1
|
Cao L, Jia K, Van Tine BA, Yu Y, Peng Y, Chen X, Pan Q, Yang W, Zhang Z, Shao Z, Wu W. KPNA2 promotes osteosarcoma progression by regulating the alternative splicing of DDX3X mediated by YBX1. Oncogene 2025:10.1038/s41388-025-03375-3. [PMID: 40216969 DOI: 10.1038/s41388-025-03375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Osteosarcoma (OS) is a rapidly progressive primary malignant bone tumor that occurs in children and adolescents aged between 15 and 19 years and adults aged over 60 years. As alternative splicing (AS) changes caused by abnormal splicing factors contribute to tumor progression, gene expression and AS analyses were performed on 44 osteosarcoma patients to create a genome-wide co-expression network of RNA-binding proteins (RBPs), AS events, and AS genes. A gain- or loss-of-function osteosarcoma cell model was established, and an interactive network analysis and enrichment analysis were performed. Karyopherin Subunit Alpha 2 (KPNA2) negatively correlated with patient survival. KPNA2 transports splicing factor Y-box Binding Protein 1 (YBX1) into the nucleus and YBX1 accelerates the degradation of the ATP-dependent RNA helicase DDX3X (DDX3X) through the nonsense-mediated decay (NMD) pathway to promote intron retention of the DDX3X gene, thus reducing DDX3X protein levels. KPNA2/YBX1 axis regulates the stability of DDX3X mRNA and cell cycle progression. KPNA2/YBX1/DDX3X axis might be potential targets for inhibiting disease progression and improving OS patient survival. It integrates AS control of DDX3X into the progression of OS and represents a potential prognostic biomarker and therapeutic target for OS therapy.
Collapse
Affiliation(s)
- Li Cao
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ke Jia
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - B A Van Tine
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yihan Yu
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yizhong Peng
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xuanzuo Chen
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qing Pan
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Wenbo Yang
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhicai Zhang
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Zengwu Shao
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Wei Wu
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
2
|
Bao B, Tian M, Wang X, Yang C, Qu J, Zhou S, Cheng Y, Tong Q, Zheng L. SNORA37/CMTR1/ELAVL1 feedback loop drives gastric cancer progression via facilitating CD44 alternative splicing. J Exp Clin Cancer Res 2025; 44:15. [PMID: 39815331 PMCID: PMC11737211 DOI: 10.1186/s13046-025-03278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Emerging evidence shows that small nucleolar RNA (snoRNA), a type of highly conserved non-coding RNA, is involved in tumorigenesis and aggressiveness. However, the roles of snoRNAs in regulating alternative splicing crucial for cancer progression remain elusive. METHODS High-throughput RNA sequencing and comprehensive analysis were performed to identify crucial snoRNAs and downstream alternative splicing events. Biotin-labeled RNA pull-down, mass spectrometry, cross-linking RNA immunoprecipitation, and in vitro binding assays were applied to explore interaction of snoRNAs with protein partners. Alternative splicing and gene expression was observed by real-time quantitative RT-PCR and western blot assays. In vitro and in vivo studies were performed to investigate biological effects of snoRNAs and their protein partners in gastric cancer. Survival analysis was undertaken by using Kaplan-Meier method and log-rank test. RESULTS SNORA37 was identified as an up-regulated snoRNA essential for tumorigenesis and aggressiveness of gastric cancer. Gain- and loss-of-function studies indicated that SNORA37 promoted the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. Mechanistically, as an ELAV like RNA binding protein 1 (ELAVL1)-generated snoRNA, SNORA37 directly bound to cap methyltransferase 1 (CMTR1) to facilitate its interaction with ELAVL1, resulting in nuclear retention and activity of ELAVL1 in regulating alternative splicing of CD44. Rescue studies revealed that SNORA37 exerted oncogenic roles in gastric cancer progression via facilitating CMTR1-ELAVL1 interaction. In clinical gastric cancer cases, high levels of SNORA37, CMTR1, ELAVL1, or CD44 were associated with shorter survival and poor outcomes of patients. CONCLUSIONS These results indicated that SNORA37/CMTR1/ELAVL1 feedback loop drives gastric cancer progression via facilitating CD44 alternative splicing.
Collapse
Affiliation(s)
- Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Minxiu Tian
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Chunhui Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Jiaying Qu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Shunchen Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
| |
Collapse
|
3
|
Microbial-Based Products to Control Soil-Borne Pathogens: Methods to Improve Efficacy and to Assess Impacts on Microbiome. Microorganisms 2023; 11:microorganisms11010224. [PMID: 36677516 PMCID: PMC9867489 DOI: 10.3390/microorganisms11010224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Microbial-based products (either as biopesticide or biofertilizers) have a long history of application, though their use is still limited, mainly due to a perceived low and inconsistent efficacy under field conditions. However, their efficacy has always been compared to chemical products, which have a completely different mechanism of action and production process, following the chemical paradigm of agricultural production. This paradigm has also been applied to regulatory processes, particularly for biopesticides, making the marketing of microbial-based formulations difficult. Increased knowledge about bioinocula behavior after application to the soil and their impact on soil microbiome should foster better exploitation of microbial-based products in a complex environment such as the soil. Moreover, the multifunctional capacity of microbial strains with regard to plant growth promotion and protection should also be considered in this respect. Therefore, the methods utilized for these studies are key to improving the knowledge and understanding of microbial-based product activity and improving their efficacy, which, from farmers' point of view, is the parameter to assess the usefulness of a treatment. In this review, we are thus addressing aspects related to the production and formulation process, highlighting the methods that can be used to evaluate the functioning and impact of microbial-based products on soil microbiome, as tools supporting their use and marketing.
Collapse
|
4
|
Leak RK, Schreiber JB. Mechanistic Research for the Student or Educator (Part II of II). Front Pharmacol 2022; 13:741492. [PMID: 35903332 PMCID: PMC9315264 DOI: 10.3389/fphar.2022.741492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/17/2022] [Indexed: 12/05/2022] Open
Abstract
This two-part series describes how to test hypotheses on molecular mechanisms that underlie biological phenomena, using preclinical drug testing as a simplified example. While pursuing drug testing in preclinical research, students will need to understand the limitations of descriptive as well as mechanistic studies. The former does not identify any causal links between two or more variables; it identifies the presence or absence of correlations. Parts I and II of this educational series encourage the student to 1) ensure the sensitivity and specificity of their measurements, 2) establish or optimize an appropriate disease model, 3) find pharmaceutical drug doses/concentrations that interfere with experimental disease processes, 4) leverage the literature and exploratory datasets to craft a mechanism-oriented hypothesis on drug binding and downstream effects, 5) and design a full-factorial experiment to test the hypothesis after sketching potential outcomes and imagining their interpretations. These creative goals facilitate the choice of the appropriate positive and negative controls to avoid false data interpretations. Here, Part II describes in detail how to test for a causal link between drug-induced activation of biological targets and therapeutic outcomes. Upon completion of this two-part series, the new student will have some of the tools in hand to design mechanistic studies, interpret the outcomes of their research, and avoid technical and theoretical pitfalls, which can otherwise decelerate scientific progress and squander human and financial resources.
Collapse
Affiliation(s)
- Rehana K. Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh,, PA, United States
- *Correspondence: Rehana K. Leak,
| | | |
Collapse
|
5
|
Leak RK, Schreiber JB. Mechanistic Research for the Student or Educator (Part I of II). Front Pharmacol 2022; 13:775632. [PMID: 35847028 PMCID: PMC9283720 DOI: 10.3389/fphar.2022.775632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Many discoveries in the biological sciences have emerged from observational studies, but student researchers also need to learn how to design experiments that distinguish correlation from causation. For example, identifying the physiological mechanism of action of drugs with therapeutic potential requires the establishment of causal links. Only by specifically interfering with the purported mechanisms of action of a drug can the researcher determine how the drug causes its physiological effects. Typically, pharmacological or genetic approaches are employed to modify the expression and/or activity of the biological drug target or downstream pathways, to test if the salutary properties of the drug are thereby abolished. However, experimental techniques have caveats that tend to be underappreciated, particularly for newer methods. Furthermore, statistical effects are no guarantor of their biological importance or translatability across models and species. In this two-part series, the caveats and strengths of mechanistic preclinical research are briefly described, using the intuitive example of pharmaceutical drug testing in experimental models of human diseases. Part I focuses on technical practicalities and common pitfalls of cellular and animal models designed for drug testing, and Part II describes in simple terms how to leverage a full-factorial ANOVA, to test for causality in the link between drug-induced activation (or inhibition) of a biological target and therapeutic outcomes. Upon completion of this series, students will have forehand knowledge of technical and theoretical caveats in mechanistic research, and comprehend that “a model is just a model.” These insights can help the new student appreciate the strengths and limitations of scientific research.
Collapse
Affiliation(s)
- Rehana K. Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
- *Correspondence: Rehana K. Leak,
| | | |
Collapse
|
6
|
Li C, Zhang W, Shi B, Chen G, Zheng Y, An Y, Sun M, Feng Y, Shang Q, Zhang X. Evaluation of the in situ assay for HBV DNA: An observational real-world study in chronic hepatitis B. Medicine (Baltimore) 2021; 100:e27220. [PMID: 34664859 PMCID: PMC8448054 DOI: 10.1097/md.0000000000027220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
The visualization of intrahepatic hepatitis B virus (HBV) DNA by in situ hybridization (ISH) has uncovered some interesting aspects of HBV life cycle at the single-cell level. In the current study, we intend to evaluate the reliability and robustness of this assay in the real-world clinical scenario and its relationship with currently available clinical biomarkers in chronic hepatitis B (CHB) patients.In this cross-sectional study, 94 CHB patients and 10 patients with non-HBV related liver diseases were enrolled. Liver biopsies and routine histopathology analysis were performed. Intrahepatic HBV DNA and viral antigens (HBsAg and HBcAg) were detected by ISH and immunohistochemistry (IHC), respectively. The basic biochemical and virological parameters such as alanine transaminase, serum HBV DNA, and serum HBsAg were measured.The HBV DNA-ISH assay showed 55.8% (53/94 cases) positive rate in CHB patients, no false positive was found in non-HBV related hepatitis. The IHC of HBsAg and HBcAg showed a positive rate of 94.7% (89/94 cases) and 19.5% (17/87 cases), respectively. Quantification of HBV DNA-ISH signal showed a significant correlation with serum HBV DNA (rs = 0.6223, P < .0001). In addition, the staining pattern of HBV DNA in situ in the context of collagen deposition informed the histopathological progression of chronic liver disease.The application of this ISH assay in evaluating intrahepatic viral replication in real-world CHB patients showed favorable performance. It can be a complementation to conventional liver histopathology examination and IHC detection of viral antigens. This methodology provides an intuitive assessment of virological and pathological state of CHB patients, and further supports clinical diagnosis and management.
Collapse
Affiliation(s)
- Chang Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Zhang
- Chinese PLA Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai’an, Shandong, China
| | - Bisheng Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Gang Chen
- Chinese PLA Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai’an, Shandong, China
| | - Ye Zheng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yong An
- Chinese PLA Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai’an, Shandong, China
| | - Mimi Sun
- Chinese PLA Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai’an, Shandong, China
| | - Yanling Feng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qinghua Shang
- Chinese PLA Diagnosis and Treatment Center for Liver Diseases, The 960th Hospital of Chinese PLA Joint Logistics Support Force, Tai’an, Shandong, China
| | - Xiaonan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, ACT, Australia
| |
Collapse
|
7
|
Gayet M, Leymarie V, Derouault P, Guérin E, Vaidié J, Pascal V, Boulin M, Dmytruk N, Chauzeix J, Trimoreau F, Gachard N, Feuillard J, Rizzo D. Flow cytometry detection of CD138 expression continuum between monotypic B and plasma cells is associated with both high IgM peak levels and MYD88 mutation and contributes to diagnosis of Waldenström macroglobulinemia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2021; 102:62-69. [PMID: 33634586 DOI: 10.1002/cyto.b.21995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Differential diagnosis of Waldenström macroglobulinemia (WM) with other indolent B-cell malignancies is still a challenge. Here, we propose an original and simple analysis of routine flow cytometry (FCM) unraveling the characteristic ongoing plasma cell (PC) differentiation of WM tumor B-cells. METHODS FCM analysis of both B-cells and PC was performed on a series of 77 patients with IgM peak. MYD88 and CXCR4 mutations were studied using an allele-specific PCR and by high throughput sequencing. RESULTS Twenty seven (35%), 46 (58%) and 4 (5%) patients were classified as WM, IgM monoclonal gammopathy of undetermined significance (MGUS) or other B-NHL respectively. MYD88 mutation was found in 25/27 WM (93%) and in 29/46 MGUS (63%). Using FCM, monotypic B-cells were found in 27/27 WM (100%) and 34/46 MGUS (74%). Monotypic CD138pos/CD38pos PCs were detected in 23/27 WM (85%) and 25/46 MGUS (54%). Highlighting the ongoing PC differentiation of WM tumor B-cells by FCM, we evidenced a CD138 expression continuum between monotypic B-cells and PCs. This pattern remained absent in control samples and was significantly associated with higher IgM peaks (p = 6.10-5 ) and MYD88 mutations (p = 10-3 ) in both WM and MGUS cases. CONCLUSIONS FCM exploration of both B-cells and PC led to identify a CD138 expression continuum as an objective marker of ongoing PC differentiation of WM tumor cells and was strongly associated with increased IgM peak levels and MYD88 mutations. This approach could contribute to place FCM at the forefront of WM diagnosis.
Collapse
Affiliation(s)
- Mylene Gayet
- Biological Hematology Department, University Hospital Dupuytren, Limoges, France
| | - Vincent Leymarie
- Biological Hematology Department, University Hospital Dupuytren, Limoges, France
| | - Paco Derouault
- Department of Biochemistry and Molecular Biology, University Hospital Dupuytren, Limoges, France
| | - Estelle Guérin
- Biological Hematology Department, University Hospital Dupuytren, Limoges, France.,UMR CNRS 7276/INSERM 1262 - CRIBL, Faculty of Medicine, Limoges, France
| | - Julien Vaidié
- Clinical Hematology and Cellular Therapy, University Hospital Dupuytren, Limoges, France
| | - Virginie Pascal
- UMR CNRS 7276/INSERM 1262 - CRIBL, Faculty of Medicine, Limoges, France.,Department of Immunology and Immunogenetics, University Hospital Dupuytren, Limoges, France
| | - Mélanie Boulin
- Biological Hematology Department, University Hospital Dupuytren, Limoges, France
| | - Nataliya Dmytruk
- Clinical Hematology and Cellular Therapy, University Hospital Dupuytren, Limoges, France
| | - Jasmine Chauzeix
- Biological Hematology Department, University Hospital Dupuytren, Limoges, France.,UMR CNRS 7276/INSERM 1262 - CRIBL, Faculty of Medicine, Limoges, France
| | - Franck Trimoreau
- Biological Hematology Department, University Hospital Dupuytren, Limoges, France
| | - Nathalie Gachard
- Biological Hematology Department, University Hospital Dupuytren, Limoges, France.,UMR CNRS 7276/INSERM 1262 - CRIBL, Faculty of Medicine, Limoges, France
| | - Jean Feuillard
- Biological Hematology Department, University Hospital Dupuytren, Limoges, France.,UMR CNRS 7276/INSERM 1262 - CRIBL, Faculty of Medicine, Limoges, France
| | - David Rizzo
- Biological Hematology Department, University Hospital Dupuytren, Limoges, France.,UMR CNRS 7276/INSERM 1262 - CRIBL, Faculty of Medicine, Limoges, France
| |
Collapse
|
8
|
Ryu B, Baek J, Kim H, Lee JH, Kim J, Jeong YH, Lee SG, Kang KR, Oh MS, Kim EY, Kim CY, Chung HM. Anti-Inflammatory Effects of M-MSCs in DNCB-Induced Atopic Dermatitis Mice. Biomedicines 2020; 8:biomedicines8100439. [PMID: 33096640 PMCID: PMC7589030 DOI: 10.3390/biomedicines8100439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease caused by an imbalance between Th1 and Th2 cells. AD patients suffer from pruritus, excessive dryness, red or inflamed skin, and complications such as sleep disturbances and depression. Although there are currently many AD treatments available there are insufficient data on their long-term stability and comparative effects. Moreover, they have limitations due to various side effects. Multipotent mesenchymal stem cells (M-MSCs) might have potential for next-generation AD therapies. MSCs are capable of immune function regulation and local inflammatory response inhibition. M-MSCs, derived from human embryonic stem cells (hESC), additionally have a stable supply. In L507 antibody array, M-MSCs generally showed similar tendencies to bone marrow-derived mesenchymal stem cells (BM-MSCs), although the immunoregulatory function of M-MSCs seemed to be superior to BM-MSCs. Based on the characteristics of M-MSCs on immunoregulatory functions, we tested a M-MSC conditioned media concentrate (MCMC) in mice with AD lesions on their dorsal skin. MCMC significantly decreased RNA expression levels of inflammatory cytokines in the mouse dorsal skin. It also suppressed serum IgE levels. In addition, significant histopathologic alleviation was identified. In conclusion, secretions of M-MSCs have the potential to effectively improve AD-related inflammatory lesions. M-MSCs showed potential for use in next-generation AD treatment.
Collapse
Affiliation(s)
- Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (B.R.); (J.K.)
| | - Jieun Baek
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Hana Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Ji-Heon Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (B.R.); (J.K.)
| | - Young-Hoon Jeong
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Kyu-Ree Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Min-Seok Oh
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | | | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
- Correspondence: (C.-Y.K.); (H.M.C.); Tel.: +82-10-9140-0136; Fax: +82-2-455-9012
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
- Mireacellbio Co., Ltd., Seoul 04795, Korea;
- Correspondence: (C.-Y.K.); (H.M.C.); Tel.: +82-10-9140-0136; Fax: +82-2-455-9012
| |
Collapse
|
9
|
Wen Y, Zhao S, Holmqvist A, Hahn-Stromberg V, Adell G, Holmlund B, Pathak S, Peng Z, Sun XF. Predictive Role of Biopsy Based Biomarkers for Radiotherapy Treatment in Rectal Cancer. J Pers Med 2020; 10:jpm10040168. [PMID: 33066317 PMCID: PMC7712120 DOI: 10.3390/jpm10040168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Background and Purpose: Radiation therapy has long been contemplated as an important mode in the treatment of rectal cancer. However, there are few ideal tools available for clinicians to make a radiotherapy decision at the time of diagnosis for rectal cancer. The purpose of this study was to assess whether biomarkers expressed in the biopsy could help to choose the suitable therapy and provide predictive and/or prognostic information. Experimental Design: In total, 30 biomarkers were analyzed in 219 biopsy samples before treatment to discover the possibility of using them as an indicator for radiotherapy selection, diagnosis, survival and recurrence. Results: Twenty-two biomarkers (COX2-RT, COX2-NonRT, etc.; 36.67%) had diagnostic value. For survival, four biomarkers (NFKBP65, p130, PINCH and PPAR) were significant in regulating gene promoter activity and overall survival, while four had a trend (AEG1, LOX, SATB1 and SIRT6). Three biomarkers (COX2, PINCH and WRAP53) correlated with disease-free survival, while eight had a trend (AEG1, COX2, Ki67, LOX, NFKBP65, PPAR and SATB1). Four biomarkers (COX2-RT, NFKBP65cyto-RT, P130cyto-NonRT and PPARcyto-RT) were independent prognostic factors for recurrence. NFKBP65 and SIRT6 were significantly correlated with lymph node metastasis regardless of radiation. Patients with high AEG1, LOX, NFKBP65, PPAR and SATB1 had or showed a positive trend for better survival after radiotherapy, while those with positive PINCH and WRAP53 expression would not benefit from radiotherapy. Conclusions: AEG1, LOX, NFKBP65cyto, PPAR and SATB1 could be used as indicators for choosing radiotherapy. COX2-RT, COX2-NonRT and some other biomarkers may provide additional help for diagnosis.
Collapse
Affiliation(s)
- Yugang Wen
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China; (Y.W.); (S.Z.)
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden; (A.H.); (G.A.); (B.H.)
| | - Senlin Zhao
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China; (Y.W.); (S.Z.)
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden; (A.H.); (G.A.); (B.H.)
| | - Annica Holmqvist
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden; (A.H.); (G.A.); (B.H.)
| | | | - Gunnar Adell
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden; (A.H.); (G.A.); (B.H.)
| | - Birgitta Holmlund
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden; (A.H.); (G.A.); (B.H.)
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603 103, India;
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China; (Y.W.); (S.Z.)
- Correspondence: (Z.P.); (X.-F.S.); Tel.: +86-13761010066 (Z.P.); +46-10-1032066 (X.-F.S.)
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden; (A.H.); (G.A.); (B.H.)
- Correspondence: (Z.P.); (X.-F.S.); Tel.: +86-13761010066 (Z.P.); +46-10-1032066 (X.-F.S.)
| |
Collapse
|
10
|
Lin B, Li Y, Wang T, Qiu Y, Chen Z, Zhao K, Lu N. CRMP2 is a therapeutic target that suppresses the aggressiveness of breast cancer cells by stabilizing RECK. Oncogene 2020; 39:6024-6040. [PMID: 32778769 DOI: 10.1038/s41388-020-01412-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 11/09/2022]
Abstract
Metastatic breast cancer is characterized by high mortality and limited therapeutic target. During tumor metastasis, cytoskeletal reorganization is one of the key steps in the migration and invasion of breast cancer cells. Collapsin response mediator protein 2 (CRMP2) is a cytosolic phosphoprotein that plays an important role in regulating cytoskeletal dynamics. Previous researches have reported that altered CRMP2 expression is associated with breast cancer progression, but the underlying mechanism remains poorly understood. Here, we show that CRMP2 expression is reduced in various subtypes of breast cancers and negatively correlated with lymphatic metastasis. Overexpression of CRMP2 significantly inhibits invasion and stemness in breast cancer cells, while downregulation of CRMP2 promotes cell invasion, which is not required for tubulin polymerization. Mechanistic studies demonstrate that CRMP2 interacts with RECK, prevents RECK degradation, which, in turn, blocks NF-κB and Wnt signaling pathways. Furthermore, we find that phosphorylation of CRMP2 at T514 and S522 remarkably abolishes its functions to bind with RECK and to inhibit cell invasion. Pharmacologic rescue of CRMP2 expression suppressed breast cancer metastasis in vitro and in vivo and stimulated a synergetic effect with FN-1501 that induces CRMP2 dephosphorylation. Collectively, this study highlights the potential of CRMP2 as a therapeutic target in breast cancer metastasis and reveals a distinct mechanism of CRMP2.
Collapse
Affiliation(s)
- Binyan Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.,School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing, 210023, People's Republic of China
| | - Yongxu Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Tiepeng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yangmin Qiu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Zhenzhong Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Kai Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
11
|
Lozano DC, Choe TE, Cepurna WO, Morrison JC, Johnson EC. Early Optic Nerve Head Glial Proliferation and Jak-Stat Pathway Activation in Chronic Experimental Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:921-932. [PMID: 30835784 PMCID: PMC6402265 DOI: 10.1167/iovs.18-25700] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
PURPOSE We previously reported increased expression of cell proliferation and Jak-Stat pathway-related genes in chronic experimental glaucoma model optic nerve heads (ONH) with early, mild injury. Here, we confirm these observations by localizing, identifying, and quantifying ONH cellular proliferation and Jak-Stat pathway activation in this model. METHODS Chronic intraocular pressure (IOP) elevation was achieved via outflow pathway sclerosis. After 5 weeks, ONH longitudinal sections were immunolabeled with proliferation and cell-type markers to determine nuclear densities in the anterior (unmyelinated) and transition (partially myelinated) ONH. Nuclear pStat3 labeling was used to detect Jak-Stat pathway activation. Nuclear density differences between control ONH (uninjected) and ONH with either early or advanced injury (determined by optic nerve injury grading) were identified by ANOVA. RESULTS Advanced injury ONH had twice the nuclear density (P < 0.0001) of controls and significantly greater astrocyte density in anterior (P = 0.0001) and transition (P = 0.006) ONH regions. An increased optic nerve injury grade positively correlated with increased microglia/macrophage density in anterior and transition ONH (P < 0.0001, both). Oligodendroglial density was unaffected. In glaucoma model ONH, 80% of anterior and 66% of transition region proliferating cells were astrocytes. Nuclear pStat3 labeling significantly increased in early injury anterior ONH, and 95% colocalized with astrocytes. CONCLUSIONS Astrocytes account for the majority of proliferating cells, contributing to a doubled nuclear density in advanced injury ONH. Jak-Stat pathway activation is apparent in the early injury glaucoma model ONH. These data confirm dramatic astrocyte cell proliferation and early Jak-Stat pathway activation in ONH injured by elevated IOP.
Collapse
Affiliation(s)
- Diana C. Lozano
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Tiffany E. Choe
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - William O. Cepurna
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - John C. Morrison
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Elaine C. Johnson
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
12
|
Bengtsson-Palme J, Larsson DGJ, Kristiansson E. Using metagenomics to investigate human and environmental resistomes. J Antimicrob Chemother 2018; 72:2690-2703. [PMID: 28673041 DOI: 10.1093/jac/dkx199] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is a global health concern declared by the WHO as one of the largest threats to modern healthcare. In recent years, metagenomic DNA sequencing has started to be applied as a tool to study antibiotic resistance in different environments, including the human microbiota. However, a multitude of methods exist for metagenomic data analysis, and not all methods are suitable for the investigation of resistance genes, particularly if the desired outcome is an assessment of risks to human health. In this review, we outline the current state of methods for sequence handling, mapping to databases of resistance genes, statistical analysis and metagenomic assembly. In addition, we provide an overview of important considerations related to the analysis of resistance genes, and recommend some of the currently used tools and methods that are best equipped to inform research and clinical practice related to antibiotic resistance.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-41346, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-41346, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| |
Collapse
|
13
|
Moreira JD, Pernomian L, Gomes MS, Moreira RP, do Prado AF, da Silva CHTP, de Oliveira AM. Enhanced nitric oxide generation from nitric oxide synthases as the cause of increased peroxynitrite formation during acute restraint stress: Effects on carotid responsiveness to angiotensinergic stimuli in type-1 diabetic rats. Eur J Pharmacol 2016; 783:11-22. [PMID: 27118175 DOI: 10.1016/j.ejphar.2016.04.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus is associated with reactive oxygen and nitrogen species accumulation. Behavioral stress increases nitric oxide production, which may trigger a massive impact on vascular cells and accelerate cardiovascular complications under oxidative stress conditions such as Diabetes. For this study, type-1 Diabetes mellitus was induced in Wistar rats by intraperitoneal injection of streptozotocin. After 28 days, cumulative concentration-response curves for angiotensin II were obtained in endothelium-intact carotid rings from diabetic rats that underwent to acute restraint stress for 3h. The contractile response evoked by angiotensin II was increased in carotid arteries from diabetic rats. Acute restraint stress did not alter angiotensin II-induced contraction in carotid arteries from normoglycaemic rats. However acute stress combined with Diabetes increased angiotensin II-induced contraction in carotid rings. Western blot experiments and the inhibition of nitric oxide synthases in functional assays showed that neuronal, endothelial and inducible nitric oxide synthase isoforms contribute to the increased formation of peroxynitrite and contractile hyperreactivity to angiotensin II in carotid rings from stressed diabetic rats. In summary, these findings suggest that the increased superoxide anion generation in carotid arteries from diabetic rats associated to the increased local nitric oxide synthases expression and activity induced by acute restrain stress were responsible for exacerbating the local formation of peroxynitrite and the contraction induced by angiotensin II.
Collapse
Affiliation(s)
- Josimar D Moreira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University from Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Larissa Pernomian
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences from Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mayara S Gomes
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences from Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael P Moreira
- Department of Internalization - Binational Campus, Federal University from Amapá, Oiapoque, AP, Brazil
| | - Alejandro F do Prado
- Institutional Capacity Building Program, Coordination of Earth Science and Ecology, Museum Paraense Emílio Goeldi (MPEG), Belém, PA, Brazil
| | - Carlos H T P da Silva
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences from Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana M de Oliveira
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences from Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|