCID: PMC9578963 DOI: 10.1016/j.csbj.2022.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The oncogene PI3Kα and the tumor suppressor PTEN represent two antagonistic enzymatic activities that regulate the interconversion of the phosphoinositide lipids PI(4,5)P2 and PI(3,4,5)P3 in membranes. As such, they are defining components of phosphoinositide-based cellular signaling and membrane trafficking pathways that regulate cell survival, growth, and proliferation, and are often deregulated in cancer. In this review, we highlight aspects of PI3Kα and PTEN interplay at the intersection of signaling and membrane trafficking. We also discuss the mechanisms of PI3Kα- and PTEN- membrane interaction and catalytic activation, which are fundamental for our understanding of the structural and allosteric implications on signaling at the membrane interface and may aid current efforts in pharmacological targeting of these proteins.
Collapse
Affiliation(s)
- Danai Maria Kotzampasi
- Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
- Department of Biology, University of Crete, Heraklion 71500, Greece
| | - Kyriaki Premeti
- Laboratory of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Alexandra Papafotika
- Laboratory of Biological Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Biomedical Research Institute, Foundation for Research and Technology, Ioannina 45110, Greece
| | - Vasiliki Syropoulou
- Laboratory of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Savvas Christoforidis
- Laboratory of Biological Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Biomedical Research Institute, Foundation for Research and Technology, Ioannina 45110, Greece
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - George Leondaritis
- Laboratory of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
- Institute of Biosciences, University Research Center of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
6
|
Fernandez A, Kielland N, Makda A, Carragher NO, González-García MC, Espinar-Barranco L, González-Vera JA, Orte A, Lavilla R, Vendrell M. A multicomponent reaction platform towards multimodal near-infrared BODIPY dyes for STED and fluorescence lifetime imaging. RSC Chem Biol 2022; 3:1251-1259. [PMID: 36320886 PMCID: PMC9533399 DOI: 10.1039/d2cb00168c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2023] Open
Abstract
We report a platform combining multicomponent reaction synthesis and automated cell-based screening to develop biocompatible NIR-BODIPY fluorophores. From a library of over 60 fluorophores, we optimised compound NIRBD-62c as a multimodal probe with suitable properties for STED super-resolution and fluorescence lifetime imaging. Furthermore, we employed NIRBD-62c for imaging trafficking inside cells and to examine how pharmacological inhibitors can alter the vesicular traffic between intracellular compartments and the plasma membrane.
Collapse
Affiliation(s)
- Antonio Fernandez
- Centre for Inflammation Research, The University of Edinburgh Edinburgh UK
- Dpt Organic Chemistry, Faculty of Chemistry, University of Murcia Spain
| | - Nicola Kielland
- Centre for Inflammation Research, The University of Edinburgh Edinburgh UK
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Institute of Biomedicine (IBUB), University of Barcelona Spain
| | - Ashraff Makda
- Institute of Genetics and Cancer, The University of Edinburgh Edinburgh UK
| | - Neil O Carragher
- Institute of Genetics and Cancer, The University of Edinburgh Edinburgh UK
| | | | | | - Juan A González-Vera
- Nanoscopy-UGR Laboratory, Facultad de Farmacia, Universidad de Granada Granada Spain
| | - Angel Orte
- Nanoscopy-UGR Laboratory, Facultad de Farmacia, Universidad de Granada Granada Spain
| | - Rodolfo Lavilla
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Institute of Biomedicine (IBUB), University of Barcelona Spain
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh Edinburgh UK
| |
Collapse
|
7
|
Ahmed A, Trezza A, Gentile M, Paccagnini E, Lupetti P, Spiga O, Bova S, Fusi F. The drp-1-mediated mitochondrial fission inhibitor mdivi-1 impacts the function of ion channels and pathways underpinning vascular smooth muscle tone. Biochem Pharmacol 2022; 203:115205. [DOI: 10.1016/j.bcp.2022.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
|
8
|
An Updated View of the Importance of Vesicular Trafficking and Transport and Their Role in Immune-Mediated Diseases: Potential Therapeutic Interventions. MEMBRANES 2022; 12:membranes12060552. [PMID: 35736259 PMCID: PMC9230090 DOI: 10.3390/membranes12060552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Cellular trafficking is the set of processes of distributing different macromolecules by the cell. This process is highly regulated in cells, involving a system of organelles (endomembranous system), among which are a great variety of vesicles that can be secreted from the cell, giving rise to different types of extracellular vesicles (EVs) that can be captured by other cells to modulate their function. The cells of the immune system are especially sensitive to this cellular traffic, producing and releasing different classes of EVs, especially in disease states. There is growing interest in this field due to the therapeutic and translational possibilities it offers. Different ways of taking advantage of the understanding of cell trafficking and EVs are being investigated, and their use as biomarkers or therapeutic targets is being investigated. The objective of this review is to collect the latest results and knowledge in this area with a specific focus on immune-mediated diseases. Although some promising results have been obtained, further knowledge is still needed, at both the basic and translational levels, to understand and modulate cellular traffic and EVs for better clinical management of these patients.
Collapse
|
9
|
Lewis PA. Vesicular dysfunction and pathways to neurodegeneration. Essays Biochem 2021; 65:941-948. [PMID: 34897416 PMCID: PMC8709888 DOI: 10.1042/ebc20210034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022]
Abstract
Cellular control of vesicle biology and trafficking is critical for cell viability, with disruption of these pathways within the cells of the central nervous system resulting in neurodegeneration and disease. The past two decades have provided important insights into both the genetic and biological links between vesicle trafficking and neurodegeneration. In this essay, the pathways that have emerged as being critical for neuronal survival in the human brain will be discussed - illustrating the diversity of proteins and cellular events with three molecular case studies drawn from different neurological diseases.
Collapse
Affiliation(s)
- Patrick A Lewis
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States of America
| |
Collapse
|
10
|
Chen Y, Rivers-Auty J, Crică LE, Barr K, Rosano V, Arranz AE, Loret T, Spiller D, Bussy C, Kostarelos K, Vranic S. Dynamic interactions and intracellular fate of label-free, thin graphene oxide sheets within mammalian cells: role of lateral sheet size. NANOSCALE ADVANCES 2021; 3:4166-4185. [PMID: 36132849 PMCID: PMC9419297 DOI: 10.1039/d1na00133g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/09/2021] [Indexed: 06/16/2023]
Abstract
Graphene oxide (GO) holds great potential for biomedical applications, however fundamental understanding of the way it interacts with biological systems is still lacking even though it is essential for successful clinical translation. In this study, we exploit intrinsic fluorescent properties of thin GO sheets to establish the relationship between lateral dimensions of the material, its cellular uptake mechanisms and intracellular fate over time. Label-free GO with distinct lateral dimensions, small (s-GO) and ultra-small (us-GO) were thoroughly characterised both in water and in biologically relevant cell culture medium. Interactions of the material with a range of non-phagocytic mammalian cell lines (BEAS-2B, NIH/3T3, HaCaT, 293T) were studied using a combination of complementary analytical techniques (confocal microscopy, flow cytometry and TEM). The uptake mechanism was initially interrogated using a range of pharmaceutical inhibitors and validated using polystyrene beads of different diameters (0.1 and 1 μm). Subsequently, RNA-Seq was used to follow the changes in the uptake mechanism used to internalize s-GO flakes over time. Regardless of lateral dimensions, both types of GO were found to interact with the plasma membrane and to be internalized by a panel of cell lines studied. However, s-GO was internalized mainly via macropinocytosis while us-GO was mainly internalized via clathrin- and caveolae-mediated endocytosis. Importantly, we report the shift from macropinocytosis to clathrin-dependent endocytosis in the uptake of s-GO at 24 h, mediated by upregulation of mTORC1/2 pathway. Finally, we show that both s-GO and us-GO terminate in lysosomal compartments for up to 48 h. Our results offer an insight into the mechanism of interaction of GO with non-phagocytic cell lines over time that can be exploited for the design of biomedically-applicable 2D transport systems.
Collapse
Affiliation(s)
- Yingxian Chen
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester AV Hill Building Manchester M13 9PT UK
- National Graphene Institute, The University of Manchester Booth Street East Manchester M13 9PL UK
| | - Jack Rivers-Auty
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester AV Hill Building, Oxford Road Manchester M13 9PT UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester Manchester M13 9PT UK
- School of Medicine, College of Health and Medicine, University of Tasmania Hobart Tasmania Australia
| | - Livia Elena Crică
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester AV Hill Building Manchester M13 9PT UK
- National Graphene Institute, The University of Manchester Booth Street East Manchester M13 9PL UK
| | - Katie Barr
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester AV Hill Building Manchester M13 9PT UK
- National Graphene Institute, The University of Manchester Booth Street East Manchester M13 9PL UK
| | - Vinicio Rosano
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester AV Hill Building Manchester M13 9PT UK
- National Graphene Institute, The University of Manchester Booth Street East Manchester M13 9PL UK
| | - Adrián Esteban Arranz
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester AV Hill Building Manchester M13 9PT UK
- National Graphene Institute, The University of Manchester Booth Street East Manchester M13 9PL UK
| | - Thomas Loret
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester AV Hill Building Manchester M13 9PT UK
- National Graphene Institute, The University of Manchester Booth Street East Manchester M13 9PL UK
| | - David Spiller
- FBMH Platform Sciences, Enabling Technologies & Infrastructure, FBMH Research & Innovation, Faculty of Biology, Medicine and Health, The University of Manchester Michael Smith Building Manchester M13 9PT UK
| | - Cyrill Bussy
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester AV Hill Building Manchester M13 9PT UK
- National Graphene Institute, The University of Manchester Booth Street East Manchester M13 9PL UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester AV Hill Building Manchester M13 9PT UK
- National Graphene Institute, The University of Manchester Booth Street East Manchester M13 9PL UK
| | - Sandra Vranic
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester AV Hill Building Manchester M13 9PT UK
- National Graphene Institute, The University of Manchester Booth Street East Manchester M13 9PL UK
| |
Collapse
|
11
|
Chemical Inhibitors of Dynamin Exert Differential Effects in VEGF Signaling. Cells 2021; 10:cells10050997. [PMID: 33922806 PMCID: PMC8145957 DOI: 10.3390/cells10050997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023] Open
Abstract
VEGFR2 is the main receptor and mediator of the vasculogenic and angiogenic activity of VEGF. Activated VEGFR2 internalizes through clathrin-mediated endocytosis and macropinocytosis. As dynamin is a key regulator of the clathrin pathway, chemical inhibitors of dynamin are commonly used to assess the role of the clathrin route in receptor signaling. However, drugs may also exert off-target effects. Here, we compare the effects of three dynamin inhibitors, dynasore, dyngo 4a and dynole, on VEGFR2 internalization and signaling. Although these drugs consistently inhibit clathrin-mediated endocytosis of both transferrin (a typical cargo of this route) and VEGFR2, surprisingly, they exert contradictory effects in receptor signaling. Thus, while dynasore has no effect on phosphorylation of VEGFR2, the other two drugs are strong inhibitors. Furthermore, although dyngo does not interfere with phosphorylation of Akt, dynasore and dynole have a strong inhibitory effect. These inconsistent effects suggest that the above dynamin blockers, besides inhibiting dynamin-dependent endocytosis of VEGFR2, exert additional inhibitory effects on signaling that are independent of endocytosis; i.e., they are due to off-target effects. Using a recently developed protocol, we comparatively validate the specificity of two endocytic inhibitors, dynasore and EIPA. Our findings highlight the importance of assessing whether the effect of an endocytic drug on signaling is specifically due to its interference with endocytosis or due to off-targets.
Collapse
|
12
|
Lei S, Zhang X, Men K, Gao Y, Yang X, Wu S, Duan X, Wei Y, Tong R. Efficient Colorectal Cancer Gene Therapy with IL-15 mRNA Nanoformulation. Mol Pharm 2020; 17:3378-3391. [PMID: 32787272 DOI: 10.1021/acs.molpharmaceut.0c00451] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immunogene therapy is a novel method for the treatment of colorectal cancer. Cytokine IL-15 has exhibited therapeutic anticancer potential due to its immune-stimulation property. However, conventional IL-15-based cancer gene therapy studies have been performed using the plasmid DNA form, which has potential shortcomings including weak delivery efficiency and backbone effect. In this study, an IL-15 immunogene therapy study for colon cancer using in vitro transcript mRNA is described. A protamine/liposome system (CLPP) is developed to provide efficient condensation and delivery capacity for in vivo mRNA transportation. They demonstrated that the prepared CLPP system could deliver the IL-15-encoding mRNA into C26 cells with high efficacy. The secretory expressed IL-15 cytokine by the C26 cells successfully produced lymphocyte stimulation and triggered anticancer cytotoxicity upon cancer cells in vitro. Local or systemic administration of the CLPP/mIL-15 complex exhibited obvious inhibition effects on multiple C26 murine colon cancer models with inhibition rates of up to 70% in the C26 abdominal cavity metastasis tumor model, 55% in the subcutaneous model, and 69% in the pulmonary metastasis model, demonstrating high efficacy and safety. These results successfully demonstrated the high therapeutic potential of the CLPP/mIL-15 complex for colorectal cancer immunogene therapy.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Xueyan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Xijing Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Sisi Wu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
| |
Collapse
|
13
|
Characterizing Oligonucleotide Uptake in Cultured Cells: A Case Study Using AS1411 Aptamer. Methods Mol Biol 2020; 2036:173-186. [PMID: 31410797 DOI: 10.1007/978-1-4939-9670-4_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oligonucleotides can be designed or evolved to bind to specific DNA, RNA, protein, or small molecule targets and thereby alter the biological function of the target. The therapeutic potential of oligonucleotides targeted to intracellular molecules will depend largely on their ability to be taken up by the cells of interest, as well as their subsequent subcellular distribution. Here we describe methods to characterize the extent and mechanism of cellular uptake of AS1411, an aptamer oligonucleotide that has progressed to human clinical trials and which is also widely used by researchers as a cancer-targeting ligand.
Collapse
|
14
|
Medeiros HCD, Colturato-Kido C, Ferraz LS, Costa CA, Moraes VWR, Paredes-Gamero EJ, Tersariol ILS, Rodrigues T. AMPK activation induced by promethazine increases NOXA expression and Beclin-1 phosphorylation and drives autophagy-associated apoptosis in chronic myeloid leukemia. Chem Biol Interact 2019; 315:108888. [PMID: 31682805 DOI: 10.1016/j.cbi.2019.108888] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 01/12/2023]
Abstract
Relapse and drug resistance is still major challenges in the treatment of leukemia. Promethazine, an antihistaminic phenothiazine derivative, has been used to prevent chemotherapy-induced emesis, although there is no report about its antitumor potential. Thus, we evaluated the promethazine cytotoxicity against several leukemia cells and the underlying mechanisms were investigated. Promethazine exhibited potent and selective cytotoxicity against all leukemia cell types in vitro at clinically relevant concentrations. Philadelphia positive chronic myeloid leukemia (CML) K562 cells were the most sensitive cell line. The cytotoxicity of promethazine in these cells was triggered by the activation of AMPK and inhibition of PI3K/AKT/mTOR pathway. The subsequent downstream effects were NOXA increase, MCL-1 decrease, and Beclin-1 activation, resulting in autophagy-associated apoptosis. These data highlight targeting autophagy may represent an interesting strategy in CML therapy, and also the antitumor potential of promethazine by acting in AMPK and PI3K/AKT/mTOR signaling pathways. Since this drug is currently used with relative low side effects, its repurposing may represent a new therapeutic opportunity for leukemia treatment.
Collapse
Affiliation(s)
- Hyllana C D Medeiros
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Carina Colturato-Kido
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Letícia S Ferraz
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Claudia A Costa
- Interdisciplinary Center of Biochemistry Investigation (CIIB), University of Mogi das Cruzes (UMC), Mogi das Cruzes, SP, Brazil
| | - Vivian W R Moraes
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Edgar Julian Paredes-Gamero
- School of Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Ivarne L S Tersariol
- Department of Biochemistry, São Paulo School of Medicine, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
15
|
Harisa GI, Faris TM. Direct Drug Targeting into Intracellular Compartments: Issues, Limitations, and Future Outlook. J Membr Biol 2019; 252:527-539. [PMID: 31375855 DOI: 10.1007/s00232-019-00082-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
Intracellular compartment drug delivery is a promising strategy for the treatment of diseases. By this way, medicines can delivered to particular intracellular compartments. This maximizes the therapeutic efficacy and safety of medicines, particularly of anticancer and antiviral drugs. Intracellular compartment drug delivery is either indirectly by targeting of cell nucleus as central compartment of the cell or directly through the targeting of compartments itself. Drugs or nanoshuttles labeled with compartment's localization signal represent a smart tactic for subcellular compartment targeting. There are several boundaries prevent the arrival of shuttles to the specified intracellular compartments. These boundaries include selective permeability of biomembranes, efflux transporters, and lysosomes. The utilization of specific ligands during design of drug delivery nanoshuttles permits the targeting of specified intracellular compartment. Therefore drugs targeting could correct the diseases associated organelles. This review highlights the direct targeting of the medicines into subcellular compartment as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
- Department of Biochemistry, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Tarek M Faris
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
16
|
Wu H, Zhuang Q, Xu J, Xu L, Zhao Y, Wang C, Yang Z, Shen F, Liu Z, Peng R. Cell-Penetrating Peptide Enhanced Antigen Presentation for Cancer Immunotherapy. Bioconjug Chem 2019; 30:2115-2126. [DOI: 10.1021/acs.bioconjchem.9b00245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hanfei Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Rd, Suzhou, Jiangsu 215123, P. R. China
| | - Qi Zhuang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Rd, Suzhou, Jiangsu 215123, P. R. China
| | - Jun Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Rd, Suzhou, Jiangsu 215123, P. R. China
| | - Ligeng Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Rd, Suzhou, Jiangsu 215123, P. R. China
| | - Yuhuan Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Rd, Suzhou, Jiangsu 215123, P. R. China
| | - Chenya Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Rd, Suzhou, Jiangsu 215123, P. R. China
| | - Zongjin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Rd, Suzhou, Jiangsu 215123, P. R. China
| | - Fengyun Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Rd, Suzhou, Jiangsu 215123, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Rd, Suzhou, Jiangsu 215123, P. R. China
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Rd, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
17
|
Abdellatif ME, Sinzger C, Walther P. Investigating HCMV entry into host cells by STEM tomography. J Struct Biol 2018; 204:406-419. [DOI: 10.1016/j.jsb.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022]
|
18
|
Almiron Bonnin DA, Havrda MC, Israel MA. Glioma Cell Secretion: A Driver of Tumor Progression and a Potential Therapeutic Target. Cancer Res 2018; 78:6031-6039. [PMID: 30333116 DOI: 10.1158/0008-5472.can-18-0345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/30/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022]
Abstract
Cellular secretion is an important mediator of cancer progression. Secreted molecules in glioma are key components of complex autocrine and paracrine pathways that mediate multiple oncogenic pathologies. In this review, we describe tumor cell secretion in high-grade glioma and highlight potential novel therapeutic opportunities. Cancer Res; 78(21); 6031-9. ©2018 AACR.
Collapse
Affiliation(s)
- Damian A Almiron Bonnin
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Matthew C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Mark A Israel
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. .,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,Departments of Medicine and Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
19
|
Kruger TM, Givens BE, Lansakara TI, Bell KJ, Mohapatra H, Salem AK, Tivanski AV, Stevens LL. Mechanosensitive Endocytosis of High-Stiffness, Submicron Microgels in Macrophage and Hepatocarcinoma Cell Lines. ACS APPLIED BIO MATERIALS 2018; 1:1254-1265. [PMID: 34996229 DOI: 10.1021/acsabm.8b00111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanical properties of submicron particles offer a unique design space for advanced drug-delivery particle engineering. However, the recognition of this potential is limited by a poor consensus about both the specificity and sensitivity of mechanosensitive endocytosis over a broad particle stiffness range. In this report, our model series of polystyrene-co-poly(N-isopropylacrylamide) (pS-co-NIPAM) microgels have been prepared with a nominally constant monomer composition (50 mol % styrene and 50 mol % NIPAM) with varied bis-acrylamide cross-linking densities to introduce a tuned spectrum of particle mechanics without significant variation in particle size and surface charge. While previous mechanosensitive studies use particles with moduli ranging from 15 kPa to 20 MPa, the pS-co-NIPAM particles have Young's moduli (E) ranging from 300 to 700 MPa, which is drastically stiffer than these previous studies as well as pure pNIPAM. Despite this elevated stiffness, particle uptake in RAW264.7 murine macrophages displays a clear stiffness dependence, with a significant increase in particle uptake for our softest microgels after a 4 h incubation. Preferential uptake of the softest microgel, pS-co-NIPAM-1 (E = 310 kPa), was similarly observed with nonphagocytic HepG2 hepatoma cells; however, the uptake kinetics were distinct relative to that observed for RAW264.7 cells. Pharmacological inhibitors, used to probe for specific routes of particle internalization, identify actin- and microtubule-dependent pathways in RAW264.7 cells as sensitive particle mechanics. For our pS-co-NIPAM particles at nominally 300-400 nm in size, this microtubule-dependent pathway was interpreted as a phagocytic route. For our high-stiffness microgel series, this study provides evidence of cell-specific, mechanosensitive endocytosis in a distinctly new stiffness regime that will further broaden the functional landscape of mechanics as a design space for particle engineering.
Collapse
Affiliation(s)
- Terra M. Kruger
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Brittany E. Givens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
- Department of Chemical and Biochemical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | | | - Kendra J. Bell
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Himansu Mohapatra
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Alexei V. Tivanski
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Lewis L. Stevens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
20
|
Bostanci N, Bao K, Li X, Maekawa T, Grossmann J, Panse C, Briones RA, Resuello RRG, Tuplano JV, Garcia CAG, Reis ES, Lambris JD, Hajishengallis G. Gingival Exudatome Dynamics Implicate Inhibition of the Alternative Complement Pathway in the Protective Action of the C3 Inhibitor Cp40 in Nonhuman Primate Periodontitis. J Proteome Res 2018; 17:3153-3175. [PMID: 30111112 DOI: 10.1021/acs.jproteome.8b00263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Periodontitis is a prevalent chronic inflammatory disease associated with dysbiosis. Although complement inhibition has been successfully used to treat periodontitis in animal models, studies globally analyzing inflamed tissue proteins to glean insight into possible mechanisms of action are missing. Using quantitative shotgun proteomics, we aimed to investigate differences in composition of inflammatory gingival tissue exudate ("gingival crevicular fluid"; GCF), before and after local administration of an inhibitor of the central complement component, C3, in nonhuman primates. The C3 inhibitor, Cp40 (also known as AMY-101) was administered locally in the maxillary gingival tissue of cynomolgus monkeys with established periodontitis, either once a week (1×-treatment; n = 5 animals) or three times per week (3×-treatment; n = 10 animals), for 6 weeks followed by another 6 weeks of observation in the absence of treatment. 45 GCF samples were processed for FASP digestion and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Data were processed using the ProgenesisQI software. The statistical significance of differences between the groups was determined by RM-ANOVA, and a protein expression change was considered as a true regulation at >2-fold and p < 0.05. The human orthologues were subjected to Gene Ontology analyses using PANTHER. Data are available via ProteomeXchange with identifier PXD009502. 573 proteins with >2 peptides were longitudinally quantified. Both 3× and 1× administration of Cp40 resulted in significant down-regulation of dozens of proteins during the 6-week course of treatment as compared to baseline. Following drug withdrawal at 6 weeks, more than 50% of the down-regulated proteins showed increased levels at week 12. The top scored pathway was "complement activation, alternative pathway", and several proteins involved in this pathway were down-regulated at 6 weeks. We mapped the proteomic fingerprint changes in local tissue exudate of cynomolgus monkey periodontitis in response to C3 inhibition and identified the alternative pathway of complement activation and leukocyte degranulation as main targets, which are thus likely to play significant roles in periodontal disease pathogenesis. Label-free quantitative proteomics strategies utilizing GCF are powerful tools for the identification of treatment targets and providing insights into disease mechanisms.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine , Karolinska Institutet , SE-171 77 Stockholm , Sweden
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine , Karolinska Institutet , SE-171 77 Stockholm , Sweden
| | - Xiaofei Li
- Department of Microbiology, School of Dental Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Tomoki Maekawa
- Department of Microbiology, School of Dental Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Jonas Grossmann
- Functional Genomics Centre Zurich , University of Zurich/ETH Zurich , 8006 Zurich , Switzerland
| | - Christian Panse
- Functional Genomics Centre Zurich , University of Zurich/ETH Zurich , 8006 Zurich , Switzerland
| | - Ruel A Briones
- Manila Central University , College of Dentistry , Caloocan City , 1400 Metro Manila , Philippines
| | - Ranillo R G Resuello
- Simian Conservation Breeding and Research Center (SICONBREC) , Makati City , 1213 Metro Manila , Philippines
| | - Joel V Tuplano
- Simian Conservation Breeding and Research Center (SICONBREC) , Makati City , 1213 Metro Manila , Philippines
| | - Cristina A G Garcia
- Manila Central University , College of Dentistry , Caloocan City , 1400 Metro Manila , Philippines
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine , University of Pennsylvania School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | - John D Lambris
- Department of Pathology and Laboratory Medicine , University of Pennsylvania School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
21
|
Bruinsma S, James DJ, Quintana Serrano M, Esquibel J, Woo SS, Kielar-Grevstad E, Crummy E, Qurashi R, Kowalchyk JA, Martin TFJ. Small molecules that inhibit the late stage of Munc13-4-dependent secretory granule exocytosis in mast cells. J Biol Chem 2018; 293:8217-8229. [PMID: 29615494 PMCID: PMC5971468 DOI: 10.1074/jbc.ra117.001547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/30/2018] [Indexed: 01/05/2023] Open
Abstract
Ca2+-dependent secretory granule fusion with the plasma membrane is the final step for the exocytic release of inflammatory mediators, neuropeptides, and peptide hormones. Secretory cells use a similar protein machinery at late steps in the regulated secretory pathway, employing protein isoforms from the Rab, Sec1/Munc18, Munc13/CAPS, SNARE, and synaptotagmin protein families. However, no small-molecule inhibitors of secretory granule exocytosis that target these proteins are currently available but could have clinical utility. Here we utilized a high-throughput screen of a 25,000-compound library that identified 129 small-molecule inhibitors of Ca2+-triggered secretory granule exocytosis in RBL-2H3 mast cells. These inhibitors broadly fell into six different chemical classes, and follow-up permeable cell and liposome fusion assays identified the target for one class of these inhibitors. A family of 2-aminobenzothiazoles (termed benzothiazole exocytosis inhibitors or bexins) was found to inhibit mast cell secretory granule fusion by acting on a Ca2+-dependent, C2 domain–containing priming factor, Munc13-4. Our findings further indicated that bexins interfere with Munc13-4–membrane interactions and thereby inhibit Munc13-4–dependent membrane fusion. We conclude that bexins represent a class of specific secretory pathway inhibitors with potential as therapeutic agents.
Collapse
Affiliation(s)
- Stephen Bruinsma
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | - Declan J James
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | | | - Joseph Esquibel
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | - Sang Su Woo
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | | | - Ellen Crummy
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | - Rehan Qurashi
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | - Judy A Kowalchyk
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706
| | - Thomas F J Martin
- Department of Biochemistry, University of Wisconsin, Madison Wisconsin 53706.
| |
Collapse
|
22
|
Basagiannis D, Zografou S, Galanopoulou K, Christoforidis S. Dynasore impairs VEGFR2 signalling in an endocytosis-independent manner. Sci Rep 2017; 7:45035. [PMID: 28327657 PMCID: PMC5361198 DOI: 10.1038/srep45035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/17/2017] [Indexed: 12/17/2022] Open
Abstract
VEGFR2 is a critical angiogenic receptor playing a key role in vascular homeostasis. Upon activation by VEGF, VEGFR2 becomes endocytosed. Internalisation of VEGFR2 is facilitated, in part, through clathrin mediated endocytosis (CME), the role of which in VEGFR2 function is debated. Here, we confirm the contribution of CME in VEGFR2 uptake. However, curiously, we find that different approaches of inhibition of CME exert contradictory effects on VEGF signalling; knockdown of clathrin, or of dynamin, or overexpression of dynamin K44A, do not affect VEGF-induced phosphorylation of ERK1/2, while dynasore causes strong inhibition. We resolve this discrepancy by showing that although dynasore inhibits CME of VEGFR2, its inhibitory action in ERK1/2 phosphorylation is not related to attenuation of VEGFR2 endocytosis; it is rather due to an off-target effect of the drug. Dynasore inhibits VEGF-induced calcium release, a signalling event that lies upstream of ERK1/2, which implies that this effect could be responsible, at least in part, for the inhibitory action of the drug on VEGF-to-ERK1/2 signalling. These results raise caution that although dynasore is specific in inhibiting clathrin- and dynamin-mediated endocytosis, it may also exert off-target effects on signalling molecules, hence influencing the interpretation of the role of endocytosis in signalling.
Collapse
Affiliation(s)
- Dimitris Basagiannis
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina, Greece.,Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Sofia Zografou
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina, Greece
| | - Katerina Galanopoulou
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina, Greece.,Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Savvas Christoforidis
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina, Greece.,Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
23
|
Mechanisms of Horizontal Cell-to-Cell Transfer of Wolbachia spp. in Drosophila melanogaster. Appl Environ Microbiol 2017; 83:AEM.03425-16. [PMID: 28087534 DOI: 10.1128/aem.03425-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022] Open
Abstract
Wolbachia is an intracellular endosymbiont present in most arthropod and filarial nematode species. Transmission between hosts is primarily vertical, taking place exclusively through the female germ line, although horizontal transmission has also been documented. The results of several studies indicate that Wolbachia spp. can undergo transfer between somatic and germ line cells during nematode development and in adult flies. However, the mechanisms underlying horizontal cell-to-cell transfer remain largely unexplored. Here, we establish a tractable system for probing horizontal transfer of Wolbachia cells between Drosophila melanogaster cells in culture using fluorescence in situ hybridization (FISH). First, we show that horizontal transfer is independent of cell-to-cell contact and can efficiently take place through the culture medium within hours. Further, we demonstrate that efficient transfer utilizes host cell phagocytic and clathrin/dynamin-dependent endocytic machinery. Lastly, we provide evidence that this process is conserved between species, showing that horizontal transfer from mosquito to Drosophila cells takes place in a similar fashion. Altogether, our results indicate that Wolbachia utilizes host internalization machinery during infection, and this mechanism is conserved across insect species.IMPORTANCE Our work has broad implications for the control and treatment of tropical diseases. Wolbachia can confer resistance against a variety of human pathogens in mosquito vectors. Elucidating the mechanisms of horizontal transfer will be useful for efforts to more efficiently infect nonnatural insect hosts with Wolbachia as a biological control agent. Further, as Wolbachia is essential for the survival of filarial nematodes, understanding horizontal transfer might provide new approaches to treating human infections by targeting Wolbachia Finally, this work provides a key first step toward the genetic manipulation of Wolbachia.
Collapse
|
24
|
Caffrey LM, deRonde BM, Minter LM, Tew GN. Mapping Optimal Charge Density and Length of ROMP-Based PTDMs for siRNA Internalization. Biomacromolecules 2016; 17:3205-3212. [PMID: 27599388 PMCID: PMC5094354 DOI: 10.1021/acs.biomac.6b00900] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A fundamental understanding of how polymer structure impacts internalization and delivery of biologically relevant cargoes, particularly small interfering ribonucleic acid (siRNA), is of critical importance to the successful design of improved delivery reagents. Herein we report the use of ring-opening metathesis polymerization (ROMP) methods to synthesize two series of guanidinium-rich protein transduction domain mimics (PTDMs): one based on an imide scaffold that contains one guanidinium moiety per repeat unit, and another based on a diester scaffold that contains two guanidinium moieties per repeat unit. By varying both the degree of polymerization and, in effect, the relative number of cationic charges in each PTDM, the performances of the two ROMP backbones for siRNA internalization were evaluated and compared. Internalization of fluorescently labeled siRNA into Jurkat T cells demonstrated that fluorescein isothiocyanate (FITC)-siRNA internalization had a charge content dependence, with PTDMs containing approximately 40 to 60 cationic charges facilitating the most internalization. Despite this charge content dependence, the imide scaffold yielded much lower viabilities in Jurkat T cells than the corresponding diester PTDMs with similar numbers of cationic charges, suggesting that the diester scaffold is preferred for siRNA internalization and delivery applications. These developments will not only improve our understanding of the structural factors necessary for optimal siRNA internalization, but will also guide the future development of optimized PTDMs for siRNA internalization and delivery.
Collapse
Affiliation(s)
- Leah M Caffrey
- Department of Polymer Science and Engineering, ‡Department of Veterinary and Animal Sciences, and §Molecular and Cellular Biology Program, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Brittany M deRonde
- Department of Polymer Science and Engineering, ‡Department of Veterinary and Animal Sciences, and §Molecular and Cellular Biology Program, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Lisa M Minter
- Department of Polymer Science and Engineering, ‡Department of Veterinary and Animal Sciences, and §Molecular and Cellular Biology Program, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, ‡Department of Veterinary and Animal Sciences, and §Molecular and Cellular Biology Program, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
25
|
Namkung Y, Le Gouill C, Lukashova V, Kobayashi H, Hogue M, Khoury E, Song M, Bouvier M, Laporte SA. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET. Nat Commun 2016; 7:12178. [PMID: 27397672 PMCID: PMC4942582 DOI: 10.1038/ncomms12178] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022] Open
Abstract
Endocytosis and intracellular trafficking of receptors are pivotal to maintain physiological functions and drug action; however, robust quantitative approaches are lacking to study such processes in live cells. Here we present new bioluminescence resonance energy transfer (BRET) sensors to quantitatively monitor G protein-coupled receptors (GPCRs) and β-arrestin trafficking. These sensors are based on bystander BRET and use the naturally interacting chromophores luciferase (RLuc) and green fluorescent protein (rGFP) from Renilla. The versatility and robustness of this approach are exemplified by anchoring rGFP at the plasma membrane or in endosomes to generate high dynamic spectrometric BRET signals on ligand-promoted recruitment or sequestration of RLuc-tagged proteins to, or from, specific cell compartments, as well as sensitive subcellular BRET imaging for protein translocation visualization. These sensors are scalable to high-throughput formats and allow quantitative pharmacological studies of GPCR trafficking in real time, in live cells, revealing ligand-dependent biased trafficking of receptor/β-arrestin complexes. Cellular signaling processes often involve trafficking of receptors and other proteins between subcellular compartments. Here the authors demonstrate a method based on the concept of Enhanced bystander Bioluminescence Resonance Energy Transfer (EbBRET) that allows efficient real time monitoring of endocytosis and trafficking.
Collapse
Affiliation(s)
- Yoon Namkung
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Christian Le Gouill
- Department of Biochemistry and Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada H3C 1J4
| | - Viktoria Lukashova
- Department of Biochemistry and Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada H3C 1J4
| | - Hiroyuki Kobayashi
- Department of Biochemistry and Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada H3C 1J4
| | - Mireille Hogue
- Department of Biochemistry and Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada H3C 1J4
| | - Etienne Khoury
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Mideum Song
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Michel Bouvier
- Department of Biochemistry and Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada H3C 1J4
| | - Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Québec, Canada H4A 3J1.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3G 1Y6.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada H3A 0C7
| |
Collapse
|
26
|
Basagiannis D, Christoforidis S. Constitutive Endocytosis of VEGFR2 Protects the Receptor against Shedding. J Biol Chem 2016; 291:16892-903. [PMID: 27298320 DOI: 10.1074/jbc.m116.730309] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 12/19/2022] Open
Abstract
VEGFR2 plays a fundamental role in blood vessel formation and in life threatening diseases, such as cancer angiogenesis and cardiovascular disorders. Although inactive growth factor receptors are mainly localized at the plasma membrane, VEGFR2 undergoes constitutive endocytosis (in the absence of ligand) and recycling. Intriguingly, the significance of these futile transport cycles of VEGFR2 remains unclear. Here we found that, unexpectedly, the function of constitutive endocytosis of VEGFR2 is to protect the receptor against plasma membrane cleavage (shedding), thereby preserving the functional state of the receptor until the time of activation by VEGF. Inhibition of constitutive endocytosis of VEGFR2, by interference with the function of clathrin, dynamin, or Rab5, increases dramatically the cleavage/shedding of VEGFR2. Shedding of VEGFR2 produces an N-terminal soluble fragment (100 kDa, s100), which is released in the extracellular space, and a residual C-terminal part (130 kDa, p130) that remains integrated at the plasma membrane. The released soluble fragment (s100) co-immunoprecipitates with VEGF, in line with the topology of the VEGF-binding domain at the N terminus of VEGFR2. Increased shedding of VEGFR2 (via inhibition of constitutive endocytosis) results in reduced response to VEGF, consistently with the loss of the VEGF-binding domain from the membrane remnant of VEGFR2. These data suggest that constitutive internalization of VEGFR2 protects the receptor against shedding and provides evidence for an unprecedented mechanism via which endocytosis can regulate the fate and activity of growth factor receptors.
Collapse
Affiliation(s)
- Dimitris Basagiannis
- From the Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina and the Department of Medicine, Laboratory of Biological Chemistry, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Savvas Christoforidis
- From the Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina and the Department of Medicine, Laboratory of Biological Chemistry, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
27
|
Wu CH, Bai LY, Tsai MH, Chu PC, Chiu CF, Chen MY, Chiu SJ, Chiang JH, Weng JR. Pharmacological exploitation of the phenothiazine antipsychotics to develop novel antitumor agents-A drug repurposing strategy. Sci Rep 2016; 6:27540. [PMID: 27277973 PMCID: PMC4899727 DOI: 10.1038/srep27540] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/16/2016] [Indexed: 01/05/2023] Open
Abstract
Phenothiazines (PTZs) have been used for the antipsychotic drugs for centuries. However, some of these PTZs have been reported to exhibit antitumor effects by targeting various signaling pathways in vitro and in vivo. Thus, this study was aimed at exploiting trifluoperazine, one of PTZs, to develop potent antitumor agents. This effort culminated in A4 [10-(3-(piperazin-1-yl)propyl)-2-(trifluoromethyl)-10H-phenothiazine] which exhibited multi-fold higher apoptosis-inducing activity than the parent compound in oral cancer cells. Compared to trifluoperazine, A4 demonstrated similar regulation on the phosphorylation or expression of multiple molecular targets including Akt, p38, and ERK. In addition, A4 induced autophagy, as evidenced by increased expression of the autophagy biomarkers LC3B-II and Atg5, and autophagosomes formation. The antitumor activity of A4 also related to production of reactive oxygen species and adenosine monophosphate-activated protein kinase. Importantly, the antitumor utility of A4 was extended in vivo as it, administrated at 10 and 20 mg/kg intraperitoneally, suppressed the growth of Ca922 xenograft tumors. In conclusion, the ability of A4 to target diverse aspects of cancer cell growth suggests its value in oral cancer therapy.
Collapse
Affiliation(s)
- Chia-Hsien Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Li-Yuan Bai
- College of Medicine, China Medical University, Taichung 404, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Ming-Hsui Tsai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| | - Po-Chen Chu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chang-Fang Chiu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan.,Cancer Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Michael Yuanchien Chen
- Department of Oral &Maxillofacial Surgery, China Medical University Hospital, Taichung 404, Taiwan.,School of Dentistry, China Medical University, Taichung 404, Taiwan
| | - Shih-Jiuan Chiu
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Jo-Hua Chiang
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Jing-Ru Weng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
28
|
Michael Danielsen E, Hansen GH. Small molecule pinocytosis and clathrin-dependent endocytosis at the intestinal brush border: Two separate pathways into the enterocyte. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:233-43. [PMID: 26615917 DOI: 10.1016/j.bbamem.2015.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 12/30/2022]
Abstract
Pinocytosis at the small intestinal brush border was studied in postweaned porcine cultured mucosal explants, using the fluorescent polar probes Alexa hydrazide (AH, MW 570), Texas red dextran (TRD, MW ~ 3000), and Cascade blue dextran (CBD, MW ~ 10,000). Within 1 h, AH appeared in a string of subapical punctae in enterocytes, indicative of an ongoing constitutive pinocytosis. By comparison, TRD was taken up less efficiently into the same compartment, and no intracellular labeling of CBD was detectable, indicating that only small molecules are pinocytosed from the postweaned gut lumen. AH remained in the terminal web region in EEA-1-positive endosomes (“TWEEs”) for at least 2 h, implying that the pinocytic uptake does not proceed towards a transcytic pathway. Like AH, cholera toxin B subunit (CTB) was readily internalized, but the two probes appeared in completely non-overlapping subapical compartments, indicating the existence of two different uptake mechanisms operating simultaneously at the brush border. CTB is internalized by clathrin-dependent receptor mediated endocytosis, but surprisingly the toxin also caused a rapid disappearance from the apical cell surface of two major brush border enzymes, alkaline phosphatase and aminopeptidase N, demonstrating the disruptive effect of this pathway. By immunofluorescence, caveolin-1 was hardly detectable in enterocytes, arguing against a caveolae-mediated uptake of AH, whereas the pinocytosis/phagocytosis inhibitors dimethyl amiloride and cytochalasin D both arrested AH uptake. We propose that the constitutive pinocytic mechanism visualized by AH contributes to maintenance of membrane homeostasis and to enrich the contents of lipid raft constituents at the brush border.
Collapse
Affiliation(s)
- E Michael Danielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | - Gert H Hansen
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
29
|
Ming X, Wu L, Carver K, Yuan A, Min Y. Dendritic nanoconjugates for intracellular delivery of neutral oligonucleotides. NANOSCALE 2015; 7:12302-6. [PMID: 26134311 PMCID: PMC4598944 DOI: 10.1039/c5nr01665g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dendrimer-based gene delivery has been constrained by intrinsic toxicity and suboptimal nanostructure. Conjugation of neutral morpholino oligonucleotides (ONs) with PAMAM dendrimers resulted in neutral, uniform, and ultra-small (∼10 nm) nanoconjugates. The nanoconjugates dramatically enhanced cellular delivery of the ONs in cancer cells. After release from the dendrimer in the cytosol, the ONs produced potent functional activity without causing significant cytotoxicity. When carrying an apoptosis-promoting ON, the nanoconjugates produced cancer cell killing directly. Thus, the dendritic nanoconjugates may provide an effective tool for delivering ONs to tumors and other diseased tissues.
Collapse
Affiliation(s)
- Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
30
|
Lopes CDF, Gomez-Lazaro M, Pêgo AP. Seeing is believing but quantifying is deciding. Nanomedicine (Lond) 2015; 10:2307-10. [DOI: 10.2217/nnm.15.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Cátia DF Lopes
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- FMUP – Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Maria Gomez-Lazaro
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- b.IMAGE – Bioimaging Centre for Biomaterials and Regenerative Therapies, INEB, Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- FEUP – Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
31
|
deRonde BM, Tew GN. Development of protein mimics for intracellular delivery. Biopolymers 2015; 104:265-80. [PMID: 25858701 PMCID: PMC4516575 DOI: 10.1002/bip.22658] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022]
Abstract
Designing delivery agents for therapeutics is an ongoing challenge. As treatments and desired cargoes become more complex, the need for improved delivery vehicles becomes critical. Excellent delivery vehicles must ensure the stability of the cargo, maintain the cargo's solubility, and promote efficient delivery and release. In order to address these issues, many research groups have looked to nature for design inspiration. Proteins, such as HIV-1 trans-activator of transcription (TAT) and Antennapedia homeodomain protein, are capable of crossing cellular membranes. However, due to the complexities of their structures, they are synthetically challenging to reproduce in the laboratory setting. Being able to incorporate the key features of these proteins that enable cell entry into simpler scaffolds opens up a wide range of opportunities for the development of new delivery reagents with improved performance. This review charts the development of protein mimics based on cell-penetrating peptides (CPPs) and how structure-activity relationships (SARs) with these molecules and their protein counterparts ultimately led to the use of polymeric scaffolds. These scaffolds deviate from the normal peptide backbone, allowing for simpler, synthetic procedures to make carriers and tune chemical compositions for application specific needs. Successful design of polymeric protein mimics would allow researchers to further understand the key features in proteins and peptides necessary for efficient delivery and to design the next generation of more efficient delivery reagents.
Collapse
Affiliation(s)
- Brittany M deRonde
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, 01003
| |
Collapse
|