1
|
Kavaklioglu G, Podhornik A, Vcelkova T, Marjanovic J, Beck MA, Phan-Canh T, Mair T, Miccolo C, Drino A, Doni M, Egger G, Chiocca S, Modic M, Seiser C. The domesticated transposon protein L1TD1 associates with its ancestor L1 ORF1p to promote LINE-1 retrotransposition. eLife 2025; 13:RP96850. [PMID: 40112032 PMCID: PMC11925450 DOI: 10.7554/elife.96850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Repression of retrotransposition is crucial for the successful fitness of a mammalian organism. The domesticated transposon protein L1TD1, derived from LINE-1 (L1) ORF1p, is an RNA-binding protein that is expressed only in some cancers and early embryogenesis. In human embryonic stem cells, it is found to be essential for maintaining pluripotency. In cancer, L1TD1 expression is highly correlative with malignancy progression and as such considered a potential prognostic factor for tumors. However, its molecular role in cancer remains largely unknown. Our findings reveal that DNA hypomethylation induces the expression of L1TD1 in HAP1 human tumor cells. L1TD1 depletion significantly modulates both the proteome and transcriptome and thereby reduces cell viability. Notably, L1TD1 associates with L1 transcripts and interacts with L1 ORF1p protein, thereby facilitating L1 retrotransposition. Our data suggest that L1TD1 collaborates with its ancestral L1 ORF1p as an RNA chaperone, ensuring the efficient retrotransposition of L1 retrotransposons, rather than directly impacting the abundance of L1TD1 targets. In this way, L1TD1 might have an important role not only during early development but also in tumorigenesis.
Collapse
Affiliation(s)
- Gülnihal Kavaklioglu
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of ViennaViennaAustria
| | - Alexandra Podhornik
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of ViennaViennaAustria
| | - Terezia Vcelkova
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of ViennaViennaAustria
| | - Jelena Marjanovic
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of ViennaViennaAustria
| | - Mirjam A Beck
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of ViennaViennaAustria
| | - Trinh Phan-Canh
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna BiocenterViennaAustria
| | - Theresia Mair
- Department of Pathology, Medical University of ViennaViennaAustria
| | - Claudia Miccolo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCSMilanItaly
| | - Aleksej Drino
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of ViennaViennaAustria
| | - Mirko Doni
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCSMilanItaly
| | - Gerda Egger
- Department of Pathology, Medical University of ViennaViennaAustria
| | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCSMilanItaly
| | - Miha Modic
- National Institute of ChemistryLjubljanaSlovenia
- Dementia Research Institute at King’s College London and The Francis Crick instituteLondonUnited Kingdom
| | - Christian Seiser
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of ViennaViennaAustria
| |
Collapse
|
2
|
Paul P, Kumar A, Parida AS, De AK, Bhadke G, Khatua S, Tiwari B. p53-mediated regulation of LINE1 retrotransposon-derived R-loops. J Biol Chem 2025; 301:108200. [PMID: 39828096 PMCID: PMC11903798 DOI: 10.1016/j.jbc.2025.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025] Open
Abstract
Long interspersed nuclear element 1 (LINE1/L1) retrotransposons, which comprise 17% of the human genome, typically remain inactive in healthy somatic cells but are reactivated in several cancers. We previously demonstrated that p53 silences L1 transposons in human somatic cells, potentially acting as a tumor-suppressive mechanism. However, the precise molecular mechanisms underlying p53-mediated repression of L1 and its life cycle intermediates remain unclear. In this study, we used DNA-RNA immunoprecipitation-sequencing experiments to investigate RNA-DNA hybrids, which are key intermediates formed during L1 retrotransposition. Our findings reveal that L1 mRNA-genomic DNA (cis L1 R-loops) and L1 mRNA-complementary DNA (trans L1 R-loops) hybrids are upregulated in p53-/- cells. This increase is synergistic with L1 activation by histone deacetylase (HDAC) inhibitors (HDACi). However, treatment with a reverse transcriptase inhibitor reduces this accumulation, indicating that retrotransposition activity plays a significant role in R-loop accumulation. Interestingly, in WT cells, hyperactivated L1 transposons are suppressed upon HDACi withdrawal. L1 suppression in WT cells coincided with the recruitment of repressive marks, specifically H3K9me3 and H3K27me3, simultaneously preventing the addition of activating marks like H3K4me3, and H3K9ac at the L1 5'UTR. Mechanistically, we demonstrate that p53 cooperates with histone methyltransferases SETDB1 and G9A to deposit H3K9me3 marks at the L1 promoter, thereby silencing transposons. This study is the first to reveal novel roles of p53 in preventing the formation of L1-derived RNA-DNA hybrids (R-loops) and suppression of hyperactivated L1 elements by cooperating with histone methyltransferases, underscoring its critical role in maintaining genomic stability.
Collapse
Affiliation(s)
- Pratyashaa Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Arun Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Ankita Subhadarsani Parida
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Astik Kumar De
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Gauri Bhadke
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Satyajeet Khatua
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Bhavana Tiwari
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India.
| |
Collapse
|
3
|
Moldovan JB, Yin J, Moran JV. Identification of a minimal Alu domain required for retrotransposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628748. [PMID: 39868163 PMCID: PMC11760393 DOI: 10.1101/2024.12.16.628748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Alu elements are primate-specific retrotransposon sequences that comprise ~11% of human genomic DNA. Alu sequences contain an internal RNA polymerase III promoter and the resultant Alu RNA transcripts mobilize by a replicative process termed retrotransposition. Alu retrotransposition requires the Long INterspersed Element-1 (LINE-1) open reading frame 2-encoded protein (ORF2p). Current models propose that Alu RNA binds to signal recognition particle proteins 9 and 14 (SRP9/14) and localizes to ribosomes, which allows Alu to 'hijack' L1 ORF2p. Here, we used HeLa cell-based retrotransposition assays to define a minimal Alu domain necessary for retrotransposition. We demonstrate that Alu transcripts expressed from a cytomegalovirus (CMV) RNA polymerase II promoter can efficiently undergo retrotransposition. The use of an external CMV promoter to express Alu RNA allowed us to construct separation-of-function mutations to examine the effects of large deletions within the Alu sequence on retrotransposition. Deletion mutagenesis demonstrated that a 46 nucleotide (nt) domain located at the 5' end of the Alu RNA transcript is necessary for Alu retrotransposition. Consistent with current models, the 46 nt 5' Alu domain associates with SRP9/14 in HeLa-HA cell extracts and can promote a single round of retrotransposition in HeLa-HA cells. We propose that the 46 nt 5' Alu domain forms a discrete structure that allows for SRP 9/14 binding and ribosomal association, thereby allowing the Alu poly(A) tract to compete with the L1 poly(A) tail for ORF2p RNA binding to mediate its retrotransposition.
Collapse
Affiliation(s)
- John B. Moldovan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John Yin
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John V. Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Moldovan JB, Kopera HC, Liu Y, Garcia-Canadas M, Catalina P, Leone P, Sanchez L, Kitzman J, Kidd J, Garcia-Perez J, Moran J. Variable patterns of retrotransposition in different HeLa strains provide mechanistic insights into SINE RNA mobilization processes. Nucleic Acids Res 2024; 52:7761-7779. [PMID: 38850156 PMCID: PMC11260458 DOI: 10.1093/nar/gkae448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024] Open
Abstract
Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1) ORF2-encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 (Alu-permissive) strains, but not in HeLa-JVM or HeLa-H1 (Alu-nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA-derived SINEs and tRNA-derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR-Alu (SVA) element, and an L1 ORF1-containing mRNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu-permissive and Alu-nonpermissive HeLa strains, suggesting that 7SL- and tRNA-derived SINEs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1-containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu-permissive and Alu-nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu-nonpermissive HeLa strains.
Collapse
Affiliation(s)
- John B Moldovan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huira C Kopera
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ying Liu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marta Garcia-Canadas
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | | | - Paola E Leone
- Genetics and Genomics Laboratory, SOLCA Hospital, Quito, Ecuador
| | - Laura Sanchez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | - Jacob O Kitzman
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jose Luis Garcia-Perez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | - John V Moran
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Bodea GO, Botto JM, Ferreiro ME, Sanchez-Luque FJ, de Los Rios Barreda J, Rasmussen J, Rahman MA, Fenlon LR, Jansz N, Gubert C, Gerdes P, Bodea LG, Ajjikuttira P, Da Costa Guevara DJ, Cumner L, Bell CC, Kozulin P, Billon V, Morell S, Kempen MJHC, Love CJ, Saha K, Palmer LM, Ewing AD, Jhaveri DJ, Richardson SR, Hannan AJ, Faulkner GJ. LINE-1 retrotransposons contribute to mouse PV interneuron development. Nat Neurosci 2024; 27:1274-1284. [PMID: 38773348 PMCID: PMC11239520 DOI: 10.1038/s41593-024-01650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/14/2024] [Indexed: 05/23/2024]
Abstract
Retrotransposons are mobile DNA sequences duplicated via transcription and reverse transcription of an RNA intermediate. Cis-regulatory elements encoded by retrotransposons can also promote the transcription of adjacent genes. Somatic LINE-1 (L1) retrotransposon insertions have been detected in mammalian neurons. It is, however, unclear whether L1 sequences are mobile in only some neuronal lineages or therein promote neurodevelopmental gene expression. Here we report programmed L1 activation by SOX6, a transcription factor critical for parvalbumin (PV) interneuron development. Mouse PV interneurons permit L1 mobilization in vitro and in vivo, harbor unmethylated L1 promoters and express full-length L1 mRNAs and proteins. Using nanopore long-read sequencing, we identify unmethylated L1s proximal to PV interneuron genes, including a novel L1 promoter-driven Caps2 transcript isoform that enhances neuron morphological complexity in vitro. These data highlight the contribution made by L1 cis-regulatory elements to PV interneuron development and transcriptome diversity, uncovered due to L1 mobility in this milieu.
Collapse
Affiliation(s)
- Gabriela O Bodea
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia.
| | - Juan M Botto
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Maria E Ferreiro
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Francisco J Sanchez-Luque
- Institute of Parasitology and Biomedicine 'López-Neyra', Spanish National Research Council, Granada, Spain
| | | | - Jay Rasmussen
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Muhammed A Rahman
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Laura R Fenlon
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Natasha Jansz
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Patricia Gerdes
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
| | - Liviu-Gabriel Bodea
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Prabha Ajjikuttira
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Darwin J Da Costa Guevara
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
| | - Linda Cumner
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Charles C Bell
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
| | - Peter Kozulin
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Victor Billon
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Biology Department, École Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France
| | - Santiago Morell
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Marie-Jeanne H C Kempen
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Chloe J Love
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Karabi Saha
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Lucy M Palmer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Adam D Ewing
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
| | - Dhanisha J Jhaveri
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
| | - Sandra R Richardson
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey J Faulkner
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia.
| |
Collapse
|
6
|
Moldovan JB, Kopera HC, Liu Y, Garcia-Canadas M, Catalina P, Leone PE, Sanchez L, Kitzman JO, Kidd JM, Garcia-Perez JL, Moran JV. Variable patterns of retrotransposition in different HeLa strains provide mechanistic insights into SINE RNA mobilization processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592410. [PMID: 38746229 PMCID: PMC11092746 DOI: 10.1101/2024.05.03.592410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1 or L1) ORF2 -encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 ( Alu -permissive) strains, but not in HeLa-JVM or HeLa-H1 ( Alu -nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA -derived SINEs and tRNA -derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR - Alu ( SVA ) element, and an L1 ORF1 -containing messenger RNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu -permissive and Alu -nonpermissive HeLa strains, suggesting that 7SL - and tRNA -derived SINE RNAs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1 -containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu -permissive and Alu -nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu -nonpermissive HeLa strains.
Collapse
|
7
|
Janecki DM, Sen R, Szóstak N, Kajdasz A, Kordyś M, Plawgo K, Pandakov D, Philips A, Warkocki Z. LINE-1 mRNA 3' end dynamics shape its biology and retrotransposition potential. Nucleic Acids Res 2024; 52:3327-3345. [PMID: 38197223 PMCID: PMC11014359 DOI: 10.1093/nar/gkad1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
LINE-1 (L1) retrotransposons are mobile genetic elements that create new genomic insertions by a copy-paste mechanism involving L1 RNA/RNP intermediates. L1 encodes two ORFs, of which L1-ORF2p nicks genomic DNA and reverse transcribes L1 mRNA using the nicked DNA as a primer which base-pairs with poly(A) tail of L1 mRNA. To better understand the importance of non-templated L1 3' ends' dynamics and the interplay between L1 3' and 5' ends, we investigated the effects of genomic knock-outs and temporal knock-downs of XRN1, DCP2, and other factors. We hypothesized that in the absence of XRN1, the major 5'→3' exoribonuclease, there would be more L1 mRNA and retrotransposition. Conversely, we observed that loss of XRN1 decreased L1 retrotransposition. This occurred despite slight stabilization of L1 mRNA, but with decreased L1 RNP formation. Similarly, loss of DCP2, the catalytic subunit of the decapping complex, lowered retrotransposition despite increased steady-state levels of L1 proteins. In both XRN1 and DCP2 depletions we observed shortening of L1 3' poly(A) tails and their increased uridylation by TUT4/7. We explain the observed reduction of L1 retrotransposition by the changed qualities of non-templated L1 mRNA 3' ends demonstrating the important role of L1 3' end dynamics in L1 biology.
Collapse
Affiliation(s)
- Damian M Janecki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Raneet Sen
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Natalia Szóstak
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Arkadiusz Kajdasz
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Martyna Kordyś
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Kinga Plawgo
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Dmytro Pandakov
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
8
|
Mendez-Dorantes C, Burns KH. LINE-1 retrotransposition and its deregulation in cancers: implications for therapeutic opportunities. Genes Dev 2023; 37:948-967. [PMID: 38092519 PMCID: PMC10760644 DOI: 10.1101/gad.351051.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Long interspersed element 1 (LINE-1) is the only protein-coding transposon that is active in humans. LINE-1 propagates in the genome using RNA intermediates via retrotransposition. This activity has resulted in LINE-1 sequences occupying approximately one-fifth of our genome. Although most copies of LINE-1 are immobile, ∼100 copies are retrotransposition-competent. Retrotransposition is normally limited via epigenetic silencing, DNA repair, and other host defense mechanisms. In contrast, LINE-1 overexpression and retrotransposition are hallmarks of cancers. Here, we review mechanisms of LINE-1 regulation and how LINE-1 may promote genetic heterogeneity in tumors. Finally, we discuss therapeutic strategies to exploit LINE-1 biology in cancers.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
9
|
Zhen Z, Chen Y, Wang H, Tang H, Zhang H, Liu H, Jiang Y, Mao Z. Nuclear cGAS restricts L1 retrotransposition by promoting TRIM41-mediated ORF2p ubiquitination and degradation. Nat Commun 2023; 14:8217. [PMID: 38086852 PMCID: PMC10716122 DOI: 10.1038/s41467-023-43001-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS), initially identified as a cytosolic DNA sensor, detects DNA fragments to trigger an innate immune response. Recently, accumulating evidence reveals the presence of cGAS within the nucleus. However, the biological functions of nuclear cGAS are not fully understood. Here, we demonstrate that nuclear cGAS represses LINE-1 (L1) retrotransposition to preserve genome integrity in human cells. Mechanistically, the E3 ligase TRIM41 interacts with and ubiquitinates ORF2p to influence its stability, and cGAS enhances the association of ORF2p with TRIM41, thereby promoting TRIM41-mediated ORF2p degradation and the suppression of L1 retrotransposition. In response to DNA damage, cGAS is phosphorylated at serine residues 120 and 305 by CHK2, which promotes cGAS-TRIM41 association, facilitating TRIM41-mediated ORF2p degradation. Moreover, we show that nuclear cGAS mediates the repression of L1 retrotransposition in senescent cells induced by DNA damage agents. We also identify several cancer-associated cGAS mutations that abolish the suppressive effect on L1 retrotransposition by disrupting the CHK2-cGAS-TRIM41-ORF2p regulatory axis. Together, these findings indicate that nuclear cGAS exhibits an inhibitory function in L1 retrotransposition which could provide avenues for future interventions in both aging and tumorigenesis.
Collapse
Affiliation(s)
- Zhengyi Zhen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Haiyan Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Huanyin Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Haiping Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Haipeng Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China.
| |
Collapse
|
10
|
De Luca C, Gupta A, Bortvin A. Retrotransposon LINE-1 bodies in the cytoplasm of piRNA-deficient mouse spermatocytes: Ribonucleoproteins overcoming the integrated stress response. PLoS Genet 2023; 19:e1010797. [PMID: 37307272 DOI: 10.1371/journal.pgen.1010797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023] Open
Abstract
Transposable elements (TE) are mobile DNA sequences whose excessive proliferation endangers the host. Although animals have evolved robust TE-targeting defenses, including Piwi-interacting (pi)RNAs, retrotransposon LINE-1 (L1) still thrives in humans and mice. To gain insights into L1 endurance, we characterized L1 Bodies (LBs) and ORF1p complexes in germ cells of piRNA-deficient Maelstrom null mice. We report that ORF1p interacts with TE RNAs, genic mRNAs, and stress granule proteins, consistent with earlier studies. We also show that ORF1p associates with the CCR4-NOT deadenylation complex and PRKRA, a Protein Kinase R factor. Despite ORF1p interactions with these negative regulators of RNA expression, the stability and translation of LB-localized mRNAs remain unchanged. To scrutinize these findings, we studied the effects of PRKRA on L1 in cultured cells and showed that it elevates ORF1p levels and L1 retrotransposition. These results suggest that ORF1p-driven condensates promote L1 propagation, without affecting the metabolism of endogenous RNAs.
Collapse
Affiliation(s)
- Chiara De Luca
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of Americ
| | - Anuj Gupta
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of Americ
| |
Collapse
|
11
|
Luqman-Fatah A, Watanabe Y, Uno K, Ishikawa F, Moran JV, Miyoshi T. The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotransposition and LINE-1 RNA-mediated type I interferon induction. Nat Commun 2023; 14:203. [PMID: 36639706 PMCID: PMC9839780 DOI: 10.1038/s41467-022-35757-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Some interferon stimulated genes (ISGs) encode proteins that inhibit LINE-1 (L1) retrotransposition. Here, we use immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify proteins that associate with the L1 ORF1-encoded protein (ORF1p) in ribonucleoprotein particles. Three ISG proteins that interact with ORF1p inhibit retrotransposition: HECT and RLD domain containing E3 ubiquitin-protein ligase 5 (HERC5); 2'-5'-oligoadenylate synthetase-like (OASL); and helicase with zinc finger 2 (HELZ2). HERC5 destabilizes ORF1p, but does not affect its cellular localization. OASL impairs ORF1p cytoplasmic foci formation. HELZ2 recognizes sequences and/or structures within the L1 5'UTR to reduce L1 RNA, ORF1p, and ORF1p cytoplasmic foci levels. Overexpression of WT or reverse transcriptase-deficient L1s lead to a modest induction of IFN-α expression, which is abrogated upon HELZ2 overexpression. Notably, IFN-α expression is enhanced upon overexpression of an ORF1p RNA binding mutant, suggesting ORF1p binding might protect L1 RNA from "triggering" IFN-α induction. Thus, ISG proteins can inhibit retrotransposition by different mechanisms.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuzo Watanabe
- Proteomics Facility, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazuko Uno
- Division of Basic Research, Louis Pasteur Center for Medical Research, Kyoto, 606-8225, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| |
Collapse
|
12
|
Luca CD, Gupta A, Bortvin A. Ribonucleoprotein condensation driven by retrotransposon LINE-1 sustains RNA integrity and translation in mouse spermatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523313. [PMID: 36712121 PMCID: PMC9882024 DOI: 10.1101/2023.01.09.523313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transposable elements (TE) are mobile DNA sequences whose excessive proliferation endangers the host. Although animals have evolved robust TE-targeting defenses, including Piwi-interacting (pi)RNAs, retrotransposon LINE-1 (L1) still thrives in humans and mice. To gain insights into L1 endurance, we characterized L1 Bodies (LBs) and ORF1p complexes in germ cells of piRNA-deficient Maelstrom null mice. We report that ORF1p interacts with TE RNAs, genic mRNAs, and stress granule proteins, consistent with earlier studies. We also show that ORF1p associates with the CCR4-NOT deadenylation complex and PRKRA, a Protein Kinase R factor. Despite ORF1p interactions with these negative regulators of RNA expression, the stability and translation of LB-localized mRNAs remain unchanged. To scrutinize these findings, we studied the effects of PRKRA on L1 in cultured cells and showed that it elevates ORF1p levels and L1 retrotransposition. These results suggest that ORF1p-driven condensates promote L1 propagation, without affecting the metabolism of endogenous RNAs.
Collapse
|
13
|
Garcia-Cañadas M, Sanchez-Luque FJ, Sanchez L, Rojas J, Garcia Perez JL. LINE-1 Retrotransposition Assays in Embryonic Stem Cells. Methods Mol Biol 2023; 2607:257-309. [PMID: 36449167 DOI: 10.1007/978-1-0716-2883-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The ongoing mobilization of active non-long terminal repeat (LTR) retrotransposons continues to impact the genomes of most mammals, including humans and rodents. Non-LTR retrotransposons mobilize using an intermediary RNA and a copy-and-paste mechanism termed retrotransposition. Non-LTR retrotransposons are subdivided into long and short interspersed elements (LINEs and SINEs, respectively), depending on their size and autonomy; while active class 1 LINEs (LINE-1s or L1s) encode the enzymatic machinery required to mobilize in cis, active SINEs use the enzymatic machinery of active LINE-1s to mobilize in trans. The mobilization mechanism used by LINE-1s/SINEs was exploited to develop ingenious plasmid-based retrotransposition assays in cultured cells, which typically exploit a reporter gene that can only be activated after a round of retrotransposition. Retrotransposition assays, in cis or in trans, are instrumental tools to study the biology of mammalian LINE-1s and SINEs. In fact, these and other biochemical/genetic assays were used to uncover that endogenous mammalian LINE-1s/SINEs naturally retrotranspose during early embryonic development. However, embryonic stem cells (ESCs) are typically used as a cellular model in these and other studies interrogating LINE-1/SINE expression/regulation during early embryogenesis. Thus, human and mouse ESCs represent an excellent model to understand how active retrotransposons are regulated and how their activity impacts the germline. Here, we describe robust and quantitative protocols to study human/mouse LINE-1 (in cis) and SINE (in trans) retrotransposition using (human and mice) ESCs. These protocols are designed to study the mobilization of active non-LTR retrotransposons in a cellular physiologically relevant context.
Collapse
Affiliation(s)
- Marta Garcia-Cañadas
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain.
| | - Francisco J Sanchez-Luque
- Institute of Parasitology and Biomedicine "Lopez-Neyra" (IPBLN), Spanish National Research Council (CSIC), PTS Granada, Granada, Spain
| | - Laura Sanchez
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain
| | - Johana Rojas
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain
| | - Jose L Garcia Perez
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain.
- MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC)/University of Edinburgh, Western General Hospital Campus, Edinburgh, UK.
| |
Collapse
|
14
|
Gerdes P, Lim SM, Ewing AD, Larcombe MR, Chan D, Sanchez-Luque FJ, Walker L, Carleton AL, James C, Knaupp AS, Carreira PE, Nefzger CM, Lister R, Richardson SR, Polo JM, Faulkner GJ. Retrotransposon instability dominates the acquired mutation landscape of mouse induced pluripotent stem cells. Nat Commun 2022; 13:7470. [PMID: 36463236 PMCID: PMC9719517 DOI: 10.1038/s41467-022-35180-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) can in principle differentiate into any cell of the body, and have revolutionized biomedical research and regenerative medicine. Unlike their human counterparts, mouse iPSCs (miPSCs) are reported to silence transposable elements and prevent transposable element-mediated mutagenesis. Here we apply short-read or Oxford Nanopore Technologies long-read genome sequencing to 38 bulk miPSC lines reprogrammed from 10 parental cell types, and 18 single-cell miPSC clones. While single nucleotide variants and structural variants restricted to miPSCs are rare, we find 83 de novo transposable element insertions, including examples intronic to Brca1 and Dmd. LINE-1 retrotransposons are profoundly hypomethylated in miPSCs, beyond other transposable elements and the genome overall, and harbor alternative protein-coding gene promoters. We show that treatment with the LINE-1 inhibitor lamivudine does not hinder reprogramming and efficiently blocks endogenous retrotransposition, as detected by long-read genome sequencing. These experiments reveal the complete spectrum and potential significance of mutations acquired by miPSCs.
Collapse
Affiliation(s)
- Patricia Gerdes
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Sue Mei Lim
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Adam D. Ewing
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Michael R. Larcombe
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Dorothy Chan
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Francisco J. Sanchez-Luque
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia ,grid.418805.00000 0004 0500 8423GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS, Granada, 18016 Spain
| | - Lucinda Walker
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Alexander L. Carleton
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Cini James
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Anja S. Knaupp
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Patricia E. Carreira
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Christian M. Nefzger
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Ryan Lister
- grid.1012.20000 0004 1936 7910Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009 Australia ,grid.431595.f0000 0004 0469 0045Harry Perkins Institute of Medical Research, Perth, WA 6009 Australia
| | - Sandra R. Richardson
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Jose M. Polo
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia ,grid.1010.00000 0004 1936 7304Adelaide Centre for Epigenetics and The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Geoffrey J. Faulkner
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia ,grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
15
|
Ward JR, Khan A, Torres S, Crawford B, Nock S, Frisbie T, Moran J, Longworth M. Condensin I and condensin II proteins form a LINE-1 dependent super condensin complex and cooperate to repress LINE-1. Nucleic Acids Res 2022; 50:10680-10694. [PMID: 36169232 PMCID: PMC9561375 DOI: 10.1093/nar/gkac802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Condensin I and condensin II are multi-subunit complexes that are known for their individual roles in genome organization and preventing genomic instability. However, interactions between condensin I and condensin II subunits and cooperative roles for condensin I and condensin II, outside of their genome organizing functions, have not been reported. We previously discovered that condensin II cooperates with Gamma Interferon Activated Inhibitor of Translation (GAIT) proteins to associate with Long INterspersed Element-1 (LINE-1 or L1) RNA and repress L1 protein expression and the retrotransposition of engineered L1 retrotransposition in cultured human cells. Here, we report that the L1 3'UTR is required for condensin II and GAIT association with L1 RNA, and deletion of the L1 RNA 3'UTR results in increased L1 protein expression and retrotransposition. Interestingly, like condensin II, we report that condensin I also binds GAIT proteins, associates with the L1 RNA 3'UTR, and represses L1 retrotransposition. We provide evidence that the condensin I protein, NCAPD2, is required for condensin II and GAIT protein association with L1 RNA. Furthermore, condensin I and condensin II subunits interact to form a L1-dependent super condensin complex (SCC) which is located primarily within the cytoplasm of both transformed and primary epithelial cells. These data suggest that increases in L1 expression in epithelial cells promote cytoplasmic condensin protein associations that facilitate a feedback loop in which condensins may cooperate to mediate L1 repression.
Collapse
Affiliation(s)
- Jacqueline R Ward
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Afshin Khan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sabrina Torres
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Bert Crawford
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sarah Nock
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Trenton Frisbie
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Michelle S Longworth
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44195, USA
| |
Collapse
|
16
|
Arora R, Bodak M, Penouty L, Hackman C, Ciaudo C. Sequestration of
LINE
‐1 in cytosolic aggregates by
MOV10
restricts retrotransposition. EMBO Rep 2022; 23:e54458. [PMID: 35856394 PMCID: PMC9442310 DOI: 10.15252/embr.202154458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Rajika Arora
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Maxime Bodak
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Laura Penouty
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Cindy Hackman
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| |
Collapse
|
17
|
Lee Y, Ha U, Moon S. Ongoing endeavors to detect mobilization of transposable elements. BMB Rep 2022. [PMID: 35725016 PMCID: PMC9340088 DOI: 10.5483/bmbrep.2022.55.7.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposable elements (TEs) are DNA sequences capable of mobilization from one location to another in the genome. Since the discovery of ‘Dissociation (Dc) locus’ by Barbara McClintock in maize (1), mounting evidence in the era of genomics indicates that a significant fraction of most eukaryotic genomes is composed of TE sequences, involving in various aspects of biological processes such as development, physiology, diseases and evolution. Although technical advances in genomics have discovered numerous functional impacts of TE across species, our understanding of TEs is still ongoing process due to challenges resulted from complexity and abundance of TEs in the genome. In this mini-review, we briefly summarize biology of TEs and their impacts on the host genome, emphasizing importance of understanding TE landscape in the genome. Then, we introduce recent endeavors especially in vivo retrotransposition assays and long read sequencing technology for identifying de novo insertions/TE polymorphism, which will broaden our knowledge of extraordinary relationship between genomic cohabitants and their host.
Collapse
Affiliation(s)
- Yujeong Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Una Ha
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
18
|
Billon V, Sanchez-Luque FJ, Rasmussen J, Bodea GO, Gerhardt DJ, Gerdes P, Cheetham SW, Schauer SN, Ajjikuttira P, Meyer TJ, Layman CE, Nevonen KA, Jansz N, Garcia-Perez JL, Richardson SR, Ewing AD, Carbone L, Faulkner GJ. Somatic retrotransposition in the developing rhesus macaque brain. Genome Res 2022; 32:1298-1314. [PMID: 35728967 PMCID: PMC9341517 DOI: 10.1101/gr.276451.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
The retrotransposon LINE-1 (L1) is central to the recent evolutionary history of the human genome and continues to drive genetic diversity and germline pathogenesis. However, the spatiotemporal extent and biological significance of somatic L1 activity are poorly defined and are virtually unexplored in other primates. From a single L1 lineage active at the divergence of apes and Old World monkeys, successive L1 subfamilies have emerged in each descendant primate germline. As revealed by case studies, the presently active human L1 subfamily can also mobilize during embryonic and brain development in vivo. It is unknown whether nonhuman primate L1s can similarly generate somatic insertions in the brain. Here we applied approximately 40× single-cell whole-genome sequencing (scWGS), as well as retrotransposon capture sequencing (RC-seq), to 20 hippocampal neurons from two rhesus macaques (Macaca mulatta). In one animal, we detected and PCR-validated a somatic L1 insertion that generated target site duplications, carried a short 5' transduction, and was present in ∼7% of hippocampal neurons but absent from cerebellum and nonbrain tissues. The corresponding donor L1 allele was exceptionally mobile in vitro and was embedded in PRDM4, a gene expressed throughout development and in neural stem cells. Nanopore long-read methylome and RNA-seq transcriptome analyses indicated young retrotransposon subfamily activation in the early embryo, followed by repression in adult tissues. These data highlight endogenous macaque L1 retrotransposition potential, provide prototypical evidence of L1-mediated somatic mosaicism in a nonhuman primate, and allude to L1 mobility in the brain over the past 30 million years of human evolution.
Collapse
Affiliation(s)
- Victor Billon
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Francisco J Sanchez-Luque
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
- Institute of Parasitology and Biomedicine "Lopez-Neyra"-Spanish National Research Council, PTS Granada 18016, Spain
| | - Jay Rasmussen
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Gabriela O Bodea
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Stephanie N Schauer
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Prabha Ajjikuttira
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Thomas J Meyer
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Cora E Layman
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Natasha Jansz
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Jose L Garcia-Perez
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Lucia Carbone
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Geoffrey J Faulkner
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
19
|
Lee Y, Ha U, Moon S. Ongoing endeavors to detect mobilization of transposable elements. BMB Rep 2022; 55:305-315. [PMID: 35725016 PMCID: PMC9340088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 02/21/2025] Open
Abstract
Transposable elements (TEs) are DNA sequences capable of mobilization from one location to another in the genome. Since the discovery of 'Dissociation (Dc) locus' by Barbara McClintock in maize (1), mounting evidence in the era of genomics indicates that a significant fraction of most eukaryotic genomes is composed of TE sequences, involving in various aspects of biological processes such as development, physiology, diseases and evolution. Although technical advances in genomics have discovered numerous functional impacts of TE across species, our understanding of TEs is still ongoing process due to challenges resulted from complexity and abundance of TEs in the genome. In this mini-review, we briefly summarize biology of TEs and their impacts on the host genome, emphasizing importance of understanding TE landscape in the genome. Then, we introduce recent endeavors especially in vivo retrotransposition assays and long read sequencing technology for identifying de novo insertions/TE polymorphism, which will broaden our knowledge of extraordinary relationship between genomic cohabitants and their host. [BMB Reports 2022; 55(7): 305-315].
Collapse
Affiliation(s)
- Yujeong Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Una Ha
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
20
|
Xiong F, Wang R, Lee JH, Li S, Chen SF, Liao Z, Hasani LA, Nguyen PT, Zhu X, Krakowiak J, Lee DF, Han L, Tsai KL, Liu Y, Li W. RNA m 6A modification orchestrates a LINE-1-host interaction that facilitates retrotransposition and contributes to long gene vulnerability. Cell Res 2021; 31:861-885. [PMID: 34108665 PMCID: PMC8324889 DOI: 10.1038/s41422-021-00515-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
The molecular basis underlying the interaction between retrotransposable elements (RTEs) and the human genome remains poorly understood. Here, we profiled N6-methyladenosine (m6A) deposition on nascent RNAs in human cells by developing a new method MINT-Seq, which revealed that many classes of RTE RNAs, particularly intronic LINE-1s (L1s), are strongly methylated. These m6A-marked intronic L1s (MILs) are evolutionarily young, sense-oriented to hosting genes, and are bound by a dozen RNA binding proteins (RBPs) that are putative novel readers of m6A-modified RNAs, including a nuclear matrix protein SAFB. Notably, m6A positively controls the expression of both autonomous L1s and co-transcribed L1 relics, promoting L1 retrotransposition. We showed that MILs preferentially reside in long genes with critical roles in DNA damage repair and sometimes in L1 suppression per se, where they act as transcriptional "roadblocks" to impede the hosting gene expression, revealing a novel host-weakening strategy by the L1s. In counteraction, the host uses the SAFB reader complex to bind m6A-L1s to reduce their levels, and to safeguard hosting gene transcription. Remarkably, our analysis identified thousands of MILs in multiple human fetal tissues, enlisting them as a novel category of cell-type-specific regulatory elements that often compromise transcription of long genes and confer their vulnerability in neurodevelopmental disorders. We propose that this m6A-orchestrated L1-host interaction plays widespread roles in gene regulation, genome integrity, human development and diseases.
Collapse
Affiliation(s)
- Feng Xiong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Ruoyu Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Joo-Hyung Lee
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Shenglan Li
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shin-Fu Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Zian Liao
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Lana Al Hasani
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Phuoc T Nguyen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Xiaoyu Zhu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Joanna Krakowiak
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Dung-Fang Lee
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Leng Han
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Ying Liu
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA.
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
21
|
Halo JV, Pendleton AL, Shen F, Doucet AJ, Derrien T, Hitte C, Kirby LE, Myers B, Sliwerska E, Emery S, Moran JV, Boyko AR, Kidd JM. Long-read assembly of a Great Dane genome highlights the contribution of GC-rich sequence and mobile elements to canine genomes. Proc Natl Acad Sci U S A 2021; 118:e2016274118. [PMID: 33836575 PMCID: PMC7980453 DOI: 10.1073/pnas.2016274118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Technological advances have allowed improvements in genome reference sequence assemblies. Here, we combined long- and short-read sequence resources to assemble the genome of a female Great Dane dog. This assembly has improved continuity compared to the existing Boxer-derived (CanFam3.1) reference genome. Annotation of the Great Dane assembly identified 22,182 protein-coding gene models and 7,049 long noncoding RNAs, including 49 protein-coding genes not present in the CanFam3.1 reference. The Great Dane assembly spans the majority of sequence gaps in the CanFam3.1 reference and illustrates that 2,151 gaps overlap the transcription start site of a predicted protein-coding gene. Moreover, a subset of the resolved gaps, which have an 80.95% median GC content, localize to transcription start sites and recombination hotspots more often than expected by chance, suggesting the stable canine recombinational landscape has shaped genome architecture. Alignment of the Great Dane and CanFam3.1 assemblies identified 16,834 deletions and 15,621 insertions, as well as 2,665 deletions and 3,493 insertions located on secondary contigs. These structural variants are dominated by retrotransposon insertion/deletion polymorphisms and include 16,221 dimorphic canine short interspersed elements (SINECs) and 1,121 dimorphic long interspersed element-1 sequences (LINE-1_Cfs). Analysis of sequences flanking the 3' end of LINE-1_Cfs (i.e., LINE-1_Cf 3'-transductions) suggests multiple retrotransposition-competent LINE-1_Cfs segregate among dog populations. Consistent with this conclusion, we demonstrate that a canine LINE-1_Cf element with intact open reading frames can retrotranspose its own RNA and that of a SINEC_Cf consensus sequence in cultured human cells, implicating ongoing retrotransposon activity as a driver of canine genetic variation.
Collapse
Affiliation(s)
- Julia V Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Amanda L Pendleton
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Feichen Shen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Aurélien J Doucet
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Université Côte d'Azur, CNRS, INSERM, Institut de Recherche sur le Cancer et le Vieillissement de Nice, F-06100 Nice, France
| | - Thomas Derrien
- Université de Rennes 1, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, F-35000 Rennes, France
| | - Christophe Hitte
- Université de Rennes 1, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, F-35000 Rennes, France
| | - Laura E Kirby
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Bridget Myers
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Elzbieta Sliwerska
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Sarah Emery
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - John V Moran
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109;
- Department Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
22
|
Tiwari B, Jones AE, Caillet CJ, Das S, Royer SK, Abrams JM. p53 directly represses human LINE1 transposons. Genes Dev 2020; 34:1439-1451. [PMID: 33060137 PMCID: PMC7608743 DOI: 10.1101/gad.343186.120] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
p53 is a potent tumor suppressor and commonly mutated in human cancers. Recently, we demonstrated that p53 genes act to restrict retrotransposons in germline tissues of flies and fish but whether this activity is conserved in somatic human cells is not known. Here we show that p53 constitutively restrains human LINE1s by cooperatively engaging sites in the 5'UTR and stimulating local deposition of repressive histone marks at these transposons. Consistent with this, the elimination of p53 or the removal of corresponding binding sites in LINE1s, prompted these retroelements to become hyperactive. Concurrently, p53 loss instigated chromosomal rearrangements linked to LINE sequences and also provoked inflammatory programs that were dependent on reverse transcriptase produced from LINE1s. Taken together, our observations establish that p53 continuously operates at the LINE1 promoter to restrict autonomous copies of these mobile elements in human cells. Our results further suggest that constitutive restriction of these retroelements may help to explain tumor suppression encoded by p53, since erupting LINE1s produced acute oncogenic threats when p53 was absent.
Collapse
Affiliation(s)
- Bhavana Tiwari
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Candace J Caillet
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Simanti Das
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stephanie K Royer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
23
|
Loss of Nuclear TDP-43 Is Associated with Decondensation of LINE Retrotransposons. Cell Rep 2020; 27:1409-1421.e6. [PMID: 31042469 PMCID: PMC6508629 DOI: 10.1016/j.celrep.2019.04.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 02/14/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
Loss of the nuclear RNA binding protein TAR DNA binding protein-43 (TDP-43) into cytoplasmic aggregates is the strongest correlate to neurodegeneration in amyotrophic lateral sclerosis and frontotemporal degeneration. The molecular changes associated with the loss of nuclear TDP-43 in human tissues are not entirely known. Using subcellular fractionation andfluorescent-activated cell sorting to enrich for diseased neuronal nuclei without TDP-43 from post-mortem frontotemporal degeneration-amyotro-phic lateral sclerosis (FTD-ALS) human brain, we characterized the effects of TDP-43 loss on the transcriptome and chromatin accessibility. Nuclear TDP-43 loss is associated with gene expression changes that affect RNA processing, nucleocytoplas-mic transport, histone processing, and DNA damage. Loss of nuclear TDP-43 is also associated with chromatin decondensation around long interspersed nuclear elements (LINEs) and increased LINE1 DNA content. Moreover, loss of TDP-43 leads to increased retrotransposition that can be inhibited with antiretro-viral drugs, suggesting that TDP-43 neuropathology is associated with altered chromatin structure including decondensation of LINEs. Liu et al. fractionated and sorted for diseased neuronal nuclei from post-mortem FTD-ALS human brains and showed that loss of an RNA-binding protein, TDP-43, altered the transcriptome and chromatin accessibility. Their results suggest that loss of nuclear TDP-43 is associated with decondensation of LINE retrotransposons.
Collapse
|
24
|
Burns KH. Our Conflict with Transposable Elements and Its Implications for Human Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:51-70. [PMID: 31977294 DOI: 10.1146/annurev-pathmechdis-012419-032633] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our genome is a historic record of successive invasions of mobile genetic elements. Like other eukaryotes, we have evolved mechanisms to limit their propagation and minimize the functional impact of new insertions. Although these mechanisms are vitally important, they are imperfect, and a handful of retroelement families remain active in modern humans. This review introduces the intrinsic functions of transposons, the tactics employed in their restraint, and the relevance of this conflict to human pathology. The most straightforward examples of disease-causing transposable elements are germline insertions that disrupt a gene and result in a monogenic disease allele. More enigmatic are the abnormal patterns of transposable element expression in disease states. Changes in transposon regulation and cellular responses to their expression have implicated these sequences in diseases as diverse as cancer, autoimmunity, and neurodegeneration. Distinguishing their epiphenomenal from their pathogenic effects may provide wholly new perspectives on our understanding of disease.
Collapse
Affiliation(s)
- Kathleen H Burns
- Department of Pathology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
25
|
Del Re B, Giorgi G. Long INterspersed element-1 mobility as a sensor of environmental stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:465-493. [PMID: 32144842 DOI: 10.1002/em.22366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Long INterspersed element (LINE-1, L1) retrotransposons are the most abundant transposable elements in the human genome, constituting approximately 17%. They move by a "copy-paste" mechanism, involving reverse transcription of an RNA intermediate and insertion of its cDNA copy at a new site in the genome. L1 retrotransposition (L1-RTP) can cause insertional mutations, alter gene expression, transduce exons, and induce epigenetic dysregulation. L1-RTP is generally repressed; however, a number of observations collected over about 15 years revealed that it can occur in response to environmental stresses. Moreover, emerging evidence indicates that L1-RTP can play a role in the onset of several neurological and oncological diseases in humans. In recent years, great attention has been paid to the exposome paradigm, which proposes that health effects of an environmental factor should be evaluated considering both cumulative environmental exposures and the endogenous processes resulting from the biological response. L1-RTP could be an endogenous process considered for this application. Here, we summarize the current understanding of environmental factors that can affect the retrotransposition of human L1 elements. Evidence indicates that L1-RTP alteration is triggered by numerous and various environmental stressors, such as chemical agents (heavy metals, carcinogens, oxidants, and drugs), physical agents (ionizing and non-ionizing radiations), and experiential factors (voluntary exercise, social isolation, maternal care, and environmental light/dark cycles). These data come from in vitro studies on cell lines and in vivo studies on transgenic animals: future investigations should be focused on physiologically relevant models to gain a better understanding of this topic.
Collapse
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianfranco Giorgi
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Tristan-Ramos P, Morell S, Sanchez L, Toledo B, Garcia-Perez JL, Heras SR. sRNA/L1 retrotransposition: using siRNAs and miRNAs to expand the applications of the cell culture-based LINE-1 retrotransposition assay. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190346. [PMID: 32075559 DOI: 10.1098/rstb.2019.0346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cell culture-based retrotransposition reporter assay has been (and is) an essential tool for the study of vertebrate Long INterspersed Elements (LINEs). Developed more than 20 years ago, this assay has been instrumental in characterizing the role of LINE-encoded proteins in retrotransposition, understanding how ribonucleoprotein particles are formed, how host factors regulate LINE mobilization, etc. Moreover, variations of the conventional assay have been developed to investigate the biology of other currently active human retrotransposons, such as Alu and SVA. Here, we describe a protocol that allows combination of the conventional cell culture-based LINE-1 retrotransposition reporter assay with short interfering RNAs (siRNAs) and microRNA (miRNAs) mimics or inhibitors, which has allowed us to uncover specific miRNAs and host factors that regulate retrotransposition. The protocol described here is highly reproducible, quantitative, robust and flexible, and allows the study of several small RNA classes and various retrotransposons. To illustrate its utility, here we show that siRNAs to Fanconi anaemia proteins (FANC-A and FANC-C) and an inhibitor of miRNA-20 upregulate and downregulate human L1 retrotransposition, respectively. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Pablo Tristan-Ramos
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain.,Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Santiago Morell
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain
| | - Laura Sanchez
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain
| | - Belen Toledo
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain.,Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jose L Garcia-Perez
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain.,MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Sara R Heras
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain.,Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
27
|
Miyoshi T, Makino T, Moran JV. Poly(ADP-Ribose) Polymerase 2 Recruits Replication Protein A to Sites of LINE-1 Integration to Facilitate Retrotransposition. Mol Cell 2019; 75:1286-1298.e12. [PMID: 31473101 PMCID: PMC6754305 DOI: 10.1016/j.molcel.2019.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/23/2019] [Accepted: 07/12/2019] [Indexed: 10/26/2022]
Abstract
Long interspersed element-1 (LINE-1 or L1) retrotransposition poses a threat to genome integrity, and cells have evolved mechanisms to restrict retrotransposition. However, how cellular proteins facilitate L1 retrotransposition requires elucidation. Here, we demonstrate that single-strand DNA breaks induced by the L1 endonuclease trigger the recruitment of poly(ADP-ribose) polymerase 2 (PARP2) to L1 integration sites and that PARP2 activation leads to the subsequent recruitment of the replication protein A (RPA) complex to facilitate retrotransposition. We further demonstrate that RPA directly binds activated PARP2 through poly(ADP-ribosyl)ation and can protect single-strand L1 integration intermediates from APOBEC3-mediated cytidine deamination in vitro. Paradoxically, we provide evidence that RPA can guide APOBEC3A, and perhaps other APOBEC3 proteins, to sites of L1 integration. Thus, the interplay of L1-encoded and evolutionarily conserved cellular proteins is required for efficient retrotransposition; however, these interactions also may be exploited to restrict L1 retrotransposition in the human genome.
Collapse
Affiliation(s)
- Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Stress Response, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA.
| | - Takeshi Makino
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Stress Response, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA.
| |
Collapse
|
28
|
Sanchez-Luque FJ, Kempen MJHC, Gerdes P, Vargas-Landin DB, Richardson SR, Troskie RL, Jesuadian JS, Cheetham SW, Carreira PE, Salvador-Palomeque C, García-Cañadas M, Muñoz-Lopez M, Sanchez L, Lundberg M, Macia A, Heras SR, Brennan PM, Lister R, Garcia-Perez JL, Ewing AD, Faulkner GJ. LINE-1 Evasion of Epigenetic Repression in Humans. Mol Cell 2019; 75:590-604.e12. [PMID: 31230816 DOI: 10.1016/j.molcel.2019.05.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/08/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Epigenetic silencing defends against LINE-1 (L1) retrotransposition in mammalian cells. However, the mechanisms that repress young L1 families and how L1 escapes to cause somatic genome mosaicism in the brain remain unclear. Here we report that a conserved Yin Yang 1 (YY1) transcription factor binding site mediates L1 promoter DNA methylation in pluripotent and differentiated cells. By analyzing 24 hippocampal neurons with three distinct single-cell genomic approaches, we characterized and validated a somatic L1 insertion bearing a 3' transduction. The source (donor) L1 for this insertion was slightly 5' truncated, lacked the YY1 binding site, and was highly mobile when tested in vitro. Locus-specific bisulfite sequencing revealed that the donor L1 and other young L1s with mutated YY1 binding sites were hypomethylated in embryonic stem cells, during neurodifferentiation, and in liver and brain tissue. These results explain how L1 can evade repression and retrotranspose in the human body.
Collapse
Affiliation(s)
- Francisco J Sanchez-Luque
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain.
| | - Marie-Jeanne H C Kempen
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Patricia Gerdes
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Dulce B Vargas-Landin
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Sandra R Richardson
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Robin-Lee Troskie
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - J Samuel Jesuadian
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Patricia E Carreira
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Carmen Salvador-Palomeque
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Marta García-Cañadas
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain
| | - Martin Muñoz-Lopez
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain
| | - Laura Sanchez
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain
| | - Mischa Lundberg
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Angela Macia
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sara R Heras
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain; Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Paul M Brennan
- Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, EH4 2XR, UK
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Jose L Garcia-Perez
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Adam D Ewing
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
29
|
Dynamic Methylation of an L1 Transduction Family during Reprogramming and Neurodifferentiation. Mol Cell Biol 2019; 39:MCB.00499-18. [PMID: 30692270 PMCID: PMC6425141 DOI: 10.1128/mcb.00499-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/11/2019] [Indexed: 01/28/2023] Open
Abstract
The retrotransposon LINE-1 (L1) is a significant source of endogenous mutagenesis in humans. In each individual genome, a few retrotransposition-competent L1s (RC-L1s) can generate new heritable L1 insertions in the early embryo, primordial germ line, and germ cells. L1 retrotransposition can also occur in the neuronal lineage and cause somatic mosaicism. Although DNA methylation mediates L1 promoter repression, the temporal pattern of methylation applied to individual RC-L1s during neurogenesis is unclear. Here, we identified a de novo L1 insertion in a human induced pluripotent stem cell (hiPSC) line via retrotransposon capture sequencing (RC-seq). The L1 insertion was full-length and carried 5' and 3' transductions. The corresponding donor RC-L1 was part of a large and recently active L1 transduction family and was highly mobile in a cultured-cell L1 retrotransposition reporter assay. Notably, we observed distinct and dynamic DNA methylation profiles for the de novo L1 and members of its extended transduction family during neuronal differentiation. These experiments reveal how a de novo L1 insertion in a pluripotent stem cell is rapidly recognized and repressed, albeit incompletely, by the host genome during neurodifferentiation, while retaining potential for further retrotransposition.
Collapse
|
30
|
Tsang M, Gantchev J, Netchiporouk E, Moreau L, Ghazawi FM, Glassman S, Sasseville D, Litvinov IV. A study of meiomitosis and novel pathways of genomic instability in cutaneous T-cell lymphomas (CTCL). Oncotarget 2018; 9:37647-37661. [PMID: 30701021 PMCID: PMC6340880 DOI: 10.18632/oncotarget.26479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Genomic instability is a hallmark of cancer and an enabling factor for genetic alterations that drive cancer development and progression. The clashing of mitosis and aberrantly expressed meiosis machineries, which may contribute to genomic instability, has been coined cancer “meiomitosis”. LINE-1 retrotransposition, a process active in germ cells, acts outside of the meiotic machinery to create DNA double strand breaks (DNA DSBs) and has played an important role in the evolution of the human genome. We have previously demonstrated that in CTCL several cancer testis/meiotic genes are expressed. Furthermore, this cancer exhibits extensive and ongoing chromosomal/microsatellite instability. In this study we analyzed immortalized patient-derived cells and primary CTCL patient samples using RT-PCR, western blotting and confocal microscopy and found that proteins critically involved in meiosis and LINE-1 retrotransposition are expressed and are associated with chromosomal instability and DNA DSB formation. Using cell cycle synchronization, we show G1/S phase-transition-specific expression of meiosis proteins. Using the Alu retrotransposition assay, we demonstrate the functional activity of LINE-1 retrotransposon in CTCL. Histone acetyltransferase inhibition results in downregulation of the ectopic germ cell programs and concomitant decrease in DNA DSBs foci formation. Notably, LINE-1 and meiosis genes were expressed across a panel of other solid tumor cell lines. Taken together, our results indicate that malignant cells in culture undergo “cancer meiomitosis” rather than the classic mitosis division. The ectopic expression of meiosis genes and reactivation of LINE-1 may be contributing to genomic instability and represent novel targets for immunotherapy in this and other cancers.
Collapse
Affiliation(s)
- Matthew Tsang
- Division of Dermatology, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada
| | - Jennifer Gantchev
- Division of Dermatology, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Elena Netchiporouk
- Division of Dermatology, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Linda Moreau
- Division of Dermatology, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Feras M Ghazawi
- Division of Dermatology, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada
| | - Steven Glassman
- Division of Dermatology, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada
| | - Denis Sasseville
- Division of Dermatology, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Ivan V Litvinov
- Division of Dermatology, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada.,Division of Dermatology, McGill University, Montréal, Québec H4A 3J1, Canada
| |
Collapse
|
31
|
Line-1: Implications in the etiology of cancer, clinical applications, and pharmacologic targets. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:51-60. [DOI: 10.1016/j.mrrev.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 11/21/2022]
|
32
|
Warkocki Z, Krawczyk PS, Adamska D, Bijata K, Garcia-Perez JL, Dziembowski A. Uridylation by TUT4/7 Restricts Retrotransposition of Human LINE-1s. Cell 2018; 174:1537-1548.e29. [PMID: 30122351 PMCID: PMC6191937 DOI: 10.1016/j.cell.2018.07.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/27/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
LINE-1 retrotransposition is tightly restricted by layers of regulatory control, with epigenetic pathways being the best characterized. Looking at post-transcriptional regulation, we now show that LINE-1 mRNA 3' ends are pervasively uridylated in various human cellular models and in mouse testes. TUT4 and TUT7 uridyltransferases catalyze the modification and function in cooperation with the helicase/RNPase MOV10 to counteract the RNA chaperone activity of the L1-ORF1p retrotransposon protein. Uridylation potently restricts LINE-1 retrotransposition by a multilayer mechanism depending on differential subcellular localization of the uridyltransferases. We propose that uridine residues added by TUT7 in the cytoplasm inhibit initiation of reverse transcription of LINE-1 mRNAs once they are reimported to the nucleus, whereas uridylation by TUT4, which is enriched in cytoplasmic foci, destabilizes mRNAs. These results provide a model for the post-transcriptional restriction of LINE-1, revealing a key physiological role for TUT4/7-mediated uridylation in maintaining genome stability.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Paweł S Krawczyk
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Dorota Adamska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Krystian Bijata
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jose L Garcia-Perez
- Department of Genomic Medicine, Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, Granada 18016, Spain; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
33
|
Benitez-Guijarro M, Lopez-Ruiz C, Tarnauskaitė Ž, Murina O, Mian Mohammad M, Williams TC, Fluteau A, Sanchez L, Vilar-Astasio R, Garcia-Canadas M, Cano D, Kempen MJH, Sanchez-Pozo A, Heras SR, Jackson AP, Reijns MA, Garcia-Perez JL. RNase H2, mutated in Aicardi-Goutières syndrome, promotes LINE-1 retrotransposition. EMBO J 2018; 37:e98506. [PMID: 29959219 PMCID: PMC6068448 DOI: 10.15252/embj.201798506] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 12/03/2022] Open
Abstract
Long INterspersed Element class 1 (LINE-1) elements are a type of abundant retrotransposons active in mammalian genomes. An average human genome contains ~100 retrotransposition-competent LINE-1s, whose activity is influenced by the combined action of cellular repressors and activators. TREX1, SAMHD1 and ADAR1 are known LINE-1 repressors and when mutated cause the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). Mutations in RNase H2 are the most common cause of AGS, and its activity was proposed to similarly control LINE-1 retrotransposition. It has therefore been suggested that increased LINE-1 activity may be the cause of aberrant innate immune activation in AGS Here, we establish that, contrary to expectations, RNase H2 is required for efficient LINE-1 retrotransposition. As RNase H1 overexpression partially rescues the defect in RNase H2 null cells, we propose a model in which RNase H2 degrades the LINE-1 RNA after reverse transcription, allowing retrotransposition to be completed. This also explains how LINE-1 elements can retrotranspose efficiently without their own RNase H activity. Our findings appear to be at odds with LINE-1-derived nucleic acids driving autoinflammation in AGS.
Collapse
Affiliation(s)
- Maria Benitez-Guijarro
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Cesar Lopez-Ruiz
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Žygimantė Tarnauskaitė
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Olga Murina
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Mahwish Mian Mohammad
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Thomas C Williams
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Adeline Fluteau
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Laura Sanchez
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Raquel Vilar-Astasio
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Marta Garcia-Canadas
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - David Cano
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Marie-Jeanne Hc Kempen
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Antonio Sanchez-Pozo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Sara R Heras
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Andrew P Jackson
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Martin Am Reijns
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Jose L Garcia-Perez
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Schauer SN, Carreira PE, Shukla R, Gerhardt DJ, Gerdes P, Sanchez-Luque FJ, Nicoli P, Kindlova M, Ghisletti S, Santos AD, Rapoud D, Samuel D, Faivre J, Ewing AD, Richardson SR, Faulkner GJ. L1 retrotransposition is a common feature of mammalian hepatocarcinogenesis. Genome Res 2018; 28:639-653. [PMID: 29643204 PMCID: PMC5932605 DOI: 10.1101/gr.226993.117] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/26/2018] [Indexed: 12/15/2022]
Abstract
The retrotransposon Long Interspersed Element 1 (LINE-1 or L1) is a continuing source of germline and somatic mutagenesis in mammals. Deregulated L1 activity is a hallmark of cancer, and L1 mutagenesis has been described in numerous human malignancies. We previously employed retrotransposon capture sequencing (RC-seq) to analyze hepatocellular carcinoma (HCC) samples from patients infected with hepatitis B or hepatitis C virus and identified L1 variants responsible for activating oncogenic pathways. Here, we have applied RC-seq and whole-genome sequencing (WGS) to an Abcb4 (Mdr2)-/- mouse model of hepatic carcinogenesis and demonstrated for the first time that L1 mobilization occurs in murine tumors. In 12 HCC nodules obtained from 10 animals, we validated four somatic L1 insertions by PCR and capillary sequencing, including TF subfamily elements, and one GF subfamily example. One of the TF insertions carried a 3' transduction, allowing us to identify its donor L1 and to demonstrate that this full-length TF element retained retrotransposition capacity in cultured cancer cells. Using RC-seq, we also identified eight tumor-specific L1 insertions from 25 HCC patients with a history of alcohol abuse. Finally, we used RC-seq and WGS to identify three tumor-specific L1 insertions among 10 intra-hepatic cholangiocarcinoma (ICC) patients, including one insertion traced to a donor L1 on Chromosome 22 known to be highly active in other cancers. This study reveals L1 mobilization as a common feature of hepatocarcinogenesis in mammals, demonstrating that the phenomenon is not restricted to human viral HCC etiologies and is encountered in murine liver tumors.
Collapse
Affiliation(s)
- Stephanie N Schauer
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Patricia E Carreira
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ruchi Shukla
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
- Invenra, Incorporated, Madison, Wisconsin 53719, USA
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Francisco J Sanchez-Luque
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Paola Nicoli
- Department of Experimental Oncology, European Institute of Oncology, 20146 Milan, Italy
| | - Michaela Kindlova
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif 94800, France
| | - Delphine Rapoud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif 94800, France
| | - Didier Samuel
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif 94800, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif 94800, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pôle de Biologie Médicale, Paul-Brousse University Hospital, Villejuif 94800, France
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
35
|
Selective elimination of long INterspersed element-1 expressing tumour cells by targeted expression of the HSV-TK suicide gene. Oncotarget 2018; 8:38239-38250. [PMID: 28415677 PMCID: PMC5503529 DOI: 10.18632/oncotarget.16013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/02/2017] [Indexed: 12/31/2022] Open
Abstract
In gene therapy, effective and selective suicide gene expression is crucial. We exploited the endogenous Long INterspersed Element-1 (L1) machinery often reactivated in human cancers to integrate the Herpes Simplex Virus Thymidine Kinase (HSV-TK) suicide gene selectively into the genome of cancer cells. We developed a plasmid-based system directing HSV-TK expression only when reverse transcribed and integrated in the host genome via the endogenous L1 ORF1/2 proteins and an Alu element. Delivery of these new constructs into cells followed by Ganciclovir (GCV) treatment selectively induced mortality of L1 ORF1/2 protein expressing cancer cells, but had no effect on primary cells that do not express L1 ORF1/2. This novel strategy for selective targeting of tumour cells provides high tolerability as the HSV-TK gene cannot be expressed without reverse transcription and integration, and high selectivity as these processes take place only in cancer cells expressing high levels of functional L1 ORF1/2.
Collapse
|
36
|
Spliced integrated retrotransposed element (SpIRE) formation in the human genome. PLoS Biol 2018; 16:e2003067. [PMID: 29505568 PMCID: PMC5860796 DOI: 10.1371/journal.pbio.2003067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 03/20/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022] Open
Abstract
Human Long interspersed element-1 (L1) retrotransposons contain an internal RNA polymerase II promoter within their 5′ untranslated region (UTR) and encode two proteins, (ORF1p and ORF2p) required for their mobilization (i.e., retrotransposition). The evolutionary success of L1 relies on the continuous retrotransposition of full-length L1 mRNAs. Previous studies identified functional splice donor (SD), splice acceptor (SA), and polyadenylation sequences in L1 mRNA and provided evidence that a small number of spliced L1 mRNAs retrotransposed in the human genome. Here, we demonstrate that the retrotransposition of intra-5′UTR or 5′UTR/ORF1 spliced L1 mRNAs leads to the generation of spliced integrated retrotransposed elements (SpIREs). We identified a new intra-5′UTR SpIRE that is ten times more abundant than previously identified SpIREs. Functional analyses demonstrated that both intra-5′UTR and 5′UTR/ORF1 SpIREs lack Cis-acting transcription factor binding sites and exhibit reduced promoter activity. The 5′UTR/ORF1 SpIREs also produce nonfunctional ORF1p variants. Finally, we demonstrate that sequence changes within the L1 5′UTR over evolutionary time, which permitted L1 to evade the repressive effects of a host protein, can lead to the generation of new L1 splicing events, which, upon retrotransposition, generates a new SpIRE subfamily. We conclude that splicing inhibits L1 retrotransposition, SpIREs generally represent evolutionary “dead-ends” in the L1 retrotransposition process, mutations within the L1 5′UTR alter L1 splicing dynamics, and that retrotransposition of the resultant spliced transcripts can generate interindividual genomic variation. Long interspersed element-1 (L1) sequences comprise about 17% of the human genome reference sequence. The average human genome contains about 100 active L1s that mobilize throughout the genome by a “copy and paste” process termed retrotransposition. Active L1s encode two proteins (ORF1p and ORF2p). ORF1p and ORF2p preferentially bind to their encoding RNA, forming a ribonucleoprotein particle (RNP). During retrotransposition, the L1 RNP translocates to the nucleus, where the ORF2p endonuclease makes a single-strand nick in target site DNA that exposes a 3′ hydroxyl group in genomic DNA. The 3′ hydroxyl group then is used as a primer by the ORF2p reverse transcriptase to copy the L1 RNA into cDNA, leading to the integration of an L1 copy at a new genomic location. The evolutionary success of L1 requires the faithful retrotransposition of full-length L1 mRNAs; thus, it was surprising to find that a small number of L1 retrotransposition events are derived from spliced L1 mRNAs. By using genetic, biochemical, and computational approaches, we demonstrate that spliced L1 mRNAs can undergo an initial round of retrotransposition, leading to the generation of spliced integrated retrotransposed elements (SpIREs). SpIREs represent about 2% of previously annotated full-length primate-specific L1s in the human genome reference sequence. However, because splicing leads to intra-L1 deletions that remove critical sequences required for L1 expression, SpIREs generally cannot undergo subsequent rounds of retrotransposition and can be considered “dead on arrival” insertions. Our data further highlight how genetic conflict between L1 and its host has influenced L1 expression, L1 retrotransposition, and L1 splicing dynamics over evolutionary time.
Collapse
|
37
|
Condensin II and GAIT complexes cooperate to restrict LINE-1 retrotransposition in epithelial cells. PLoS Genet 2017; 13:e1007051. [PMID: 29028794 PMCID: PMC5656329 DOI: 10.1371/journal.pgen.1007051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/25/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) retrotransposons can mobilize (retrotranspose) within the human genome, and mutagenic de novo L1 insertions can lead to human diseases, including cancers. As a result, cells are actively engaged in preventing L1 retrotransposition. This work reveals that the human Condensin II complex restricts L1 retrotransposition in both non-transformed and transformed cell lines through inhibition of L1 transcription and translation. Condensin II subunits, CAP-D3 and CAP-H2, interact with members of the Gamma-Interferon Activated Inhibitor of Translation (GAIT) complex including the glutamyl-prolyl-tRNA synthetase (EPRS), the ribosomal protein L13a, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and NS1 associated protein 1 (NSAP1). GAIT has been shown to inhibit translation of mRNAs encoding inflammatory proteins in myeloid cells by preventing the binding of the translation initiation complex, in response to Interferon gamma (IFN-γ). Excitingly, our data show that Condensin II promotes complexation of GAIT subunits. Furthermore, RNA-Immunoprecipitation experiments in epithelial cells demonstrate that Condensin II and GAIT subunits associate with L1 RNA in a co-dependent manner, independent of IFN-γ. These findings suggest that cooperation between the Condensin II and GAIT complexes may facilitate a novel mechanism of L1 repression, thus contributing to the maintenance of genome stability in somatic cells.
Collapse
|
38
|
Feng Y, Goubran MH, Follack TB, Chelico L. Deamination-independent restriction of LINE-1 retrotransposition by APOBEC3H. Sci Rep 2017; 7:10881. [PMID: 28883657 PMCID: PMC5589869 DOI: 10.1038/s41598-017-11344-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022] Open
Abstract
The APOBEC3 family of cytosine deaminase enzymes are able to restrict replication of retroelements, such as LINE-1. However, each of the seven APOBEC3 enzymes have been reported to act differentially to prevent LINE-1 retrotransposition and the mechanisms of APOBEC3-mediated LINE-1 inhibition has not been well understood. The prevailing view for many years was that APOBEC3-mediated LINE-1 inhibition was deamination-independent and relied on APOBEC3s blocking the LINE-1 reverse transcriptase DNA polymerization or transport of the LINE-1 RNA into the nucleus. However, recently it was shown that APOBEC3A can deaminate cytosine, to form uracil, on transiently exposed single-stranded LINE-1 cDNA and this leads to LINE-1 cDNA degradation. In this study, we confirmed that APOBEC3A is a potent deamination-dependent inhibitor of LINE-1 retrotransposition, but show that in contrast, A3H haplotype II and haplotype V restrict LINE-1 activity using a deamination-independent mechanism. Our study supports the model that different APOBEC3 proteins have evolved to inhibit LINE-1 retrotransposition through distinct mechanisms.
Collapse
Affiliation(s)
- Yuqing Feng
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Mariam H Goubran
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Tyson B Follack
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Linda Chelico
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada.
| |
Collapse
|
39
|
MacLennan M, García-Cañadas M, Reichmann J, Khazina E, Wagner G, Playfoot CJ, Salvador-Palomeque C, Mann AR, Peressini P, Sanchez L, Dobie K, Read D, Hung CC, Eskeland R, Meehan RR, Weichenrieder O, García-Pérez JL, Adams IR. Mobilization of LINE-1 retrotransposons is restricted by Tex19.1 in mouse embryonic stem cells. eLife 2017; 6:e26152. [PMID: 28806172 PMCID: PMC5570191 DOI: 10.7554/elife.26152] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
Mobilization of retrotransposons to new genomic locations is a significant driver of mammalian genome evolution, but these mutagenic events can also cause genetic disorders. In humans, retrotransposon mobilization is mediated primarily by proteins encoded by LINE-1 (L1) retrotransposons, which mobilize in pluripotent cells early in development. Here we show that TEX19.1, which is induced by developmentally programmed DNA hypomethylation, can directly interact with the L1-encoded protein L1-ORF1p, stimulate its polyubiquitylation and degradation, and restrict L1 mobilization. We also show that TEX19.1 likely acts, at least in part, through promoting the activity of the E3 ubiquitin ligase UBR2 towards L1-ORF1p. Moreover, loss of Tex19.1 increases L1-ORF1p levels and L1 mobilization in pluripotent mouse embryonic stem cells, implying that Tex19.1 prevents de novo retrotransposition in the pluripotent phase of the germline cycle. These data show that post-translational regulation of L1 retrotransposons plays a key role in maintaining trans-generational genome stability in mammals.
Collapse
Affiliation(s)
- Marie MacLennan
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Marta García-Cañadas
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Judith Reichmann
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Elena Khazina
- Department of
Biochemistry, Max Planck Institute for Developmental
Biology, Tübingen, Germany
| | - Gabriele Wagner
- Department of
Biochemistry, Max Planck Institute for Developmental
Biology, Tübingen, Germany
| | - Christopher J Playfoot
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Carmen Salvador-Palomeque
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Abigail R Mann
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Paula Peressini
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Laura Sanchez
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Karen Dobie
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - David Read
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Chao-Chun Hung
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Ragnhild Eskeland
- Department of
Biosciences, University of Oslo,
Oslo,
Norway
- Norwegian Center for
Stem Cell Research, Department of Immunology, Oslo
University Hospital, Oslo, Norway
| | - Richard R Meehan
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Oliver Weichenrieder
- Department of
Biochemistry, Max Planck Institute for Developmental
Biology, Tübingen, Germany
| | - Jose Luis García-Pérez
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Ian R Adams
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| |
Collapse
|
40
|
Abstract
Transposable elements give rise to interspersed repeats, sequences that comprise most of our genomes. These mobile DNAs have been historically underappreciated - both because they have been presumed to be unimportant, and because their high copy number and variability pose unique technical challenges. Neither impediment now seems steadfast. Interest in the human mobilome has never been greater, and methods enabling its study are maturing at a fast pace. This Review describes the activity of transposable elements in human cancers, particularly long interspersed element-1 (LINE-1). LINE-1 sequences are self-propagating, protein-coding retrotransposons, and their activity results in somatically acquired insertions in cancer genomes. Altered expression of transposable elements and animation of genomic LINE-1 sequences appear to be hallmarks of cancer, and can be responsible for driving mutations in tumorigenesis.
Collapse
Affiliation(s)
- Kathleen H Burns
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
41
|
Transposable elements in cancer. NATURE REVIEWS. CANCER 2017. [PMID: 28642606 DOI: 10.1038/nrc.2017.35+[doi]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transposable elements give rise to interspersed repeats, sequences that comprise most of our genomes. These mobile DNAs have been historically underappreciated - both because they have been presumed to be unimportant, and because their high copy number and variability pose unique technical challenges. Neither impediment now seems steadfast. Interest in the human mobilome has never been greater, and methods enabling its study are maturing at a fast pace. This Review describes the activity of transposable elements in human cancers, particularly long interspersed element-1 (LINE-1). LINE-1 sequences are self-propagating, protein-coding retrotransposons, and their activity results in somatically acquired insertions in cancer genomes. Altered expression of transposable elements and animation of genomic LINE-1 sequences appear to be hallmarks of cancer, and can be responsible for driving mutations in tumorigenesis.
Collapse
|
42
|
Richardson SR, Gerdes P, Gerhardt DJ, Sanchez-Luque FJ, Bodea GO, Muñoz-Lopez M, Jesuadian JS, Kempen MJHC, Carreira PE, Jeddeloh JA, Garcia-Perez JL, Kazazian HH, Ewing AD, Faulkner GJ. Heritable L1 retrotransposition in the mouse primordial germline and early embryo. Genome Res 2017; 27:1395-1405. [PMID: 28483779 PMCID: PMC5538555 DOI: 10.1101/gr.219022.116] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
LINE-1 (L1) retrotransposons are a noted source of genetic diversity and disease in mammals. To expand its genomic footprint, L1 must mobilize in cells that will contribute their genetic material to subsequent generations. Heritable L1 insertions may therefore arise in germ cells and in pluripotent embryonic cells, prior to germline specification, yet the frequency and predominant developmental timing of such events remain unclear. Here, we applied mouse retrotransposon capture sequencing (mRC-seq) and whole-genome sequencing (WGS) to pedigrees of C57BL/6J animals, and uncovered an L1 insertion rate of ≥1 event per eight births. We traced heritable L1 insertions to pluripotent embryonic cells and, strikingly, to early primordial germ cells (PGCs). New L1 insertions bore structural hallmarks of target-site primed reverse transcription (TPRT) and mobilized efficiently in a cultured cell retrotransposition assay. Together, our results highlight the rate and evolutionary impact of heritable L1 retrotransposition and reveal retrotransposition-mediated genomic diversification as a fundamental property of pluripotent embryonic cells in vivo.
Collapse
Affiliation(s)
- Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia.,Invenra, Incorporated, Madison, Wisconsin 53719, USA
| | - Francisco J Sanchez-Luque
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia.,Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Gabriela-Oana Bodea
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Martin Muñoz-Lopez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - J Samuel Jesuadian
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | | | - Patricia E Carreira
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | | | - Jose L Garcia-Perez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain.,Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Haig H Kazazian
- Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia.,School of Biomedical Sciences.,Queensland Brain Institute, University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
43
|
Abstract
Retrotransposons have generated about 40 % of the human genome. This review examines the strategies the cell has evolved to coexist with these genomic "parasites", focussing on the non-long terminal repeat retrotransposons of humans and mice. Some of the restriction factors for retrotransposition, including the APOBECs, MOV10, RNASEL, SAMHD1, TREX1, and ZAP, also limit replication of retroviruses, including HIV, and are part of the intrinsic immune system of the cell. Many of these proteins act in the cytoplasm to degrade retroelement RNA or inhibit its translation. Some factors act in the nucleus and involve DNA repair enzymes or epigenetic processes of DNA methylation and histone modification. RISC and piRNA pathway proteins protect the germline. Retrotransposon control is relaxed in some cell types, such as neurons in the brain, stem cells, and in certain types of disease and cancer, with implications for human health and disease. This review also considers potential pitfalls in interpreting retrotransposon-related data, as well as issues to consider for future research.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA 212051
| |
Collapse
|