1
|
Jaeger ECB, Vijatovic D, Deryckere A, Zorin N, Nguyen AL, Ivanian G, Woych J, Arnold RC, Gurrola AO, Shvartsman A, Barbieri F, Toma FA, Cline HT, Shay TF, Kelley DB, Yamaguchi A, Shein-Idelson M, Tosches MA, Sweeney LB. Adeno-associated viral tools to trace neural development and connectivity across amphibians. Dev Cell 2025; 60:794-812.e6. [PMID: 39603234 PMCID: PMC12068381 DOI: 10.1016/j.devcel.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Amphibians, by virtue of their phylogenetic position, provide invaluable insights on nervous system evolution, development, and remodeling. The genetic toolkit for amphibians, however, remains limited. Recombinant adeno-associated viral vectors (AAVs) are a powerful alternative to transgenesis for labeling and manipulating neurons. Although successful in mammals, AAVs have never been shown to transduce amphibian cells efficiently. We screened AAVs in three amphibian species-the frogs Xenopus laevis and Pelophylax bedriagae and the salamander Pleurodeles waltl-and identified at least two AAV serotypes per species that transduce neurons. In developing amphibians, AAVs labeled groups of neurons generated at the same time during development. In the mature brain, AAVrg retrogradely traced long-range projections. Our study introduces AAVs as a tool for amphibian research, establishes a generalizable workflow for AAV screening in new species, and expands opportunities for cross-species comparisons of nervous system development, function, and evolution.
Collapse
Affiliation(s)
- Eliza C B Jaeger
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - David Vijatovic
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Astrid Deryckere
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Nikol Zorin
- Department of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Akemi L Nguyen
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Georgiy Ivanian
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jamie Woych
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rebecca C Arnold
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Arik Shvartsman
- Department of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | | | - Florina A Toma
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Hollis T Cline
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Timothy F Shay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Darcy B Kelley
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ayako Yamaguchi
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Mark Shein-Idelson
- Department of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Lora B Sweeney
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
2
|
Antesberger S, Stiening B, Forsthofer M, Joven Araus A, Eroglu E, Huber J, Heß M, Straka H, Sanchez-Gonzalez R. Species-specific blood-brain barrier permeability in amphibians. BMC Biol 2025; 23:43. [PMID: 39934799 PMCID: PMC11817546 DOI: 10.1186/s12915-025-02145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) is a semipermeable interface that prevents the non-selective transport into the central nervous system. It controls the delivery of macromolecules fueling the brain metabolism and the immunological surveillance. The BBB permeability is locally regulated depending on the physiological requirements, maintaining the tissue homeostasis and influencing pathological conditions. Given its relevance in vertebrate CNS, it is surprising that little is known about the BBB in Amphibians, some of which are capable of adult CNS regeneration. RESULTS The BBB size threshold of the anuran Xenopus laevis (African clawed toad), as well as two urodele species, Ambystoma mexicanum (axolotl) and Pleurodeles waltl (Iberian ribbed newt), was evaluated under physiological conditions through the use of synthetic tracers. We detected important differences between the analyzed species. Xenopus exhibited a BBB with characteristics more similar to those observed in mammals, whereas the BBB of axolotl was found to be permeable to the 1 kDa tracer. The permeability of the 1 kDa tracer measured in Pleurodeles showed values in between axolotl and Xenopus vesseks. We confirmed that these differences are species-specific and not related to metamorphosis. In line with these results, the tight junction protein Claudin-5 was absent in axolotl, intermediate in Pleurodeles and showed full-coverage in Xenopus vessels. Interestingly, electron microscopy analysis and the retention pattern of the larger tracers (3 and 70 kDa) demonstrated that axolotl endothelial cells exhibit higher rates of macropinocytosis, a non-regulated type of transcellular transport. CONCLUSIONS Our study demonstrated that, under physiological conditions, the blood-brain barrier exhibited species-specific variations, including permeability threshold, blood vessel coverage, and macropinocytosis rate. Future studies are needed to test whether the higher permeability observed in salamanders could have metabolic and immunological consequences contributing to their remarkable regenerative capacity.
Collapse
Affiliation(s)
- Sophie Antesberger
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Beate Stiening
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | | | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elif Eroglu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Huber
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Martin Heß
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Hans Straka
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Rosario Sanchez-Gonzalez
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany.
| |
Collapse
|
3
|
Tsissios G, Sallese A, Perez-Estrada JR, Tangeman JA, Chen W, Smucker B, Ratvasky SC, Grajales-Esquivel E, Martinez A, Visser KJ, Joven Araus A, Wang H, Simon A, Yun MH, Del Rio-Tsonis K. Macrophages modulate fibrosis during newt lens regeneration. Stem Cell Res Ther 2024; 15:141. [PMID: 38745238 PMCID: PMC11094960 DOI: 10.1186/s13287-024-03740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Previous studies have suggested that macrophages are present during lens regeneration in newts, but their role in the process is yet to be elucidated. METHODS Here we generated a transgenic reporter line using the newt, Pleurodeles waltl, that traces macrophages during lens regeneration. Furthermore, we assessed early changes in gene expression during lens regeneration using two newt species, Notophthalmus viridescens and Pleurodeles waltl. Finally, we used clodronate liposomes to deplete macrophages during lens regeneration in both species and tested the effect of a subsequent secondary injury after macrophage recovery. RESULTS Macrophage depletion abrogated lens regeneration, induced the formation of scar-like tissue, led to inflammation, decreased iris pigment epithelial cell (iPEC) proliferation, and increased rates of apoptosis in the eye. Some of these phenotypes persisted throughout the last observation period of 100 days and could be attenuated by exogenous FGF2 administration. A distinct transcript profile encoding acute inflammatory effectors was established for the dorsal iris. Reinjury of the newt eye alleviated the effects of macrophage depletion, including the resolution of scar-like tissue, and re-initiated the regeneration process. CONCLUSIONS Together, our findings highlight the importance of macrophages for facilitating a pro-regenerative environment in the newt eye by regulating fibrotic responses, modulating the overall inflammatory landscape, and maintaining the proper balance of early proliferation and late apoptosis of the iPECs.
Collapse
Affiliation(s)
- Georgios Tsissios
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Anthony Sallese
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
| | - J Raul Perez-Estrada
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
| | - Jared A Tangeman
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Weihao Chen
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Byran Smucker
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Department of Statistics, Miami University, Oxford, OH, USA
| | - Sophia C Ratvasky
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Erika Grajales-Esquivel
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
| | - Arielle Martinez
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
| | - Kimberly J Visser
- CRTD/ Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Hui Wang
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Maximina H Yun
- CRTD/ Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University, Oxford, OH, USA.
- Center for Visual Sciences at, Miami University, Oxford, OH, USA.
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA.
| |
Collapse
|
4
|
Tsissios G, Sallese A, Perez-Estrada JR, Tangeman JA, Chen W, Smucker B, Ratvasky SC, Grajales-Esquive EL, Martinez A, Visser KJ, Araus AJ, Wang H, Simon A, Yun MH, Rio-Tsonis KD. Macrophages modulate fibrosis during newt lens regeneration. RESEARCH SQUARE 2023:rs.3.rs-3603645. [PMID: 38045376 PMCID: PMC10690311 DOI: 10.21203/rs.3.rs-3603645/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Previous studies indicated that macrophages play a role during lens regeneration in newts, but their function has not been tested experimentally. Methods Here we generated a transgenic newt reporter line in which macrophages can be visualized in vivo. Using this new tool, we analyzed the location of macrophages during lens regeneration. We uncovered early gene expression changes using bulk RNAseq in two newt species, Notophthalmus viridescens and Pleurodeles waltl. Next, we used clodronate liposomes to deplete macrophages, which inhibited lens regeneration in both newt species. Results Macrophage depletion induced the formation of scar-like tissue, an increased and sustained inflammatory response, an early decrease in iris pigment epithelial cell (iPEC) proliferation and a late increase in apoptosis. Some of these phenotypes persisted for at least 100 days and could be rescued by exogenous FGF2. Re-injury alleviated the effects of macrophage depletion and re-started the regeneration process. Conclusions Together, our findings highlight the importance of macrophages in facilitating a pro-regenerative environment in the newt eye, helping to resolve fibrosis, modulating the overall inflammatory landscape and maintaining the proper balance of early proliferation and late apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Maximina H Yun
- Dresden University of Technology: Technische Universitat Dresden
| | | |
Collapse
|
5
|
Cardiello JF, Joven Araus A, Giatrellis S, Helsens C, Simon A, Leigh ND. Evaluation of genetic demultiplexing of single-cell sequencing data from model species. Life Sci Alliance 2023; 6:e202301979. [PMID: 37197983 PMCID: PMC10192724 DOI: 10.26508/lsa.202301979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Single-cell sequencing (sc-seq) provides a species agnostic tool to study cellular processes. However, these technologies are expensive and require sufficient cell quantities and biological replicates to avoid artifactual results. An option to address these problems is pooling cells from multiple individuals into one sc-seq library. In humans, genotype-based computational separation (i.e., demultiplexing) of pooled sc-seq samples is common. This approach would be instrumental for studying non-isogenic model organisms. We set out to determine whether genotype-based demultiplexing could be more broadly applied among species ranging from zebrafish to non-human primates. Using such non-isogenic species, we benchmark genotype-based demultiplexing of pooled sc-seq datasets against various ground truths. We demonstrate that genotype-based demultiplexing of pooled sc-seq samples can be used with confidence in several non-isogenic model organisms and uncover limitations of this method. Importantly, the only genomic resource required for this approach is sc-seq data and a de novo transcriptome. The incorporation of pooling into sc-seq study designs will decrease cost while simultaneously increasing the reproducibility and experimental options in non-isogenic model organisms.
Collapse
Affiliation(s)
- Joseph F Cardiello
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Sarantis Giatrellis
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Clement Helsens
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Tsissios G, Theodoroudis-Rapp G, Chen W, Sallese A, Smucker B, Ernst L, Chen J, Xu Y, Ratvasky S, Wang H, Del Rio-Tsonis K. Characterizing the lens regeneration process in Pleurodeles waltl. Differentiation 2023; 132:15-23. [PMID: 37055300 PMCID: PMC10493237 DOI: 10.1016/j.diff.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Aging and regeneration are heavily linked processes. While it is generally accepted that regenerative capacity declines with age, some vertebrates, such as newts, can bypass the deleterious effects of aging and successfully regenerate a lens throughout their lifetime. RESULTS Here, we used Spectral-Domain Optical Coherence Tomography (SD-OCT) to monitor the lens regeneration process of larvae, juvenile, and adult newts. While all three life stages were able to regenerate a lens through transdifferentiation of the dorsal iris pigment epithelial cells (iPECs), an age-related change in the kinetics of the regeneration process was observed. Consistent with these findings, iPECs from older animals exhibited a delay in cell cycle re-entry. Furthermore, it was observed that clearance of the extracellular matrix (ECM) was delayed in older organisms. CONCLUSIONS Collectively, our results suggest that although lens regeneration capacity does not decline throughout the lifespan of newts, the intrinsic and extrinsic cellular changes associated with aging alter the kinetics of this process. By understanding how these changes affect lens regeneration in newts, we can gain important insights for restoring the age-related regeneration decline observed in most vertebrates.
Collapse
Affiliation(s)
- Georgios Tsissios
- Department of Biology Miami University, Oxford, OH, USA; Center for Visual Sciences at Miami University, Oxford, OH, USA; Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | | | - Weihao Chen
- Center for Visual Sciences at Miami University, Oxford, OH, USA; Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA; Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Anthony Sallese
- Department of Biology Miami University, Oxford, OH, USA; Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Byran Smucker
- Center for Visual Sciences at Miami University, Oxford, OH, USA; Department of Statistics, Miami University, Oxford, OH, USA
| | - Lake Ernst
- Department of Biology Miami University, Oxford, OH, USA
| | - Junfan Chen
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Yiqi Xu
- Department of Biology Miami University, Oxford, OH, USA
| | - Sophia Ratvasky
- Department of Biology Miami University, Oxford, OH, USA; Center for Visual Sciences at Miami University, Oxford, OH, USA; Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Hui Wang
- Center for Visual Sciences at Miami University, Oxford, OH, USA; Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Katia Del Rio-Tsonis
- Department of Biology Miami University, Oxford, OH, USA; Center for Visual Sciences at Miami University, Oxford, OH, USA; Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA.
| |
Collapse
|
7
|
Tsissios G, Sallese A, Perez-Estrada JR, Tangeman JA, Chen W, Smucker B, Ratvasky SC, Grajales-Esquivel E, Martinez A, Visser KJ, Araus AJ, Wang H, Simon A, Yun MH, Rio-Tsonis KD. Macrophages modulate fibrosis during newt lens regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.04.543633. [PMID: 37333184 PMCID: PMC10274724 DOI: 10.1101/2023.06.04.543633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Previous studies indicated that macrophages play a role during lens regeneration in newts, but their function has not been tested experimentally. Here we generated a transgenic newt reporter line in which macrophages can be visualized in vivo. Using this new tool, we analyzed the location of macrophages during lens regeneration. We uncovered early gene expression changes using bulk RNAseq in two newt species, Notophthalmus viridescens and Pleurodeles waltl. Next, we used clodronate liposomes to deplete macrophages, which inhibited lens regeneration in both newt species. Macrophage depletion induced the formation of scar-like tissue, an increased and sustained inflammatory response, an early decrease in iris pigment epithelial cell (iPEC) proliferation and a late increase in apoptosis. Some of these phenotypes persisted for at least 100 days and could be rescued by exogenous FGF2. Re-injury alleviated the effects of macrophage depletion and re-started the regeneration process. Together, our findings highlight the importance of macrophages in facilitating a pro-regenerative environment in the newt eye, helping to resolve fibrosis, modulating the overall inflammatory landscape and maintaining the proper balance of early proliferation and late apoptosis.
Collapse
Affiliation(s)
- Georgios Tsissios
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Anthony Sallese
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - J Raul Perez-Estrada
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Jared A Tangeman
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Weihao Chen
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Byran Smucker
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Department of Statistics, Miami University, Oxford, OH, USA
| | - Sophia C Ratvasky
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Erika Grajales-Esquivel
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Arielle Martinez
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Kimberly J Visser
- CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Alberto Joven Araus
- Karolinska Institute, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Hui Wang
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Andras Simon
- Karolinska Institute, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Maximina H Yun
- CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| |
Collapse
|
8
|
Hori S, Tateyama M, Shirai T, Kubo Y, Saitoh O. Two single-point mutations in Ankyrin Repeat one drastically change the threshold temperature of TRPV1. Nat Commun 2023; 14:2415. [PMID: 37169739 PMCID: PMC10175561 DOI: 10.1038/s41467-023-38051-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
TRPV1 plays an important role in the thermosensory system; however, the mechanism controlling its heat activation property is not well understood. Here, we determine the heat activation properties of TRPV1 cloned from tailed amphibians, which prefer cooler environments, finding the threshold temperatures were approximately 10 °C lower compared with rat TRPV1 (rTRPV1). We find that two amino acid residues (Gln, Leu/Val) in the Ankyrin Repeat 1 (ANK1) region of the N-terminal domain are conserved among tailed amphibians and different from those (Arg, Lys) in rTRPV1. We observe the activation by heat in all urodelan TRPV1s is markedly elevated by substitution of these two amino acids. Conversely, reciprocal substitutions of rTRPV1 apparently lowers the high threshold temperature. Our studies demonstrate that tailed amphibians express TRPV1 with a reduced heat-activation threshold by substitution of two amino acid residues in the ANK1 region that likely contribute to cool-habitat selection.
Collapse
Affiliation(s)
- Shogo Hori
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Michihiro Tateyama
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Tsuyoshi Shirai
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Osamu Saitoh
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan.
- Genome Editing Research Institute, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan.
| |
Collapse
|
9
|
Deryckere A, Woych J, Jaeger ECB, Tosches MA. Molecular Diversity of Neuron Types in the Salamander Amygdala and Implications for Amygdalar Evolution. BRAIN, BEHAVIOR AND EVOLUTION 2022; 98:61-75. [PMID: 36574764 PMCID: PMC10096051 DOI: 10.1159/000527899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/21/2022] [Indexed: 12/28/2022]
Abstract
The amygdala is a complex brain structure in the vertebrate telencephalon, essential for regulating social behaviors, emotions, and (social) cognition. In contrast to the vast majority of neuron types described in the many nuclei of the mammalian amygdala, little is known about the neuronal diversity in non-mammals, making reconstruction of its evolution particularly difficult. Here, we characterize glutamatergic neuron types in the amygdala of the urodele amphibian Pleurodeles waltl. Our single-cell RNA sequencing data indicate the existence of at least ten distinct types and subtypes of glutamatergic neurons in the salamander amygdala. These neuron types are molecularly distinct from neurons in the ventral pallium (VP), suggesting that the pallial amygdala and the VP are two separate areas in the telencephalon. In situ hybridization for marker genes indicates that amygdalar glutamatergic neuron types are located in three major subdivisions: the lateral amygdala, the medial amygdala, and a newly defined area demarcated by high expression of the transcription factor Sim1. The gene expression profiles of these neuron types suggest similarities with specific neurons in the sauropsid and mammalian amygdala. In particular, we identify Sim1+ and Sim1+ Otp+ expressing neuron types, potentially homologous to the mammalian nucleus of the lateral olfactory tract (NLOT) and to hypothalamic-derived neurons of the medial amygdala, respectively. Taken together, our results reveal a surprising diversity of glutamatergic neuron types in the amygdala of salamanders, despite the anatomical simplicity of their brain. These results offer new insights on the cellular and anatomical complexity of the amygdala in tetrapod ancestors.
Collapse
Affiliation(s)
- Astrid Deryckere
- Department of Biological Sciences, Columbia University; New York, NY 10027, USA
| | - Jamie Woych
- Department of Biological Sciences, Columbia University; New York, NY 10027, USA
| | - Eliza C. B. Jaeger
- Department of Biological Sciences, Columbia University; New York, NY 10027, USA
| | | |
Collapse
|
10
|
Kaucka M, Joven Araus A, Tesarova M, Currie JD, Boström J, Kavkova M, Petersen J, Yao Z, Bouchnita A, Hellander A, Zikmund T, Elewa A, Newton PT, Fei JF, Chagin AS, Fried K, Tanaka EM, Kaiser J, Simon A, Adameyko I. Altered developmental programs and oriented cell divisions lead to bulky bones during salamander limb regeneration. Nat Commun 2022; 13:6949. [PMID: 36376278 PMCID: PMC9663504 DOI: 10.1038/s41467-022-34266-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates.
Collapse
Affiliation(s)
- Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, Plön, 24306, Germany
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institute, Stockholm, 17165, Sweden
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - Joshua D Currie
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Johan Boström
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria
| | - Michaela Kavkova
- Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - Julian Petersen
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria
- Department of Orthodontics, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Zeyu Yao
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institute, Stockholm, 17165, Sweden
| | - Anass Bouchnita
- Department of Information Technology, Uppsala University, Uppsala, Sweden
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX, 79902, USA
| | - Andreas Hellander
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - Ahmed Elewa
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institute, Stockholm, 17165, Sweden
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Phillip T Newton
- Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Solna, Sweden
| | - Ji-Feng Fei
- The Research Institute of Molecular Pathology (IMP), Vienna, 1030, Austria
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden
- Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Göteborg, 41346, Sweden
| | - Kaj Fried
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, 17165, Sweden
| | - Elly M Tanaka
- The Research Institute of Molecular Pathology (IMP), Vienna, 1030, Austria
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - András Simon
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institute, Stockholm, 17165, Sweden.
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden.
| |
Collapse
|
11
|
Woych J, Ortega Gurrola A, Deryckere A, Jaeger ECB, Gumnit E, Merello G, Gu J, Joven Araus A, Leigh ND, Yun M, Simon A, Tosches MA. Cell-type profiling in salamanders identifies innovations in vertebrate forebrain evolution. Science 2022; 377:eabp9186. [PMID: 36048957 PMCID: PMC10024926 DOI: 10.1126/science.abp9186] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The evolution of advanced cognition in vertebrates is associated with two independent innovations in the forebrain: the six-layered neocortex in mammals and the dorsal ventricular ridge (DVR) in sauropsids (reptiles and birds). How these innovations arose in vertebrate ancestors remains unclear. To reconstruct forebrain evolution in tetrapods, we built a cell-type atlas of the telencephalon of the salamander Pleurodeles waltl. Our molecular, developmental, and connectivity data indicate that parts of the sauropsid DVR trace back to tetrapod ancestors. By contrast, the salamander dorsal pallium is devoid of cellular and molecular characteristics of the mammalian neocortex yet shares similarities with the entorhinal cortex and subiculum. Our findings chart the series of innovations that resulted in the emergence of the mammalian six-layered neocortex and the sauropsid DVR.
Collapse
Affiliation(s)
- Jamie Woych
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Alonso Ortega Gurrola
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.,Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Astrid Deryckere
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Eliza C B Jaeger
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Elias Gumnit
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Gianluca Merello
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jiacheng Gu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Maximina Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, 01307 Dresden, Germany.,Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
12
|
Eroglu E, Yen CYT, Tsoi YL, Witman N, Elewa A, Joven Araus A, Wang H, Szattler T, Umeano CH, Sohlmér J, Goedel A, Simon A, Chien KR. Epicardium-derived cells organize through tight junctions to replenish cardiac muscle in salamanders. Nat Cell Biol 2022; 24:645-658. [PMID: 35550612 PMCID: PMC9106584 DOI: 10.1038/s41556-022-00902-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
The contribution of the epicardium, the outermost layer of the heart, to cardiac regeneration has remained controversial due to a lack of suitable analytical tools. By combining genetic marker-independent lineage-tracing strategies with transcriptional profiling and loss-of-function methods, we report here that the epicardium of the highly regenerative salamander species Pleurodeles waltl has an intrinsic capacity to differentiate into cardiomyocytes. Following cryoinjury, CLDN6+ epicardium-derived cells appear at the lesion site, organize into honeycomb-like structures connected via focal tight junctions and undergo transcriptional reprogramming that results in concomitant differentiation into de novo cardiomyocytes. Ablation of CLDN6+ differentiation intermediates as well as disruption of their tight junctions impairs cardiac regeneration. Salamanders constitute the evolutionarily closest species to mammals with an extensive ability to regenerate heart muscle and our results highlight the epicardium and tight junctions as key targets in efforts to promote cardiac regeneration.
Collapse
Affiliation(s)
- Elif Eroglu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Christopher Y T Yen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yat-Long Tsoi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed Elewa
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Heng Wang
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tamara Szattler
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chimezie H Umeano
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Gene Therapy, Lunds Universitet, Lund, Sweden
| | - Jesper Sohlmér
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Goedel
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Kidova EA, Vyatkin YA, Kidov AA. Cases of Leucism and Melanism in the Caucasian Smooth Newt (Lissotriton lantzi, Amphibia, Caudata, Salamandridae). BIOL BULL+ 2021. [DOI: 10.1134/s1062359021090065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Nerve-associated Schwann cell precursors contribute extracutaneous melanocytes to the heart, inner ear, supraorbital locations and brain meninges. Cell Mol Life Sci 2021; 78:6033-6049. [PMID: 34274976 PMCID: PMC8316242 DOI: 10.1007/s00018-021-03885-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Melanocytes are pigmented cells residing mostly in the skin and hair follicles of vertebrates, where they contribute to colouration and protection against UV-B radiation. However, the spectrum of their functions reaches far beyond that. For instance, these pigment-producing cells are found inside the inner ear, where they contribute to the hearing function, and in the heart, where they are involved in the electrical conductivity and support the stiffness of cardiac valves. The embryonic origin of such extracutaneous melanocytes is not clear. We took advantage of lineage-tracing experiments combined with 3D visualizations and gene knockout strategies to address this long-standing question. We revealed that Schwann cell precursors are recruited from the local innervation during embryonic development and give rise to extracutaneous melanocytes in the heart, brain meninges, inner ear, and other locations. In embryos with a knockout of the EdnrB receptor, a condition imitating Waardenburg syndrome, we observed only nerve-associated melanoblasts, which failed to detach from the nerves and to enter the inner ear. Finally, we looked into the evolutionary aspects of extracutaneous melanocytes and found that pigment cells are associated mainly with nerves and blood vessels in amphibians and fish. This new knowledge of the nerve-dependent origin of extracutaneous pigment cells might be directly relevant to the formation of extracutaneous melanoma in humans.
Collapse
|
15
|
Yun MH. Salamander Insights Into Ageing and Rejuvenation. Front Cell Dev Biol 2021; 9:689062. [PMID: 34164403 PMCID: PMC8215543 DOI: 10.3389/fcell.2021.689062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/12/2021] [Indexed: 02/01/2023] Open
Abstract
Exhibiting extreme regenerative abilities which extend to complex organs and entire limbs, salamanders have long served as research models for understanding the basis of vertebrate regeneration. Yet these organisms display additional noteworthy traits, namely extraordinary longevity, indefinite regenerative potential and apparent lack of traditional signs of age-related decay or “negligible senescence.” Here, I examine existing studies addressing these features, highlight outstanding questions, and argue that salamanders constitute valuable models for addressing the nature of organismal senescence and the interplay between regeneration and ageing.
Collapse
Affiliation(s)
- Maximina H Yun
- CRTD/Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
16
|
Hori S, Saitoh O. Unique high sensitivity to heat of axolotl TRPV1 revealed by the heterologous expression system. Biochem Biophys Res Commun 2019; 521:914-920. [PMID: 31711646 DOI: 10.1016/j.bbrc.2019.10.203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 01/14/2023]
Abstract
The thermosensation mechanism plays critical roles in various animals living in different thermal environment. We focused on an axolotl, which is a tailed amphibian originally from Lake Xochimilco area in the Vally of Mexico, and examined its behavior response to heat stimulation. Mild heat at 33 °C induced noxious locomotive activity to axolotls, but the noxious response of another tailed amphibian, Iberian ribbed newt, was not observed at 33 °C. To explore the mechanism for the temperature sensitivity of axolotls, we isolated a cDNA of TRPV1. Using the degenerate primer PCR method, we identified the DNA fragment encoding axolotl TRPV1 (axTRPV1), and then cloned a full-length cDNA. We studied the chemical and thermal sensitivities of axTRPV1 by two-electrode voltage clamp method using Xenopus oocyte expression system. Capsaicin, acid, and 2-aminoethoxydiphenylborane apparently activated axTRPV1 channels in a dose-dependent manner. The analysis of thermal sensitivity showed that axTRPV1 was significantly activated by heat but not by cold. The average temperature threshold for heat-activation was 30.95 ± 0.12 °C. This thermal activation threshold of axTRPV1 is unique and significantly low, when compared with the known thresholds of TRPV1s from various animals. Further, this threshold of axTRPV1 is well consistent with the observation of heat-induced behavior of axolotls at 33 °C, demonstrating that axolotl shows noxious response to mild heat mediated through axTRPV1.
Collapse
Affiliation(s)
- Shogo Hori
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama-shi, Shiga, 526-0829, Japan
| | - Osamu Saitoh
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama-shi, Shiga, 526-0829, Japan.
| |
Collapse
|
17
|
Efficient Gene Disruption via Base Editing Induced Stop in Newt Pleurodeles waltl. Genes (Basel) 2019; 10:genes10110837. [PMID: 31652881 PMCID: PMC6895984 DOI: 10.3390/genes10110837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 11/17/2022] Open
Abstract
Loss-of-function approaches provide strong evidence for determining the role of particular genes. The prevalent CRISPR/Cas9 technique is widely used to disrupt target gene with uncontrolled non-homologous end joining after the double strand breaks, which results in mosaicism and multiple genotypes in the founders. In animal models with long generation time such as the salamanders, producing homozygous offspring mutants would be rather labor intensive and time consuming. Here we utilized the base editing technique to create the loss-of-function F0 mutants without the random indels. As a proof of principle, we successfully introduced premature stop codons into the tyrosinase locus and produced the albino phenotype in the newts (Pleurodeles waltl). We further demonstrated that the knockout efficiency could be greatly improved by using multiplex sgRNAs target the same gene. The F0 mutated animals showed fully loss-of-function by both genotyping and phenotyping analysis, which could enable direct functional analysis in the founders and avoid sophisticated breeding. This study not only presented the high efficiency of single base editing in a gigantic animal genome (>20 G), but also provided new tools for interrogating gene function in other salamander species.
Collapse
|
18
|
Mehta AS, Singh A. Insights into regeneration tool box: An animal model approach. Dev Biol 2019; 453:111-129. [PMID: 30986388 PMCID: PMC6684456 DOI: 10.1016/j.ydbio.2019.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
For ages, regeneration has intrigued countless biologists, clinicians, and biomedical engineers. In recent years, significant progress made in identification and characterization of a regeneration tool kit has helped the scientific community to understand the mechanism(s) involved in regeneration across animal kingdom. These mechanistic insights revealed that evolutionarily conserved pathways like Wnt, Notch, Hedgehog, BMP, and JAK/STAT are involved in regeneration. Furthermore, advancement in high throughput screening approaches like transcriptomic analysis followed by proteomic validations have discovered many novel genes, and regeneration specific enhancers that are specific to highly regenerative species like Hydra, Planaria, Newts, and Zebrafish. Since genetic machinery is highly conserved across the animal kingdom, it is possible to engineer these genes and regeneration specific enhancers in species with limited regeneration properties like Drosophila, and mammals. Since these models are highly versatile and genetically tractable, cross-species comparative studies can generate mechanistic insights in regeneration for animals with long gestation periods e.g. Newts. In addition, it will allow extrapolation of regenerative capabilities from highly regenerative species to animals with low regeneration potential, e.g. mammals. In future, these studies, along with advancement in tissue engineering applications, can have strong implications in the field of regenerative medicine and stem cell biology.
Collapse
Affiliation(s)
- Abijeet S Mehta
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA; Premedical Program, University of Dayton, Dayton, OH, 45469, USA; Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, 45469, USA; The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA; Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
19
|
Mehta AS, Luz-Madrigal A, Li JL, Tsonis PA, Singh A. Comparative transcriptomic analysis and structure prediction of novel Newt proteins. PLoS One 2019; 14:e0220416. [PMID: 31419228 PMCID: PMC6697330 DOI: 10.1371/journal.pone.0220416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023] Open
Abstract
Notophthalmus viridescens (Red-spotted Newt) possess amazing capabilities to regenerate their organs and other tissues. Previously, using a de novo assembly of the newt transcriptome combined with proteomic validation, our group identified a novel family of five protein members expressed in adult tissues during regeneration in Notophthalmus viridescens. The presence of a putative signal peptide suggests that all these proteins are secretory in nature. Here we employed iterative threading assembly refinement (I-TASSER) server to generate three-dimensional structure of these novel Newt proteins and predicted their function. Our data suggests that these proteins could act as ion transporters, and be involved in redox reaction(s). Due to absence of transgenic approaches in N. viridescens, and conservation of genetic machinery across species, we generated transgenic Drosophila melanogaster to misexpress these genes. Expression of 2775 transcripts were compared between these five newly identified Newt genes. We found that genes involved in the developmental process, cell cycle, apoptosis, and immune response are among those that are highly enriched. To validate the RNA Seq. data, expression of six highly regulated genes were verified using real time Quantitative Polymerase Chain Reaction (RT-qPCR). These graded gene expression patterns provide insight into the function of novel protein family identified in Newt, and layout a map for future studies in the field.
Collapse
Affiliation(s)
- Abijeet Singh Mehta
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Agustin Luz-Madrigal
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida, United States of America
| | - Panagiotis A Tsonis
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, Ohio, United States of America
- The Integrative Science and Engineering Center, University of Dayton, Dayton, Ohio, United States of America
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, Indiana, United States of America
| |
Collapse
|
20
|
Joven A, Elewa A, Simon A. Model systems for regeneration: salamanders. Development 2019; 146:146/14/dev167700. [PMID: 31332037 DOI: 10.1242/dev.167700] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/28/2019] [Indexed: 02/03/2023]
Abstract
Salamanders have been hailed as champions of regeneration, exhibiting a remarkable ability to regrow tissues, organs and even whole body parts, e.g. their limbs. As such, salamanders have provided key insights into the mechanisms by which cells, tissues and organs sense and regenerate missing or damaged parts. In this Primer, we cover the evolutionary context in which salamanders emerged. We outline the varieties of mechanisms deployed during salamander regeneration, and discuss how these mechanisms are currently being explored and how they have advanced our understanding of animal regeneration. We also present arguments about why it is important to study closely related species in regeneration research.
Collapse
Affiliation(s)
- Alberto Joven
- Karolinska Institute, Department of Cell and Molecular Biology, Biomedicum, Solnavägen 9, 17163 Stockolm, Sweden
| | - Ahmed Elewa
- Karolinska Institute, Department of Cell and Molecular Biology, Biomedicum, Solnavägen 9, 17163 Stockolm, Sweden
| | - András Simon
- Karolinska Institute, Department of Cell and Molecular Biology, Biomedicum, Solnavägen 9, 17163 Stockolm, Sweden
| |
Collapse
|
21
|
Tesařová M, Mancini L, Simon A, Adameyko I, Kaucká M, Elewa A, Lanzafame G, Zhang Y, Kalasová D, Szarowská B, Zikmund T, Novotná M, Kaiser J. A quantitative analysis of 3D-cell distribution in regenerating muscle-skeletal system with synchrotron X-ray computed microtomography. Sci Rep 2018; 8:14145. [PMID: 30237460 PMCID: PMC6148031 DOI: 10.1038/s41598-018-32459-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
One of the greatest enigmas of modern biology is how the geometry of muscular and skeletal structures are created and how their development is controlled during growth and regeneration. Scaling and shaping of vertebrate muscles and skeletal elements has always been enigmatic and required an advanced technical level in order to analyse the cell distribution in 3D. In this work, synchrotron X-ray computed microtomography (µCT) and chemical contrasting has been exploited for a quantitative analysis of the 3D-cell distribution in tissues of a developing salamander (Pleurodeles waltl) limb – a key model organism for vertebrate regeneration studies. We mapped the limb muscles, their size and shape as well as the number and density of cells within the extracellular matrix of the developing cartilage. By using tomographic approach, we explored the polarity of the cells in 3D, in relation to the structure of developing joints. We found that the polarity of chondrocytes correlates with the planes in joint surfaces and also changes along the length of the cartilaginous elements. Our approach generates data for the precise computer simulations of muscle-skeletal regeneration using cell dynamics models, which is necessary for the understanding how anisotropic growth results in the precise shapes of skeletal structures.
Collapse
Affiliation(s)
- Markéta Tesařová
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Lucia Mancini
- Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Andras Simon
- Department of Cellular and Molecular Biology, Karolinska Institutet, Solna, 171777, Stockholm, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, 171777, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Markéta Kaucká
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, 171777, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Ahmed Elewa
- Department of Cellular and Molecular Biology, Karolinska Institutet, Solna, 171777, Stockholm, Sweden
| | | | - Yi Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, 171777, Stockholm, Sweden.,Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Dominika Kalasová
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Bára Szarowská
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, 171777, Stockholm, Sweden
| | - Tomáš Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Marie Novotná
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
| |
Collapse
|
22
|
Joven A, Simon A. Homeostatic and regenerative neurogenesis in salamanders. Prog Neurobiol 2018; 170:81-98. [PMID: 29654836 DOI: 10.1016/j.pneurobio.2018.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/20/2018] [Accepted: 04/07/2018] [Indexed: 01/02/2023]
Abstract
Large-scale regeneration in the adult central nervous system is a unique capacity of salamanders among tetrapods. Salamanders can replace neuronal populations, repair damaged nerve fibers and restore tissue architecture in retina, brain and spinal cord, leading to functional recovery. The underlying mechanisms have long been difficult to study due to the paucity of available genomic tools. Recent technological progress, such as genome sequencing, transgenesis and genome editing provide new momentum for systematic interrogation of regenerative processes in the salamander central nervous system. Understanding central nervous system regeneration also entails designing the appropriate molecular, cellular, and behavioral assays. Here we outline the organization of salamander brain structures. With special focus on ependymoglial cells, we integrate cellular and molecular processes of neurogenesis during developmental and adult homeostasis as well as in various injury models. Wherever possible, we correlate developmental and regenerative neurogenesis to the acquisition and recovery of behaviors. Throughout the review we place the findings into an evolutionary context for inter-species comparisons.
Collapse
Affiliation(s)
- Alberto Joven
- Department of Cell and Molecular Biology, Karolinska Institute, Berzelius väg 35, 17177, Stockholm, Sweden.
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Berzelius väg 35, 17177, Stockholm, Sweden.
| |
Collapse
|
23
|
Elewa A, Wang H, Talavera-López C, Joven A, Brito G, Kumar A, Hameed LS, Penrad-Mobayed M, Yao Z, Zamani N, Abbas Y, Abdullayev I, Sandberg R, Grabherr M, Andersson B, Simon A. Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nat Commun 2017; 8:2286. [PMID: 29273779 PMCID: PMC5741667 DOI: 10.1038/s41467-017-01964-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/26/2017] [Indexed: 11/09/2022] Open
Abstract
Salamanders exhibit an extraordinary ability among vertebrates to regenerate complex body parts. However, scarce genomic resources have limited our understanding of regeneration in adult salamanders. Here, we present the ~20 Gb genome and transcriptome of the Iberian ribbed newt Pleurodeles waltl, a tractable species suitable for laboratory research. We find that embryonic stem cell-specific miRNAs mir-93b and mir-427/430/302, as well as Harbinger DNA transposons carrying the Myb-like proto-oncogene have expanded dramatically in the Pleurodeleswaltl genome and are co-expressed during limb regeneration. Moreover, we find that a family of salamander methyltransferases is expressed specifically in adult appendages. Using CRISPR/Cas9 technology to perturb transcription factors, we demonstrate that, unlike the axolotl, Pax3 is present and necessary for development and that contrary to mammals, muscle regeneration is normal without functional Pax7 gene. Our data provide a foundation for comparative genomic studies that generate models for the uneven distribution of regenerative capacities among vertebrates. The Iberian ribbed newt Pleurodeles waltl has a wide spectrum of regeneration abilities. Here, Elewa et al. sequence its ~20 Gb genome and transcriptome to investigate the molecular features underlying its regenerative capacities.
Collapse
Affiliation(s)
- Ahmed Elewa
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden.
| | - Heng Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Carlos Talavera-López
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden.,The Francis Crick Institute, NW1 1AT, London, UK
| | - Alberto Joven
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - Gonçalo Brito
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - Anoop Kumar
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - L Shahul Hameed
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - May Penrad-Mobayed
- Institut Jacques Monod, CNRS & University Paris-Diderot, Paris, 75205, France
| | - Zeyu Yao
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - Neda Zamani
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Yamen Abbas
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Ilgar Abdullayev
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden.,Ludwig Institute for Cancer Research, Stockholm, SE-171 65, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden.,Ludwig Institute for Cancer Research, Stockholm, SE-171 65, Sweden
| | - Manfred Grabherr
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, SE-171 65, Sweden.
| |
Collapse
|
24
|
Joven A, Wang H, Pinheiro T, Hameed LS, Belnoue L, Simon A. Cellular basis of brain maturation and acquisition of complex behaviors in salamanders. Development 2017; 145:dev.160051. [DOI: 10.1242/dev.160051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022]
Abstract
The overall bauplan of the tetrapod brain is highly conserved, yet significant variations exist among species in terms of brain size, structural composition and cellular diversity. Understanding processes underlying neural and behavioral development in a wide range of species is important both from an evolutionary developmental perspective as well as for the identification of cell sources with post-developmental neurogenic potential. Here we characterize germinal processes in the brain of Notophthalmus viridescens and Pleurodeles waltl during both development and adulthood. Using a combination of cell tracking tools, including clonal analyses in new transgenic salamander lines we examine the origin of neural stem and progenitor cells found in the adult brain, determine regional variability in cell cycle length of progenitor cells, and show spatio-temporally orchestrated neurogenesis. We analyze how maturation of different brain regions and neuronal subpopulations are linked to the acquisition of complex behaviors, and how these behaviors are altered upon chemical ablation of dopamine neurons. Our data analyzed from an evolutionary perspective reveal both common and species-specific processes in tetrapod brain formation and function.
Collapse
Affiliation(s)
- Alberto Joven
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Heng Wang
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tiago Pinheiro
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - L. Shahul Hameed
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Laure Belnoue
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|