1
|
Davydenko K, Filatova A, Skoblov M. Assessing Splicing Variants in the PAX6 Gene: A Comprehensive Minigene Approach. J Cell Mol Med 2025; 29:e70459. [PMID: 40133207 PMCID: PMC11936725 DOI: 10.1111/jcmm.70459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Haploinsufficiency of the PAX6 gene causes aniridia, a congenital eye disorder characterised by the absence or malformation of the iris and foveal hypoplasia. Previous studies indicate that pathogenic splice variants account for up to 15% of all disease-causing PAX6 variants. However, this proportion may be significantly underestimated because the pathogenicity of splice variants can only be accurately established through experimental validation. In this study, we developed and validated a system of eight minigene constructions for the functional analysis of splicing variants in the PAX6 gene. This system covers all PAX6 coding exons and allows the analysis of any exon and most intronic variants of PAX6. Our comprehensive approach, employing fragment analysis and deep targeted sequencing, enabled us to accurately characterise 38 previously described PAX6 variants, including challenging cases with multiple splicing events. The application of our system revealed that the number of pathogenic splicing variants might be closer to 30% of all pathogenic PAX6 variants. This finding considerably reshapes our understanding of their significance in the genetic landscape of aniridia.
Collapse
Affiliation(s)
- Kseniya Davydenko
- Department of Functional GenomicsResearch Centre for Medical GeneticsMoscowRussia
| | - Alexandra Filatova
- Department of Functional GenomicsResearch Centre for Medical GeneticsMoscowRussia
| | - Mikhail Skoblov
- Department of Functional GenomicsResearch Centre for Medical GeneticsMoscowRussia
| |
Collapse
|
2
|
Hamm CW, Gray MJ. Inorganic polyphosphate and the stringent response coordinately control cell division and cell morphology in Escherichia coli. mBio 2025; 16:e0351124. [PMID: 39727417 PMCID: PMC11796413 DOI: 10.1128/mbio.03511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well-known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes. Escherichia coli also makes inorganic polyphosphate (polyP), an ancient molecule evolutionary conserved across most bacteria and other cells, in response to a variety of stress conditions, including amino acid starvation. PolyP can act as an energy and phosphate storage pool, metal chelator, regulatory signal, and chaperone, among other functions. Here we report that E. coli lacking both (p)ppGpp and polyP have a complex phenotype indicating previously unknown overlapping roles for (p)ppGpp and polyP in regulating cell division, cell morphology, and metabolism. Disruption of either (p)ppGpp or polyP synthesis led to the formation of filamentous cells, but simultaneous disruption of both pathways resulted in cells with heterogenous cell morphologies, including highly branched cells, severely mislocalized Z-rings, and cells containing substantial void spaces. These mutants also failed to grow when nutrients were limited, even when amino acids were added. These results provide new insights into the relationship between polyP synthesis and the stringent response in bacteria and point toward their having a joint role in controlling metabolism, cell division, and cell growth.IMPORTANCECell division is a fundamental biological process, and the mechanisms that control it in Escherichia coli have been the subject of intense research scrutiny for many decades. Similarly, both the (p)ppGpp-dependent stringent response and inorganic polyphosphate (polyP) synthesis are well-studied, evolutionarily ancient, and widely conserved pathways in diverse bacteria. Our results indicate that these systems, normally studied as stress-response mechanisms, play a coordinated and novel role in regulating cell division, morphology, and metabolism even under non-stress conditions.
Collapse
Affiliation(s)
- Christopher W. Hamm
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J. Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Shchagina O, Gilazova L, Filatova A, Vafina Z, Murtazina A, Chigvintceva P, Kudryashova O, Polyakov A, Kutsev S, Bulakh M, Skoblov M. The Basis of Diversity in Laminopathy Phenotypes Caused by Variants in the Intron 8 Donor Splice Site of the LMNA Gene. Int J Mol Sci 2025; 26:1015. [PMID: 39940784 PMCID: PMC11818007 DOI: 10.3390/ijms26031015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Laminopathies are a broad spectrum of hereditary diseases caused by pathogenic variants of the LMNA gene. Such phenotypic diversity is explained by the function of intermediate filaments encoded by the LMNA gene. We examined a family with an overlapping phenotype of cardiac arrhythmia, cardiomyopathy, limb-girdle muscular dystrophy, and partial lipodystrophy. The cause of the disorder was a novel LMNA(NM_170707.4):c.1488+2T>C variant. The analysis of mRNA extracted from the probands' blood showed a multitude of alternative splicing products, which was the cause of the complex phenotype in affected family members. Aside from that, we used minigene constructs to analyze the c.1488+2T>C variant, as well as other previously described variants affecting the same donor splice site in intron 8 (c.1488+1G>A, c.1488+5G>C, c.1488+5G>A). We demonstrated that these variants result in multiple splicing events, each producing splicing products with varying prevalence. Our experiments suggest that the variety of alternative transcripts contributes to complex phenotypes, while the quantitative ratio of these transcripts influences the varying severity of the disease.
Collapse
Affiliation(s)
- Olga Shchagina
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (A.F.); (A.M.); (A.P.); (S.K.)
| | - Leisan Gilazova
- Republic of Tatarstan Ministry of Healthcare Autonomous Public Healthcare, Institution Republic Clinical Hospital, 420064 Kazan, Russia; (L.G.); (Z.V.); (O.K.)
| | - Alexandra Filatova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (A.F.); (A.M.); (A.P.); (S.K.)
| | - Zulfiia Vafina
- Republic of Tatarstan Ministry of Healthcare Autonomous Public Healthcare, Institution Republic Clinical Hospital, 420064 Kazan, Russia; (L.G.); (Z.V.); (O.K.)
| | - Aysylu Murtazina
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (A.F.); (A.M.); (A.P.); (S.K.)
| | - Polina Chigvintceva
- Republic of Tatarstan Ministry of Healthcare Autonomous Public Healthcare, Institution Republic Clinical Hospital, 420064 Kazan, Russia; (L.G.); (Z.V.); (O.K.)
| | - Olga Kudryashova
- Republic of Tatarstan Ministry of Healthcare Autonomous Public Healthcare, Institution Republic Clinical Hospital, 420064 Kazan, Russia; (L.G.); (Z.V.); (O.K.)
| | - Aleksander Polyakov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (A.F.); (A.M.); (A.P.); (S.K.)
| | - Sergey Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (A.F.); (A.M.); (A.P.); (S.K.)
| | - Maria Bulakh
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (A.F.); (A.M.); (A.P.); (S.K.)
| | - Mikhail Skoblov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (A.F.); (A.M.); (A.P.); (S.K.)
| |
Collapse
|
4
|
Hamm CW, Gray MJ. Inorganic polyphosphate and the stringent response coordinately control cell division and cell morphology in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612536. [PMID: 39314361 PMCID: PMC11419118 DOI: 10.1101/2024.09.11.612536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes. Escherichia coli also makes inorganic polyphosphate (polyP), an ancient molecule evolutionary conserved across most bacteria and other cells, in response to a variety of stress conditions, including amino acid starvation. PolyP can act as an energy and phosphate storage pool, metal chelator, regulatory signal, and chaperone, among other functions. Here we report that E. coli lacking both (p)ppGpp and polyP have a complex phenotype indicating previously unknown overlapping roles for (p)ppGpp and polyP in regulating cell division, cell morphology, and metabolism. Disruption of either (p)ppGpp or polyP synthesis led to formation of filamentous cells, but simultaneous disruption of both pathways resulted in cells with heterogenous cell morphologies, including highly branched cells, severely mislocalized Z-rings, and cells containing substantial void spaces. These mutants also failed to grow when nutrients were limited, even when amino acids were added. These results provide new insights into the relationship between polyP synthesis and the stringent response in bacteria and point towards their having a joint role in controlling metabolism, cell division, and cell growth.
Collapse
Affiliation(s)
- Christopher W. Hamm
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J. Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
5
|
Koplūnaitė M, Butkutė K, Stankevičiūtė J, Meškys R. Exploring the Mutated Kinases for Chemoenzymatic Synthesis of N4-Modified Cytidine Monophosphates. Molecules 2024; 29:3767. [PMID: 39202847 PMCID: PMC11357392 DOI: 10.3390/molecules29163767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Nucleosides, nucleotides, and their analogues are an important class of molecules that are used as substrates in research of enzymes and nucleic acid, or as antiviral and antineoplastic agents. Nucleoside phosphorylation is usually achieved with chemical methods; however, enzymatic phosphorylation is a viable alternative. Here, we present a chemoenzymatic synthesis of modified cytidine monophosphates, where a chemical synthesis of novel N4-modified cytidines is followed by an enzymatic phosphorylation of the nucleosides by nucleoside kinases. To enlarge the substrate scope, multiple mutant variants of Drosophila melanogaster deoxynucleoside kinase (DmdNK) (EC:2.7.1.145) and Bacillus subtilis deoxycytidine kinase (BsdCK) (EC:2.7.1.74) have been created and tested. It has been determined that certain point mutations in the active sites of the kinases alter their substrate specificities noticeably and allow phosphorylation of compounds that had been otherwise not phosphorylated by the wild-type DmdNK or BsdCK.
Collapse
Affiliation(s)
| | | | | | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Av. 7, LT-10257 Vilnius, Lithuania; (K.B.); (J.S.)
| |
Collapse
|
6
|
Ogonkov A, Dieterich CL, Meoded RA, Piel J, Fraley AE, Sasso S. Characterization of an Unusual α-Oxoamine Synthase Off-Loading Domain from a Cyanobacterial Type I Fatty Acid Synthase. Chembiochem 2023; 24:e202300209. [PMID: 37144248 DOI: 10.1002/cbic.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/06/2023]
Abstract
Type I fatty acid synthases (FASs) are known from higher eukaryotes and fungi. We report the discovery of FasT, a rare type I FAS from the cyanobacterium Chlorogloea sp. CCALA695. FasT possesses an unusual off-loading domain, which was heterologously expressed in E. coli and found to act as an α-oxoamine synthase (AOS) in vitro. Similar to serine palmitoyltransferases from sphingolipid biosynthesis, the AOS off-loading domain catalyzes a decarboxylative Claisen condensation between l-serine and a fatty acyl thioester. While the AOS domain was strictly specific for l-serine, thioesters with saturated fatty acyl chains of six carbon atoms and longer were tolerated, with the highest activity observed for stearoyl-coenzyme A (C18 ). Our findings suggest a novel route to α-amino ketones via the direct condensation of iteratively produced long-chain fatty acids with l-serine by a FAS with a cis-acting AOS off-loading domain.
Collapse
Affiliation(s)
- Andrei Ogonkov
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
- Institute of Biology, Leipzig University, Johannisallee 23, 04107, Leipzig, Germany
| | - Cora L Dieterich
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Roy A Meoded
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Jörn Piel
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Amy E Fraley
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Severin Sasso
- Institute of Biology, Leipzig University, Johannisallee 23, 04107, Leipzig, Germany
| |
Collapse
|
7
|
Filatova A, Reveguk I, Piatkova M, Bessonova D, Kuziakova O, Demakova V, Romanishin A, Fishman V, Imanmalik Y, Chekanov N, Skitchenko R, Barbitoff Y, Kardymon O, Skoblov M. Annotation of uORFs in the OMIM genes allows to reveal pathogenic variants in 5'UTRs. Nucleic Acids Res 2023; 51:1229-1244. [PMID: 36651276 PMCID: PMC9943669 DOI: 10.1093/nar/gkac1247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
An increasing number of studies emphasize the role of non-coding variants in the development of hereditary diseases. However, the interpretation of such variants in clinical genetic testing still remains a critical challenge due to poor knowledge of their pathogenicity mechanisms. It was previously shown that variants in 5'-untranslated regions (5'UTRs) can lead to hereditary diseases due to disruption of upstream open reading frames (uORFs). Here, we performed a manual annotation of upstream translation initiation sites (TISs) in human disease-associated genes from the OMIM database and revealed ∼4.7 thousand of TISs related to uORFs. We compared our TISs with the previous studies and provided a list of 'high confidence' uORFs. Using a luciferase assay, we experimentally validated the translation of uORFs in the ETFDH, PAX9, MAST1, HTT, TTN,GLI2 and COL2A1 genes, as well as existence of N-terminal CDS extension in the ZIC2 gene. Besides, we created a tool to annotate the effects of genetic variants located in uORFs. We revealed the variants from the HGMD and ClinVar databases that disrupt uORFs and thereby could lead to Mendelian disorders. We also showed that the distribution of uORFs-affecting variants differs between pathogenic and population variants. Finally, drawing on manually curated data, we developed a machine-learning algorithm that allows us to predict the TISs in other human genes.
Collapse
Affiliation(s)
- Alexandra Filatova
- To whom correspondence should be addressed. Tel: +7 916 335 33 29; Fax: +7 499 324 07 02;
| | - Ivan Reveguk
- Laboratoire de Biologie Structurale de la Cellule, École Polytechnique, Paris, France
| | - Maria Piatkova
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia,Institute of high technologies and advanced materials, Far Eastern Federal University, Vladivostok, Russia
| | - Daria Bessonova
- Medical Center, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Kuziakova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | | | - Alexander Romanishin
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia,Institute of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Veniamin Fishman
- Artificial Intelligence Research Institute, Moscow, Russia,Molecular Mechanisms of Ontogenesis, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | | | | | - Yury Barbitoff
- Bioinformatics Institute, St. Petersburg, Russia,Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, St. Petersburg, Russia,Dpt. of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Olga Kardymon
- Artificial Intelligence Research Institute, Moscow, Russia
| | | |
Collapse
|
8
|
Bowlin MQ, Long AR, Huffines JT, Gray MJ. The role of nitrogen-responsive regulators in controlling inorganic polyphosphate synthesis in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001185. [PMID: 35482529 PMCID: PMC10233264 DOI: 10.1099/mic.0.001185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/10/2022] [Indexed: 12/22/2022]
Abstract
Inorganic polyphosphate (polyP) is synthesized by bacteria under stressful environmental conditions and acts by a variety of mechanisms to promote cell survival. While the kinase that synthesizes polyP (PPK, encoded by the ppk gene) is well known, ppk transcription is not activated by environmental stress and little is understood about how environmental stress signals lead to polyP accumulation. Previous work has shown that the transcriptional regulators DksA, RpoN (σ54) and RpoE (σ24) positively regulate polyP production, but not ppk transcription, in Escherichia coli. In this work, we examine the role of the alternative sigma factor RpoN and nitrogen starvation stress response pathways in controlling polyP synthesis. We show that the RpoN enhancer binding proteins GlnG and GlrR impact polyP production, and uncover a new role for the nitrogen phosphotransferase regulator PtsN (EIIANtr) as a positive regulator of polyP production, acting upstream of DksA, downstream of RpoN and apparently independently of RpoE. However, neither these regulatory proteins nor common nitrogen metabolites appear to act directly on PPK, and the precise mechanism(s) by which polyP production is modulated after stress remain(s) unclear. Unexpectedly, we also found that the genes that impact polyP production vary depending on the composition of the rich media in which the cells were grown before exposure to polyP-inducing stress. These results constitute progress towards deciphering the regulatory networks driving polyP production under stress, and highlight the remarkable complexity of this regulation and its connections to a broad range of stress-sensing pathways.
Collapse
Affiliation(s)
- Marvin Q. Bowlin
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Abagail Renee Long
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joshua T. Huffines
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael Jeffrey Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Konina D, Sparber P, Viakhireva I, Filatova A, Skoblov M. Investigation of LINC00493/SMIM26 Gene Suggests Its Dual Functioning at mRNA and Protein Level. Int J Mol Sci 2021; 22:ijms22168477. [PMID: 34445188 PMCID: PMC8395196 DOI: 10.3390/ijms22168477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
The amount of human long noncoding RNA (lncRNA) genes is comparable to protein-coding; however, only a small number of lncRNAs are functionally annotated. Previously, it was shown that lncRNAs can participate in many key cellular processes, including regulation of gene expression at transcriptional and post-transcriptional levels. The lncRNA genes can contain small open reading frames (sORFs), and recent studies demonstrated that some of the resulting short proteins could play an important biological role. In the present study, we investigate the widely expressed lncRNA LINC00493. We determine the structure of the LINC00493 transcript, its cell localization and influence on cell physiology. Our data demonstrate that LINC00493 has an influence on cell viability in a cell-type-specific manner. Furthermore, it was recently shown that LINC00493 has a sORF that is translated into small protein SMIM26. The results of our knockdown and overexpression experiments suggest that both LINC00493/SMIM26 transcript and protein affect cell viability, but in the opposite manner.
Collapse
Affiliation(s)
- Daria Konina
- Moscow Institute of Physics and Technology, Phystech School of Biological and Medical Physics, 141701 Dolgoprudny, Russia
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
- Correspondence: (D.K.); (A.F.)
| | - Peter Sparber
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
| | - Iuliia Viakhireva
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
| | - Alexandra Filatova
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
- Correspondence: (D.K.); (A.F.)
| | - Mikhail Skoblov
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
| |
Collapse
|
10
|
Filatova AY, Vasilyeva TA, Marakhonov AV, Sukhanova NV, Voskresenskaya AA, Zinchenko RA, Skoblov MY. Upstream ORF frameshift variants in the PAX6 5'UTR cause congenital aniridia. Hum Mutat 2021; 42:1053-1065. [PMID: 34174135 DOI: 10.1002/humu.24248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/12/2022]
Abstract
Congenital aniridia (AN) is a severe autosomal dominant panocular disorder associated with pathogenic variants in the PAX6 gene. Previously, we performed a molecular genetic study of a large cohort of Russian patients with AN and revealed four noncoding nucleotide variants in the PAX6 5'UTR. 14 additional PAX6-5'UTR variants were also reported in the literature, but the mechanism of their pathogenicity remained unclear. In the present study, we experimentally analyze five patient-derived PAX6 5'UTR-variants: four variants that we identified in Russian patients (c.-128-2delA, c.-125dupG, c.-122dupG, c.-118_-117del) and one previously reported (c.-52+5G>C). We show that the variants lead to a decrease in the protein translation efficiency, while mRNA expression level is not significantly reduced. Two of these variants also affect splicing. Furthermore, we predict and experimentally validate the presence of an evolutionarily conserved small uORF in the PAX6 5'UTR. All studied variants lead to the frameshift of the uORF, resulting in its extension. This extended out-of-frame uORF overlaps with the downstream CDS and thereby reduces its translation efficiency. We conclude that the uORF frameshift may be the main mechanism of pathogenicity for at least 15 out of 18 known PAX6 5'UTR variants. Moreover, we predict additional uORFs in the PAX6 5'UTR.
Collapse
Affiliation(s)
| | | | | | - Natella V Sukhanova
- Central Clinical Hospital of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna A Voskresenskaya
- Cheboksary Branch of the S. Fyodorov Eye Microsurgery Federal State Institution, Cheboksary, Russian Federation
| | - Rena A Zinchenko
- Research Centre for Medical Genetics, Moscow, Russian Federation.,N.A. Semashko National Research Institute of Public Health, Moscow, Russian Federation
| | | |
Collapse
|
11
|
Chin-Fatt A, Saberianfar R, Menassa R. A Rationally Designed Bovine IgA Fc Scaffold Enhances in planta Accumulation of a V HH-Fc Fusion Without Compromising Binding to Enterohemorrhagic E. coli. FRONTIERS IN PLANT SCIENCE 2021; 12:651262. [PMID: 33936135 PMCID: PMC8079772 DOI: 10.3389/fpls.2021.651262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
We previously isolated a single domain antibody (VHH) that binds Enterohemorrhagic Escherichia coli (EHEC) with the end-goal being the enteromucosal passive immunization of cattle herds. To improve the yield of a chimeric fusion of the VHH with an IgA Fc, we employed two rational design strategies, supercharging and introducing de novo disulfide bonds, on the bovine IgA Fc component of the chimera. After mutagenizing the Fc, we screened for accumulation levels after transient transformation in Nicotiana benthamiana leaves. We identified and characterized five supercharging and one disulfide mutant, termed '(5 + 1)Fc', that improve accumulation in comparison to the native Fc. Combining all these mutations is associated with a 32-fold increase of accumulation for the Fc alone, from 23.9 mg/kg fresh weight (FW) to 599.5 mg/kg FW, as well as a twenty-fold increase when fused to a VHH that binds EHEC, from 12.5 mg/kg FW tissue to 236.2 mg/kg FW. Co-expression of native or mutated VHH-Fc with bovine joining chain (JC) and bovine secretory component (SC) followed by co-immunoprecipitation suggests that the stabilizing mutations do not interfere with the capacity of VHH-Fc to assemble with JC and FC into a secretory IgA. Both the native and the mutated VHH-Fc similarly neutralized the ability of four of the seven most prevalent EHEC strains (O157:H7, O26:H11, O111:Hnm, O145:Hnm, O45:H2, O121:H19 and O103:H2), to adhere to HEp-2 cells as visualized by immunofluorescence microscopy and quantified by fluorometry. These results collectively suggest that supercharging and disulfide bond tethering on a Fc chain can effectively improve accumulation of a VHH-Fc fusion without impacting VHH functionality.
Collapse
Affiliation(s)
- Adam Chin-Fatt
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Reza Saberianfar
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
| | - Rima Menassa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
12
|
Kennouche P, Charles‐Orszag A, Nishiguchi D, Goussard S, Imhaus A, Dupré M, Chamot‐Rooke J, Duménil G. Deep mutational scanning of the Neisseria meningitidis major pilin reveals the importance of pilus tip-mediated adhesion. EMBO J 2019; 38:e102145. [PMID: 31609039 PMCID: PMC6856618 DOI: 10.15252/embj.2019102145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 11/09/2022] Open
Abstract
Type IV pili (TFP) are multifunctional micrometer-long filaments expressed at the surface of many prokaryotes. In Neisseria meningitidis, TFP are crucial for virulence. Indeed, these homopolymers of the major pilin PilE mediate interbacterial aggregation and adhesion to host cells. However, the mechanisms behind these functions remain unclear. Here, we simultaneously determined regions of PilE involved in pilus display, auto-aggregation, and adhesion by using deep mutational scanning and started mining this extensive functional map. For auto-aggregation, pili must reach a minimum length to allow pilus-pilus interactions through an electropositive cluster of residues centered around Lys140. For adhesion, results point to a key role for the tip of the pilus. Accordingly, purified pili interacting with host cells initially bind via their tip-located major pilin and then along their length. Overall, these results identify functional domains of PilE and support a direct role of the major pilin in TFP-dependent aggregation and adhesion.
Collapse
Affiliation(s)
- Paul Kennouche
- Pathogenesis of Vascular Infections UnitINSERMInstitut PasteurParisFrance
- Université Paris DescartesParisFrance
| | | | - Daiki Nishiguchi
- Pathogenesis of Vascular Infections UnitINSERMInstitut PasteurParisFrance
| | - Sylvie Goussard
- Pathogenesis of Vascular Infections UnitINSERMInstitut PasteurParisFrance
| | - Anne‐Flore Imhaus
- Pathogenesis of Vascular Infections UnitINSERMInstitut PasteurParisFrance
| | - Mathieu Dupré
- Institut PasteurCNRS USR 2000Mass Spectrometry for Biology UnitParisFrance
| | - Julia Chamot‐Rooke
- Institut PasteurCNRS USR 2000Mass Spectrometry for Biology UnitParisFrance
| | - Guillaume Duménil
- Pathogenesis of Vascular Infections UnitINSERMInstitut PasteurParisFrance
| |
Collapse
|
13
|
Wensing L, Sharma J, Uthayakumar D, Proteau Y, Chavez A, Shapiro RS. A CRISPR Interference Platform for Efficient Genetic Repression in Candida albicans. mSphere 2019; 4:e00002-19. [PMID: 30760609 PMCID: PMC6374589 DOI: 10.1128/msphere.00002-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/18/2019] [Indexed: 12/26/2022] Open
Abstract
Fungal pathogens are emerging as an important cause of human disease, and Candida albicans is among the most common causative agents of fungal infections. Studying this fungal pathogen is of the utmost importance and necessitates the development of molecular technologies to perform comprehensive genetic and functional genomic analysis. Here, we designed and developed a novel clustered regularly interspaced short palindromic repeat interference (CRISPRi) system for targeted genetic repression in C. albicans We engineered a nuclease-dead Cas9 (dCas9) construct that, paired with a guide RNA targeted to the promoter of an endogenous gene, is capable of targeting that gene for transcriptional repression. We further optimized a favorable promoter locus to achieve repression and demonstrated that fusion of dCas9 to an Mxi1 repressor domain was able to further enhance transcriptional repression. Finally, we demonstrated the application of this CRISPRi system through genetic repression of the essential molecular chaperone HSP90 This is the first demonstration of a functional CRISPRi repression system in C. albicans, and this valuable technology will enable many future applications in this critical fungal pathogen.IMPORTANCE Fungal pathogens are an increasingly important cause of human disease and mortality, and Candida albicans is among the most common causes of fungal disease. Studying this important fungal pathogen requires a comprehensive genetic toolkit to establish how different genetic factors play roles in the biology and virulence of this pathogen. Here, we developed a CRISPR-based genetic regulation platform to achieve targeted repression of C. albicans genes. This CRISPR interference (CRISPRi) technology exploits a nuclease-dead Cas9 protein (dCas9) fused to transcriptional repressors. The dCas9 fusion proteins pair with a guide RNA to target genetic promoter regions and to repress expression from these genes. We demonstrated the functionality of this system for repression in C. albicans and show that we can apply this technology to repress essential genes. Taking the results together, this work presents a new technology for efficient genetic repression in C. albicans, with important applications for genetic analysis in this fungal pathogen.
Collapse
Affiliation(s)
- Lauren Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Yannic Proteau
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|