1
|
Zhang W, Wang C, Meng Y, He L, Dong M. EBV Vaccines in the Prevention and Treatment of Nasopharyngeal Carcinoma. Vaccines (Basel) 2025; 13:478. [PMID: 40432090 PMCID: PMC12115577 DOI: 10.3390/vaccines13050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Epstein-Barr virus (EBV), a ubiquitous human herpesvirus, has been robustly linked to the pathogenesis of nasopharyngeal carcinoma (NPC). The mechanism of EBV-induced NPC involves complex interactions between viral proteins and host cell pathways. This review aims to comprehensively outline the mechanism of EBV-induced NPC and the latest advances in targeted EBV vaccines for prophylaxis and treatment. This review explores the intricate molecular mechanisms by which EBV contributes to NPC pathogenesis, highlighting viral latency, genetic and epigenetic alterations, and immune evasion strategies. It emphasizes the pivotal role of key viral proteins, including EBNA1, LMP1, and LMP2A, in carcinogenesis. Subsequently, the discussion shifts towards the development of targeted EBV vaccines, including preventive vaccines aimed at preventing primary EBV infection and therapeutic vaccines aimed at treating diagnosed EBV-related NPC. The review underscores the challenges and future directions in the field, stressing the importance of developing innovative vaccine strategies and combination therapies to improve efficacy. This review synthesizes current insights into the molecular mechanisms of EBV-induced NPC and the development of EBV-targeted vaccines, highlighting the potential use of mRNA vaccines for NPC treatment.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital/The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China; (W.Z.)
| | - Chuang Wang
- Chengdu Yunce Medical Biotechnology Co., Ltd., Chengdu 611135, China;
| | - Yousheng Meng
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital/The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China; (W.Z.)
| | - Lang He
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital/The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China; (W.Z.)
| | - Mingqing Dong
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou 325000, China
| |
Collapse
|
2
|
Karaliota S, Moussa M, Rosati M, Devasundaram S, Sengupta S, Goldfarbmuren KC, Burns R, Bear J, Stellas D, Urban EA, Deleage C, Khandhar AP, Erasmus J, Berglund P, Reed SG, Pavlakis GN, Felber BK. Highly immunogenic DNA/LION nanocarrier vaccine potently activates lymph nodes inducing long-lasting immunity in macaques. iScience 2025; 28:112232. [PMID: 40230522 PMCID: PMC11994941 DOI: 10.1016/j.isci.2025.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/15/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
A SARS-CoV-2 spike DNA vaccine formulated with a cationic nanoparticle emulsion (LION) was tested in Rhesus macaques. It induced robust, long-lasting (>2 years) cellular and humoral immunity, including increased neutralization breadth. T cell responses were predominantly CD8+, in contrast to other DNA vaccines. A rapid transient cytokine/chemokine response was associated with expansion and trafficking of myeloid cells and lymphocytes. Increased proliferation and dynamic changes between blood and lymph node (LN) were found for monocyte-derived cells, dendritic cells, and B and T cells, resulting in activation of LN and expansion of germinal centers (GCs), likely critical in shaping long-lasting adaptive immunity. Significant GC expansion of B, CD4-, and CD8- cells, including the Tfc3 subset, reflects a balanced immune response, including antibody (Ab) development. DNA/LION vaccination activates myeloid and lymphoid cells in blood and LN and promotes effective antigen presentation, resulting in sustained antigen-specific cellular and humoral responses, emerging as an effective DNA vaccine delivery platform.
Collapse
Affiliation(s)
- Sevasti Karaliota
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Maha Moussa
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Margherita Rosati
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Santhi Devasundaram
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Soumya Sengupta
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Katherine C. Goldfarbmuren
- Advanced Biomedical Computational Science, Leidos Biomedical Research, Inc., Frederick, MD, USA
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Robert Burns
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Dimitris Stellas
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Elizabeth A. Urban
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | | | | | - George N. Pavlakis
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
3
|
Palma M. Advancing Breast Cancer Treatment: The Role of Immunotherapy and Cancer Vaccines in Overcoming Therapeutic Challenges. Vaccines (Basel) 2025; 13:344. [PMID: 40333213 PMCID: PMC12030785 DOI: 10.3390/vaccines13040344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 05/09/2025] Open
Abstract
Breast cancer (BC) remains a significant global health challenge due to its complex biology, which complicates both diagnosis and treatment. Immunotherapy and cancer vaccines have emerged as promising alternatives, harnessing the body's immune system to precisely target and eliminate cancer cells. However, several key factors influence the selection and effectiveness of these therapies, including BC subtype, tumor mutational burden (TMB), tumor-infiltrating lymphocytes (TILs), PD-L1 expression, HER2 resistance, and the tumor microenvironment (TME). BC subtypes play a critical role in shaping treatment responses. Triple-negative breast cancer (TNBC) exhibits the highest sensitivity to immunotherapy, while HER2-positive and hormone receptor-positive (HR+) subtypes often require combination strategies for optimal outcomes. High TMB enhances immune responses by generating neoantigens, making tumors more susceptible to immune checkpoint inhibitors (ICIs); whereas, low TMB may indicate resistance. Similarly, elevated TIL levels are associated with better immunotherapy efficacy, while PD-L1 expression serves as a key predictor of checkpoint inhibitor success. Meanwhile, HER2 resistance and an immunosuppressive TME contribute to immune evasion, highlighting the need for multi-faceted treatment approaches. Current breast cancer immunotherapies encompass a range of targeted treatments. HER2-directed therapies, such as trastuzumab and pertuzumab, block HER2 dimerization and enhance antibody-dependent cellular cytotoxicity (ADCC), while small-molecule inhibitors, like lapatinib and tucatinib, suppress HER2 signaling to curb tumor growth. Antibody-drug conjugates (ADCs) improve tumor targeting by coupling monoclonal antibodies with cytotoxic agents, minimizing off-target effects. Meanwhile, ICIs, including pembrolizumab, restore T-cell function, and CAR-macrophage (CAR-M) therapy leverages macrophages to reshape the TME and overcome immunotherapy resistance. While immunotherapy, particularly in TNBC, has demonstrated promise by eliciting durable immune responses, its efficacy varies across subtypes. Challenges such as immune-related adverse events, resistance mechanisms, high costs, and delayed responses remain barriers to widespread success. Breast cancer vaccines-including protein-based, whole-cell, mRNA, dendritic cell, and epitope-based vaccines-aim to stimulate tumor-specific immunity. Though clinical success has been limited, ongoing research is refining vaccine formulations, integrating combination therapies, and identifying biomarkers for improved patient stratification. Future advancements in BC treatment will depend on optimizing immunotherapy through biomarker-driven approaches, addressing tumor heterogeneity, and developing innovative combination therapies to overcome resistance. By leveraging these strategies, researchers aim to enhance treatment efficacy and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Marco Palma
- Institute for Globally Distributed Open Research and Education (IGDORE), 03181 Torrevieja, Spain
| |
Collapse
|
4
|
Danchin A. Use and dual use of synthetic biology. C R Biol 2025; 348:71-88. [PMID: 40052950 DOI: 10.5802/crbiol.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 03/26/2025]
Abstract
A brief history of the field shows that the impression of novelty we have today when we talk about synthetic biology is merely the sign of a rapid loss of memory of the events surrounding its creation. The dangers of misuse were identified even before the first experiments, but this has not led to a shared awareness. Building a cell ab initio involves combining a machine (called a chassis by specialists in the field) and a program in the form of synthetic DNA. Only the latter—the program—is the subject of the vast majority of work in the field, and it is there that the risks of misuse appear. Combined with knowledge of the genomic sequence of pathogens, DNA synthesis makes it possible to reconstitute dangerous organisms or even to develop new ways of propagating malicious software. Finally, the lack of thought given to the risk of accidents when laboratories develop gain-of-function experiments that increase the virulence of a pathogen makes a world where this type of experiments is developed particularly dangerous.
Collapse
|
5
|
Ahn JH, Lee J, Roh G, Lee NY, Bae HJ, Kwon E, Han KM, Kim JE, Park HJ, Yoo S, Kwon SP, Bang EK, Keum G, Nam JH, Kang BC. Impact of administration routes and dose frequency on the toxicology of SARS-CoV-2 mRNA vaccines in mice model. Arch Toxicol 2025; 99:755-773. [PMID: 39656241 PMCID: PMC11775000 DOI: 10.1007/s00204-024-03912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/20/2024] [Indexed: 01/30/2025]
Abstract
The increasing use of SARS-CoV-2 mRNA vaccines has raised concerns about their potential toxicological effects, necessitating further investigation to ensure their safety. To address this issue, we aimed to evaluate the toxicological effects of SARS-CoV-2 mRNA vaccine candidates formulated with four different types of lipid nanoparticles in ICR mice, focusing on repeated doses and administration routes. We conducted an extensive analysis in which mice received the mRNA vaccine candidates intramuscularly (50 μg/head) twice at 2-week intervals, followed by necropsy at 2 and 14 dpsi (days post-secondary injection). In addition, we performed a repeated dose toxicity test involving three, four, or five doses and compared the toxicological outcomes between intravenous and intramuscular routes. Our findings revealed that all vaccine candidates significantly induced SARS-CoV-2 spike protein-specific IgG and T cell responses. However, at 2 dpsi, there was a notable temporary decrease in lymphocyte and reticulocyte counts, anemia-related parameters, and significant increases in cardiac damage markers, troponin-I and NT-proBNP. Histopathological analysis revealed severe inflammation and necrosis at the injection site, decreased erythroid cells in bone marrow, cortical atrophy of the thymus, and increased spleen cellularity. While most toxicological changes observed at 2 dpsi had resolved by 14 dpsi, spleen enlargement and injection site damage persisted. Furthermore, repeated doses led to the accumulation of toxicity, and different administration routes resulted in distinct toxicological phenotypes. These findings highlight the potential toxicological risks associated with mRNA vaccines, emphasizing the necessity to carefully consider administration routes and dosage regimens in vaccine safety evaluations, particularly given the presence of bone marrow and immune organ toxicity, which, though eventually reversible, remains a serious concern.
Collapse
Affiliation(s)
- Jae-Hun Ahn
- Department of Experiment Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jisun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Gahyun Roh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
- BK Four Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Na-Young Lee
- Department of Experiment Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Veterinary Pathology and Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hee-Jin Bae
- Department of Experiment Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Euna Kwon
- Department of Experiment Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kang-Min Han
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, CHA Ilsan Medical Center, CHA University, Goyang-si, Republic of Korea
| | - Ji-Eun Kim
- Department of Experiment Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
- BK Four Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Soyeon Yoo
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Sung Pil Kwon
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Eun-Kyoung Bang
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Gyochang Keum
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Republic of Korea.
- BK Four Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea.
| | - Byeong-Cheol Kang
- Department of Experiment Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Veterinary Pathology and Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Niazi SK. Affordable mRNA Novel Proteins, Recombinant Protein Conversions, and Biosimilars-Advice to Developers and Regulatory Agencies. Biomedicines 2025; 13:97. [PMID: 39857681 PMCID: PMC11760483 DOI: 10.3390/biomedicines13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
mRNA technology can replace the expensive recombinant technology for every type of protein, making biological drugs more affordable. It can also expedite the entry of new biological drugs, and copies of approved mRNA products can be treated as generic or biosimilar products due to their chemical nature. The introduction of hundreds of new protein drugs have been blocked due to the high cost of recombinant development. The low CAPEX and OPEX associated with mRNA technology bring it within the reach of developing countries that are currently deprived of life-saving biological drugs. In this paper, we advise developers to introduce novel proteins and switch recombinant manufacturing to mRNA delivery, and we further advise regulatory authorities to allow for the approval of copies of mRNA products with less testing. We anticipate that mRNA technology will make protein drugs, such as natural and engineered proteins, monoclonal antibodies, and vaccines, accessible to billions of patients worldwide.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Shariati A, Khani P, Nasri F, Afkhami H, Khezrpour A, Kamrani S, Shariati F, Alavimanesh S, Modarressi MH. mRNA cancer vaccines from bench to bedside: a new era in cancer immunotherapy. Biomark Res 2024; 12:157. [PMID: 39696625 DOI: 10.1186/s40364-024-00692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Harnessing the power of the immune system to target cancer cells is one of the most appealing approaches for cancer therapy. Among these immunotherapies, messenger ribonucleic acid (mRNA) cancer vaccines are worthy of consideration, as they have demonstrated promising results in clinical trials. These vaccines have proven to be safe and well-tolerated. They can be easily mass-produced in a relatively short time and induce a systemic immune response effective against both the primary tumor and metastases. Transcripts encoding immunomodulatory molecules can also be incorporated into the mRNA, enhancing its efficacy. On the other hand, there are some challenges associated with their application, including mRNA instability, insufficient uptake by immune cells, and intrinsic immunogenicity, which can block mRNA translation. Many innovations have been suggested to overcome these obstacles, including structural modification (such as 5' cap modification), optimizing delivery vehicles (especially dendritic cells (DCs) and nanoparticles), and using antigens that can enhance immunogenicity by circumventing tolerance mechanisms. A popular approach is to combine mRNA cancer vaccines with traditional and novel cancer treatments like chemotherapy, radiotherapy, and immune checkpoint blockade (ICB). They are most efficacious when combined with other therapies like ICBs. There is still a long way to go before these vaccines enter the standard of care for cancer patients, but with the incredible pace of development in this field, their clinical application will soon be witnessed. This review highlights the recent advances and challenges of mRNA cancer vaccines. Finally, some of the most prominent clinical applications of these vaccines will be reviewed.
Collapse
Affiliation(s)
- Alireza Shariati
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farzad Nasri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arya Khezrpour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Shariati
- Department of Genetics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
8
|
Versteeg L, Adhikari R, Robinson G, Lee J, Wei J, Islam N, Keegan B, Russell WK, Poveda C, Villar MJ, Jones K, Bottazzi ME, Hotez P, Tijhaar E, Pollet J. Immunopeptidomic MHC-I profiling and immunogenicity testing identifies Tcj2 as a new Chagas disease mRNA vaccine candidate. PLoS Pathog 2024; 20:e1012764. [PMID: 39693359 DOI: 10.1371/journal.ppat.1012764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
Trypanosoma cruzi is a protozoan parasite that causes Chagas disease. Globally 6 to 7 million people are infected by this parasite of which 20-30% will progress to develop Chronic Chagasic Cardiomyopathy (CCC). Despite its high disease burden, no clinically approved vaccine exists for the prevention or treatment of CCC. Developing vaccines that can stimulate T. cruzi-specific CD8+ cytotoxic T cells and eliminate infected cells requires targeting parasitic antigens presented on major histocompatibility complex-I (MHC-I) molecules. We utilized mass spectrometry-based immunopeptidomics to investigate which parasitic peptides are displayed on MHC-I of T. cruzi infected cells. Through duplicate experiments, we identified an array of unique peptides that could be traced back to 17 distinct T. cruzi proteins. Notably, six peptides were derived from Tcj2, a trypanosome chaperone protein and member of the DnaJ (heat shock protein 40) family, showcasing its potential as a viable candidate vaccine antigen with cytotoxic T cell inducing capacity. Upon testing Tcj2 as an mRNA vaccine candidate in mice, we observed a strong memory cytotoxic CD8+ T cell response along with a Th1-skewed humoral antibody response. In vitro co-cultures of T. cruzi infected cells with splenocytes of Tcj2-immunized mice restricted the replication of T. cruzi, demonstrating the protective potential of Tcj2 as a vaccine target. Moreover, antisera from Tcj2-vaccinated mice displayed no cross-reactivity with DnaJ in lysates from mouse and human indicating a decreased likelihood of triggering autoimmune reactions. Our findings highlight how immunopeptidomics can identify new vaccine targets for Chagas disease, with Tcj2 emerging as a promising new mRNA vaccine candidate.
Collapse
Affiliation(s)
- Leroy Versteeg
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Rakesh Adhikari
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gonteria Robinson
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jungsoon Lee
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Junfei Wei
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nelufa Islam
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Brian Keegan
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - William K Russell
- University of Texas Medical Branch, Mass Spectrometry Facility, UTMB Health, Galveston, Texas, United States of America
| | - Cristina Poveda
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Jose Villar
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kathryn Jones
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Peter Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Edwin Tijhaar
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeroen Pollet
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
9
|
Zhang W, Huang X. In vivo gene editing and in situ generation of chimeric antigen receptor cells for next-generation cancer immunotherapy. J Hematol Oncol 2024; 17:110. [PMID: 39533415 PMCID: PMC11559219 DOI: 10.1186/s13045-024-01633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Chimeric antigen receptor (CAR) cell therapy has achieved groundbreaking success in treating hematological malignancies. However, its application to solid tumors remains challenging due to complex manufacturing processes, limited in vivo persistence, and transient therapeutic effects. In vivo CAR-immune cells induced by gene delivery systems loaded with CAR genes and gene-editing tools have shown efficiency for anti-tumor immunotherapy. In situ programming of autologous immune cells avoids the safety concerns of allogeneic immune cells, and the manufacture of gene delivery systems could be standardized. Therefore, the in vivo editing and in situ generation of CAR-immune cells might potentially overcome the abovementioned limitations of current CAR cell therapy. This review mainly focuses on CAR structures, gene-editing tools, and gene delivery techniques applied in anti-tumor immunotherapy to help design and develop in situ CAR-immune cell therapy. The recent applications of in vivo CAR-immune cell therapy in both hematologic malignancies and solid tumors are investigated. To sum up, the in vivo editing and in situ generation of CAR therapy holds promise for offering a practical, cost-effective, efficient, safe, and widely applicable approach to the next-generation anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
10
|
Eftekhari Z, Zohrabi H, Oghalaie A, Ebrahimi T, Shariati FS, Behdani M, Kazemi-Lomedasht F. Advancements and challenges in mRNA and ribonucleoprotein-based therapies: From delivery systems to clinical applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102313. [PMID: 39281702 PMCID: PMC11402252 DOI: 10.1016/j.omtn.2024.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The use of mRNA and ribonucleoproteins (RNPs) as therapeutic agents is a promising strategy for treating diseases such as cancer and infectious diseases. This review provides recent advancements and challenges in mRNA- and RNP-based therapies, focusing on delivery systems such as lipid nanoparticles (LNPs), which ensure efficient delivery to target cells. Strategies such as microfluidic devices are employed to prepare LNPs loaded with mRNA and RNPs, demonstrating effective genome editing and protein expression in vitro and in vivo. These applications extend to cancer treatment and infectious disease management, with promising results in genome editing for cancer therapy using LNPs encapsulating Cas9 mRNA and single-guide RNA. In addition, tissue-specific targeting strategies offer potential for improved therapeutic outcomes and reduced off-target effects. Despite progress, challenges such as optimizing delivery efficiency and targeting remain. Future research should enhance delivery efficiency, explore tissue-specific targeting, investigate combination therapies, and advance clinical translation. In conclusion, mRNA- and RNP-based therapies offer a promising avenue for treating various diseases and have the potential to revolutionize medicine, providing new hope for patients worldwide.
Collapse
Affiliation(s)
- Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Horieh Zohrabi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Tahereh Ebrahimi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Sadat Shariati
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
11
|
Jain M, Yu X, Schneck JP, Green JJ. Nanoparticle Targeting Strategies for Lipid and Polymer-Based Gene Delivery to Immune Cells In Vivo. SMALL SCIENCE 2024; 4:2400248. [PMID: 40212067 PMCID: PMC11935263 DOI: 10.1002/smsc.202400248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Indexed: 04/13/2025] Open
Abstract
Lipid nanoparticles and polymeric nanoparticles are promising biomaterial platforms for robust intracellular DNA and mRNA delivery, highlighted by the widespread use of nanoparticle- (NP) based mRNA vaccines to help end the COVID-19 pandemic. Recent research has sought to adapt this nanotechnology to transfect and engineer immune cells in vivo. The immune system is an especially appealing target due to its involvement in many different diseases, and ex vivo-engineered immune cell therapies like chimeric antigen receptor (CAR) T therapy have already demonstrated remarkable clinical success in certain blood cancers. Although gene delivery can potentially address some of the cost and manufacturing concerns associated with current autologous immune cell therapies, transfecting immune cells in vivo is challenging. Not only is extrahepatic NP delivery to lymphoid organs difficult, but immune cells like T cells have demonstrated particular resistance to transfection. Despite these challenges, the modular nature of NPs allows researchers to examine critical structure-function relationships between a particle's properties and its ability to specifically engineer immune cells in vivo. Herein, several nanomaterial components are outlined, including targeting ligands, nucleic acid cargo, chemical properties, physical properties, and the route of administration to specifically target NPs to immune cells for optimal in vivo transfection.
Collapse
Affiliation(s)
- Manav Jain
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Johns Hopkins Translational ImmunoEngineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
| | - Xinjie Yu
- Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Johns Hopkins Translational ImmunoEngineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Department of Chemical & Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Jonathan P. Schneck
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Johns Hopkins Translational ImmunoEngineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Departments of Pathology and MedicineJohns Hopkins University School of MedicineBaltimoreMD21231USA
| | - Jordan J. Green
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Johns Hopkins Translational ImmunoEngineering CenterJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Department of Chemical & Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of OncologyThe Sidney Kimmel Comprehensive Cancer CenterThe Bloomberg∼Kimmel Institute for Cancer ImmunotherapyJohns Hopkins University School of MedicineBaltimoreMD21231USA
- Departments of Ophthalmology, Neurosurgery, and Materials Science & EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| |
Collapse
|
12
|
Wu S, Lin L, Shi L, Liu S. An overview of lipid constituents in lipid nanoparticle mRNA delivery systems. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1978. [PMID: 38965928 DOI: 10.1002/wnan.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024]
Abstract
mRNA therapeutics have shown great potential for a broad spectrum of disease treatment. However, the challenges of mRNA's inherent instability and difficulty in cellular entry have hindered its progress in the biomedical field. To address the cellular barriers and deliver mRNA to cells of interest, various delivery systems are designed. Among these, lipid nanoparticles (LNPs) stand out as the most extensively used mRNA delivery systems, particularly following the clinical approvals of corona virus disease 2019 (COVID-19) mRNA vaccines. LNPs are comprised of ionizable cationic lipids, phospholipids, cholesterol, and polyethylene glycol derived lipids (PEG-lipids). In this review, we primarily summarize the recent advancements of the LNP mRNA delivery technology, focusing on the structures of four lipid constituents and their biomedical applications. We delve into structure-activity relationships of the lipids, while also exploring the future prospects and challenges in developing more efficacious mRNA delivery systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Shiqi Wu
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Lixin Lin
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Lu Shi
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Wang C, Yuan F. A comprehensive comparison of DNA and RNA vaccines. Adv Drug Deliv Rev 2024; 210:115340. [PMID: 38810703 PMCID: PMC11181159 DOI: 10.1016/j.addr.2024.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Nucleic acid technology has revolutionized vaccine development, enabling rapid design and production of RNA and DNA vaccines for prevention and treatment of diseases. The successful deployment of mRNA and plasmid DNA vaccines against COVID-19 has further validated the technology. At present, mRNA platform is prevailing due to its higher efficacy, while DNA platform is undergoing rapid evolution because it possesses unique advantages that can potentially overcome the problems associated with the mRNA platform. To help understand the recent performances of the two vaccine platforms and recognize their clinical potentials in the future, this review compares the advantages and drawbacks of mRNA and DNA vaccines that are currently known in the literature, in terms of development timeline, financial cost, ease of distribution, efficacy, safety, and regulatory approval of products. Additionally, the review discusses the ongoing clinical trials, strategies for improvement, and alternative designs of RNA and DNA platforms for vaccination.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States.
| |
Collapse
|
14
|
Jana SK, Damha MJ. Synthesis of Seven-Membered Ring Nucleosides and Serendipitous Simmons-Smith O-Glycosylation. Org Lett 2024; 26:5187-5191. [PMID: 38864515 DOI: 10.1021/acs.orglett.4c01742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A series of seven-membered (oxepine) nucleosides containing various nucleobases (A, U, T, 5-FU, C) were synthesized by ring expansion of cyclopropanated glucals. We expect this new series of ring-expanded nucleic acid analogues to be useful as building blocks in the design of mixed base functional genetic systems. While exploring alternative pathways to oxepine nucleoside synthesis, we discovered an unprecedented α-stereoselective O-glycosylation of 1,2-glucals under mild Simmons-Smith conditions.
Collapse
Affiliation(s)
- Sunit Kumar Jana
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8
| | - Masad J Damha
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8
| |
Collapse
|
15
|
Aleem MT, Munir F, Shakoor A, Gao F. mRNA vaccines against infectious diseases and future direction. Int Immunopharmacol 2024; 135:112320. [PMID: 38788451 DOI: 10.1016/j.intimp.2024.112320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Vaccines are used for the control of infectious diseases of animals. Over other types of vaccinations like live attenuated or killed vaccines, mRNA-based vaccines have significant advantages. As only a small portion of the pathogen's genetic material is employed and the dose rate of mRNA-based vaccines is low, there is the least possibility that the pathogen will reverse itself. A carrier or vehicle that shields mRNA-based vaccines from the host's cellular RNases is necessary for their delivery. mRNA vaccines have been shown to be effective and to induce both a cell-mediated immune response and a humoral immune response in clinical trials against various infectious diseases (viral and parasitic) affecting the animals, including rabies, foot and mouth disease, toxoplasmosis, Zikavirus, leishmaniasis, and COVID-19. The current review aims to highlight the use of mRNA-based vaccines both in viral and parasitic diseases of animals.
Collapse
Affiliation(s)
- Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Clevaland State University, Clevaland, OH 44115, USA.
| | - Furqan Munir
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Amna Shakoor
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
16
|
Zhou F, Huang L, Li S, Yang W, Chen F, Cai Z, Liu X, Xu W, Lehto V, Lächelt U, Huang R, Shi Y, Lammers T, Tao W, Xu ZP, Wagner E, Xu Z, Yu H. From structural design to delivery: mRNA therapeutics for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20210146. [PMID: 38855617 PMCID: PMC11022630 DOI: 10.1002/exp.20210146] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 06/11/2024]
Abstract
mRNA therapeutics have emerged as powerful tools for cancer immunotherapy in accordance with their superiority in expressing all sequence-known proteins in vivo. In particular, with a small dosage of delivered mRNA, antigen-presenting cells (APCs) can synthesize mutant neo-antigens and multi-antigens and present epitopes to T lymphocytes to elicit antitumor effects. In addition, expressing receptors like chimeric antigen receptor (CAR), T-cell receptor (TCR), CD134, and immune-modulating factors including cytokines, interferons, and antibodies in specific cells can enhance immunological response against tumors. With the maturation of in vitro transcription (IVT) technology, large-scale and pure mRNA encoding specific proteins can be synthesized quickly. However, the clinical translation of mRNA-based anticancer strategies is restricted by delivering mRNA into target organs or cells and the inadequate endosomal escape efficiency of mRNA. Recently, there have been some advances in mRNA-based cancer immunotherapy, which can be roughly classified as modifications of the mRNA structure and the development of delivery systems, especially the lipid nanoparticle platforms. In this review, the latest strategies for overcoming the limitations of mRNA-based cancer immunotherapies and the recent advances in delivering mRNA into specific organs and cells are summarized. Challenges and opportunities for clinical applications of mRNA-based cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shiqin Li
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Wenfang Yang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Wujun Xu
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Ulrich Lächelt
- Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug DeliveryMinistry of Education, Fudan UniversityShanghaiChina
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Zhi Ping Xu
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhenChina
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for NanoscienceLudwig‐Maximilians‐UniversitätMunichGermany
| | - Zhiai Xu
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
17
|
Wu L, Li X, Qian X, Wang S, Liu J, Yan J. Lipid Nanoparticle (LNP) Delivery Carrier-Assisted Targeted Controlled Release mRNA Vaccines in Tumor Immunity. Vaccines (Basel) 2024; 12:186. [PMID: 38400169 PMCID: PMC10891594 DOI: 10.3390/vaccines12020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, lipid nanoparticles (LNPs) have attracted extensive attention in tumor immunotherapy. Targeting immune cells in cancer therapy has become a strategy of great research interest. mRNA vaccines are a potential choice for tumor immunotherapy, due to their ability to directly encode antigen proteins and stimulate a strong immune response. However, the mode of delivery and lack of stability of mRNA are key issues limiting its application. LNPs are an excellent mRNA delivery carrier, and their structural stability and biocompatibility make them an effective means for delivering mRNA to specific targets. This study summarizes the research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity. The role of LNPs in improving mRNA stability, immunogenicity, and targeting is discussed. This review aims to systematically summarize the latest research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity to provide new ideas and strategies for tumor immunotherapy, as well as to provide more effective treatment plans for patients.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| |
Collapse
|
18
|
Kramps T. Introduction to RNA Vaccines Post COVID-19. Methods Mol Biol 2024; 2786:1-22. [PMID: 38814388 DOI: 10.1007/978-1-0716-3770-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Available prophylactic vaccines help prevent many infectious diseases that burden humanity. Future vaccinology will likely extend these benefits by more effectively countering newly emerging pathogens, fighting currently intractable infections, or even generating novel treatment modalities for non-infectious diseases. Instead of applying protein antigen directly, RNA vaccines contain short-lived genetic information that guides the expression of protein antigen in the vaccinee, like infection with a recombinant viral vector. Upon decades of research, messenger RNA-lipid nanoparticle (mRNA-LNP) vaccines have proven clinical value in addressing the COVID-19 pandemic as they combine benefits of killed subunit vaccines and live-attenuated vectors, including flexible production, self-adjuvanting effects, and stimulation of humoral and cellular immunity. RNA vaccines remain subject to continued development raising high hopes for broader future application. Their mechanistic versatility promises to make them a key tool of vaccinology and immunotherapy going forward. Here, I briefly review key developments in RNA vaccines and outline the contents of this volume of Methods in Molecular Biology.
Collapse
|
19
|
Luo Z, Chen Y. Unlocking Delivery Strategies for mRNA Therapeutics. Recent Pat Anticancer Drug Discov 2024; 19:126-129. [PMID: 37287306 DOI: 10.2174/1574892818666230607093231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/01/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
mRNA emerged as an attractive therapy modality with the development of mRNA structure engineering techniques and delivery platforms. mRNA therapeutics, applied for vaccine therapy, protein replacement therapy, and chimeric antigen receptor (CAR) T cell-based therapy, has shown huge potential in treating a wide range of diseases, such as cancer and rare genetic diseases, with successful and exciting preclinical and clinical progress. In mRNA therapeutics, a potent delivery system is key to the success of its application for disease treatment. Herein, different types of mRNA delivery strategies, including nanoparticles produced from lipid or polymer materials, virus-based platforms, and exosome-based platforms, are mainly focused.
Collapse
Affiliation(s)
- Zhiyuan Luo
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
20
|
Nair A, Loveday KA, Kenyon C, Qu J, Kis Z. Quality by Digital Design for Developing Platform RNA Vaccine and Therapeutic Manufacturing Processes. Methods Mol Biol 2024; 2786:339-364. [PMID: 38814403 DOI: 10.1007/978-1-0716-3770-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Quality by digital design (QbDD) utilizes data-driven, mechanistic, or hybrid models to define and optimize a manufacturing design space. It improves upon the QbD approach used extensively in the pharmaceutical industry. The computational models developed in this approach identify and quantify the relationship between the product's critical quality attributes (CQAs) and the critical process parameters (CPPs) of unit operations within the manufacturing process. This chapter discusses the QbDD approach in developing and optimizing unit operations such as in vitro transcription, tangential flow filtration, affinity chromatography, and lipid nanoparticle (LNP) formulation in mRNA vaccine manufacturing. QbDD can be an efficient framework for developing a production process for a disease-agnostic product that requires extensive experimental and model-based process-product interaction characterization during the early process development phase.
Collapse
Affiliation(s)
- Adithya Nair
- Department of Biological and Chemical Engineering, University of Sheffield, Sheffield, UK
| | - Kate A Loveday
- Department of Biological and Chemical Engineering, University of Sheffield, Sheffield, UK
| | - Charlotte Kenyon
- Department of Biological and Chemical Engineering, University of Sheffield, Sheffield, UK
| | - Jixin Qu
- Department of Biological and Chemical Engineering, University of Sheffield, Sheffield, UK
| | - Zoltán Kis
- Department of Biological and Chemical Engineering, University of Sheffield, Sheffield, UK.
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
21
|
Vadovics M, Muramatsu H, Sárközy A, Pardi N. Production and Evaluation of Nucleoside-Modified mRNA Vaccines for Infectious Diseases. Methods Mol Biol 2024; 2786:167-181. [PMID: 38814394 DOI: 10.1007/978-1-0716-3770-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA vaccines have demonstrated potency in multiple preclinical models against various pathogens and have recently received considerable attention due to the success of the two safe and effective COVID-19 mRNA vaccines developed by Moderna and Pfizer-BioNTech. The use of nucleoside modification in mRNA vaccines seems to be critical to achieve a sufficient level of safety and immunogenicity in humans, as illustrated by the results of clinical trials using either nucleoside-modified or unmodified mRNA-based vaccine platforms. It is well documented that the incorporation of modified nucleosides in the mRNA and stringent mRNA purification after in vitro transcription render it less inflammatory and highly translatable; these two features are likely key for mRNA vaccine safety and potency. Formulation of the mRNA into LNPs is important because LNPs protect mRNA from rapid degradation, enabling efficient delivery and high levels of protein production for extended periods of time. Additionally, recent studies have provided evidence that certain LNPs with ionizable cationic lipids (iLNPs) possess adjuvant activity that fosters the induction of strong humoral and cellular immune responses by mRNA-iLNP vaccines.In this chapter we describe the production of iLNP-encapsulated, nucleoside-modified, and purified mRNA and the evaluation of antigen-specific T cell and antibody responses elicited by this vaccine form.
Collapse
Affiliation(s)
- Máté Vadovics
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - András Sárközy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Yu MZ, Wang NN, Zhu JQ, Lin YX. The clinical progress and challenges of mRNA vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1894. [PMID: 37096256 DOI: 10.1002/wnan.1894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Owing to the breakthroughs in the prevention and control of the COVID-19 pandemic, messenger RNA (mRNA)-based vaccines have emerged as promising alternatives to conventional vaccine approaches for infectious disease prevention and anticancer treatments. Advantages of mRNA vaccines include flexibility in designing and manipulating antigens of interest, scalability in rapid response to new variants, ability to induce both humoral and cell-mediated immune responses, and ease of industrialization. This review article presents the latest advances and innovations in mRNA-based vaccines and their clinical translations in the prevention and treatment of infectious diseases or cancers. We also highlight various nanoparticle delivery platforms that contribute to their success in clinical translation. Current challenges related to mRNA immunogenicity, stability, and in vivo delivery and the strategies for addressing them are also discussed. Finally, we provide our perspectives on future considerations and opportunities for applying mRNA vaccines to fight against major infectious diseases and cancers. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Meng-Zhen Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Nan-Nan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Jia-Qing Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
| | - Yao-Xin Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| |
Collapse
|
23
|
Jamous YF, Alhomoud DA. The Safety and Effectiveness of mRNA Vaccines Against SARS-CoV-2. Cureus 2023; 15:e45602. [PMID: 37868494 PMCID: PMC10588549 DOI: 10.7759/cureus.45602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in numerous deaths worldwide, along with devastating economic disruptions, and has posed unprecedented challenges to healthcare systems around the world. In the wake of COVID-19's emergence in 2019, a variety of vaccine technologies were formulated and developed, including those that drew from the technology employed in messenger RNA (mRNA) vaccines, designed to curb the disease's transmission and manage the pandemic. mRNA vaccine has several advantages over traditional ones, and hence its development has received considerable attention recently. Researchers believe the mRNA vaccine technology will emerge as the leading technology because it is potent, inexpensive, rapidly developed, and safe. This article provides an overview of mRNA vaccines with a special focus on the efficacy and safety of the Moderna and Pfizer-BioNTech mRNA vaccines against the different variants of COVID-19 and compare them with the Oxford-AstraZeneca (viral vector) and Sinopharm (inactivated virus) vaccines. The clinical data reviewed in this article demonstrate that the currently authorized Moderna and Pfizer-BioNTech mRNA vaccines are highly safe and potent against different variants of COVID-19, especially in comparison with Oxford-AstraZeneca (viral vector) and Sinopharm (inactivated virus) vaccines.
Collapse
Affiliation(s)
- Yahya F Jamous
- National Center of Vaccine and Bioprocessing, King Abdulaziz City for Science and Technology, Riyadh, SAU
| | - Dalal A Alhomoud
- National Center of Vaccine and Bioprocessing, King Abdulaziz City for Science and Technology, Riyadh, SAU
| |
Collapse
|
24
|
Al Fayez N, Nassar MS, Alshehri AA, Alnefaie MK, Almughem FA, Alshehri BY, Alawad AO, Tawfik EA. Recent Advancement in mRNA Vaccine Development and Applications. Pharmaceutics 2023; 15:1972. [PMID: 37514158 PMCID: PMC10384963 DOI: 10.3390/pharmaceutics15071972] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Messenger RNA (mRNA) vaccine development for preventive and therapeutic applications has evolved rapidly over the last decade. The mRVNA vaccine has proven therapeutic efficacy in various applications, including infectious disease, immunotherapy, genetic disorders, regenerative medicine, and cancer. Many mRNA vaccines have made it to clinical trials, and a couple have obtained FDA approval. This emerging therapeutic approach has several advantages over conventional methods: safety; efficacy; adaptability; bulk production; and cost-effectiveness. However, it is worth mentioning that the delivery to the target site and in vivo degradation and thermal stability are boundaries that can alter their efficacy and outcomes. In this review, we shed light on different types of mRNA vaccines, their mode of action, and the process to optimize their development and overcome their limitations. We also have explored various delivery systems focusing on the nanoparticle-mediated delivery of the mRNA vaccine. Generally, the delivery system plays a vital role in enhancing mRNA vaccine stability, biocompatibility, and homing to the desired cells and tissues. In addition to their function as a delivery vehicle, they serve as a compartment that shields and protects the mRNA molecules against physical, chemical, and biological activities that can alter their efficiency. Finally, we focused on the future considerations that should be attained for safer and more efficient mRNA application underlining the advantages and disadvantages of the current mRNA vaccines.
Collapse
Affiliation(s)
- Nojoud Al Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Majed S Nassar
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdullah A Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Meshal K Alnefaie
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Fahad A Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Bayan Y Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdullah O Alawad
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Essam A Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
25
|
Śledź M, Wojciechowska A, Zagożdżon R, Kaleta B. In Situ Programming of CAR-T Cells: A Pressing Need in Modern Immunotherapy. Arch Immunol Ther Exp (Warsz) 2023; 71:18. [PMID: 37419996 PMCID: PMC10329070 DOI: 10.1007/s00005-023-00683-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Chimeric antigen receptor-T (CAR-T) cell-based therapy has become a successful option for treatment of numerous hematological malignancies, but also raises hope in a range of non-malignant diseases. However, in a traditional approach, generation of CAR-T cells is associated with the separation of patient's lymphocytes, their in vitro modification, and expansion and infusion back into patient's bloodstream. This classical protocol is complex, time-consuming, and expensive. Those problems could be solved by successful protocols to produce CAR-T cells, but also CAR-natural killer cells or CAR macrophages, in situ, using viral platforms or non-viral delivery systems. Moreover, it was demonstrated that in situ CAR-T induction may be associated with reduced risk of the most common toxicities associated with CAR-T therapy, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and "on-target, off-tumor" toxicity. This review aims to summarize the current state-of-the-art and future perspectives for the in situ-produced CAR-T cells. Indeed, preclinical work in this area, including animal studies, raises hope for prospective translational development and validation in practical medicine of strategies for in situ generation of CAR-bearing immune effector cells.
Collapse
Affiliation(s)
- Marta Śledź
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | | | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
26
|
Pascolo S. Nonreplicating synthetic mRNA vaccines: A journey through the European (Journal of Immunology) history. Eur J Immunol 2023; 53:e2249941. [PMID: 37029096 DOI: 10.1002/eji.202249941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
The first worldwide article reporting that injections of synthetic nonreplicating mRNA could be used as a vaccine, which originated from a French team located in Paris, was published in the European Journal of Immunology (EJI) in 1993. It relied on work conducted by several research groups in a handful of countries since the 1960s, which put forward the precise description of eukaryotic mRNA and the method to reproduce this molecule in vitro as well as how to transfect it into mammalian cells. Thereafter, the first industrial development of this technology began in Germany in 2000, with the founding of CureVac, which stemmed from another description of a synthetic mRNA vaccine published in EJI in 2000. The first clinical studies investigating mRNA vaccines in humans were performed as collaboration between CureVac and the University of Tübingen in Germany as early as 2003. Finally, the first worldwide approved mRNA vaccine (an anti-COVID-19 vaccine) is based on the mRNA technologies developed by BioNTech since its 2008 foundation in Mainz, Germany, and earlier by the pioneering academic work of its founders. In addition to the past, present, and future of mRNA-based vaccines, the article aims to present the geographical distribution of the early work, how the development of the technology was implemented by several independent and internationally distributed research teams, as well as the controversies on the optimal way to design or formulate and administer mRNA vaccines.
Collapse
Affiliation(s)
- Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
27
|
Bollman B, Nunna N, Bahl K, Hsiao CJ, Bennett H, Butler S, Foreman B, Burgomaster KE, Aleshnick M, Kong WP, Fisher BE, Ruckwardt TJ, Morabito KM, Graham BS, Dowd KA, Pierson TC, Carfi A. An optimized messenger RNA vaccine candidate protects non-human primates from Zika virus infection. NPJ Vaccines 2023; 8:58. [PMID: 37080988 PMCID: PMC10119314 DOI: 10.1038/s41541-023-00656-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
Zika virus (ZIKV), an arbovirus transmitted by mosquitoes, was identified as a cause of congenital disease during a major outbreak in the Americas in 2016. Vaccine design strategies relied on limited available isolate sequence information due to the rapid response necessary. The first-generation ZIKV mRNA vaccine, mRNA-1325, was initially generated and, as additional strain sequences became available, a second mRNA vaccine, mRNA-1893, was developed. Herein, we compared the immune responses following mRNA-1325 and mRNA-1893 vaccination and reported that mRNA-1893 generated comparable neutralizing antibody titers to mRNA-1325 at 1/20th of the dose and provided complete protection from ZIKV challenge in non-human primates. In-depth characterization of these vaccines indicated that the observed immunologic differences could be attributed to a single amino acid residue difference that compromised mRNA-1325 virus-like particle formation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bryant Foreman
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katherine E Burgomaster
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maya Aleshnick
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly A Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
28
|
Guo X, Liu D, Huang Y, Deng Y, Wang Y, Mao J, Zhou Y, Xiong Y, Gao X. Revolutionizing viral disease vaccination: the promising clinical advancements of non-replicating mRNA vaccines. Virol J 2023; 20:64. [PMID: 37029389 PMCID: PMC10081822 DOI: 10.1186/s12985-023-02023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
The mRNA vaccine technology was developed rapidly during the global pandemic of COVID-19. The crucial role of the COVID-19 mRNA vaccine in preventing viral infection also have been beneficial to the exploration and application of other viral mRNA vaccines, especially for non-replication structure mRNA vaccines of viral disease with outstanding research results. Therefore, this review pays attention to the existing mRNA vaccines, which are of great value for candidates for clinical applications in viral diseases. We provide an overview of the optimization of the mRNA vaccine development process as well as the good immune efficacy and safety shown in clinical studies. In addition, we also provide a brief description of the important role of mRNA immunomodulators in the treatment of viral diseases. After that, it will provide a good reference or strategy for research on mRNA vaccines used in clinical medicine with more stable structures, higher translation efficiency, better immune efficacy and safety, shorter production time, and lower production costs than conditional vaccines to be used as preventive or therapeutic strategy for the control of viral diseases in the future.
Collapse
Affiliation(s)
- Xiao Guo
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Dongying Liu
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Yukai Huang
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Youcai Deng
- Department of Hematology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, People’s Republic of China
| | - Ying Wang
- Modern Medical Teaching and Research Section, Department of Tibetan Medicine, University of Tibetan Medicine, No. 10 Dangre Middle Rd, Chengguan District, Lhasa, 850000 Tibet Autonomous Region People’s Republic of China
| | - Jingrui Mao
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy. No, 6 Niusha Road, Jinjiang District, Chengdu, 610299 People’s Republic of China
| | - Yongai Xiong
- School of Pharmacy, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Xinghong Gao
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
- Key Laboratory of Infectious Disease and Bio-Safety, Provincial Department of Education, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| |
Collapse
|
29
|
Anti–Zika Virus Activity and Isolation of Flavonoids from Ethanol Extracts of Curatella americana L. Leaves. Molecules 2023; 28:molecules28062546. [PMID: 36985517 PMCID: PMC10054362 DOI: 10.3390/molecules28062546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
The ethnomedicinal plant Curatella americana L. (Dilleniaceae) is a common shrub in the Brazilian Cerrado, whose ethanolic extract showed significant in vitro anti–Zika virus activity by the MTT colorimetric method. Currently, there is no drug in clinical use specifically for the treatment of this virus; therefore, in this work, the antiviral and cytotoxic properties of the ethanolic extract, fractions, and compounds were evaluated. The ethanolic extract of the leaves showed no cytotoxicity for the human MRC-5 cell and was moderately cytotoxic for the Vero cell (CC50 161.5 ± 2.01 µg/mL). This extract inhibited the Zika virus multiplication cycle with an EC50 of 85.2 ± 1.65 µg/mL. This extract was fractionated using the liquid–liquid partition technique, and the ethyl acetate fraction showed significant activity against the Zika virus with an EC50 of 40.7 ± 2.33 µg/mL. From the ethyl acetate fraction, the flavonoids quercetin-3-O-hexosylgallate (1), quercetin-3-O-glucoside (2), and quercetin (5) were isolated, and in addition to these compounds, a mixture of quercetin-3-O-rhamnoside (3) and quercetin-3-O-arabinoside (4) was also obtained. The isolated compounds quercetin and quercetin-3-O-hexosylgallate inhibited the viral cytopathic effect at an EC50 of 18.6 ± 2.8 and 152.8 ± 2.0, respectively. Additionally, analyses by liquid chromatography coupled to a mass spectrometer allowed the identification of another 24 minor phenolic constituents present in the ethanolic extract and in the ethyl acetate fraction of this species.
Collapse
|
30
|
Lipid nanoparticles technology in vaccines: Shaping the future of prophylactic medicine. Colloids Surf B Biointerfaces 2023; 222:113111. [PMID: 36586237 DOI: 10.1016/j.colsurfb.2022.113111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Throughout decades, the intrinsic power of the immune system to fight pathogens has inspired researchers to develop techniques that enable the prevention or treatment of infections via boosting the immune response against the target pathogens, which has led to the evolution of vaccines. The recruitment of Lipid nanoparticles (LNPs) as either vaccine delivery platforms or immunogenic modalities has witnessed a breakthrough recently, which has been crowned with the development of effective LNPs-based vaccines against COVID-19. In the current article, we discuss some principles of such a technology, with a special focus on the technical aspects from a translational perspective. Representative examples of LNPs-based vaccines against cancer, COVID-19, as well as other infectious diseases, autoimmune diseases, and allergies are highlighted, considering the challenges and promises. Lastly, the key features that can improve the clinical translation of this area of endeavor are inspired.
Collapse
|
31
|
Nanotechnology for DNA and RNA delivery. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
32
|
AlHamaidah MA, Noureldin N, Yehia A, Alani I, Al-Qussain A, Abdou O, Ashames A, Kharaba Z. Efficacy and Short-Term Safety of COVID-19 Vaccines: A Cross-Sectional Study on Vaccinated People in the UAE. Vaccines (Basel) 2022; 10:vaccines10122157. [PMID: 36560566 PMCID: PMC9786180 DOI: 10.3390/vaccines10122157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The emergence of COVID-19 has been a major challenge to public health and the world economy. During a wave of COVID-19, the usage of widespread vaccination procedures and broader coverage to the whole of humanity will be made possible if the general population has access. An intended effect of vaccination is to provide "herd immunity," which protects those who have not been vaccinated along with those who have been. However, some concerns regarding the safety and efficacy of COVID-19 vaccines were raised. AIM This study aims to provide evidence on the short-term safety and efficacy of four types of vaccines that are officially approved by the Ministry of Health in the United Arab Emirates (UAE). These include Sinopharm, Sputnik V, Pfizer, and AstraZeneca. METHOD This study utilized a cross-sectional descriptive design. Data on the efficacy and short-term protection of COVID-19 vaccines on vaccinated citizens and residents (n = 764) of the UAE were collected between February and April 2021. Participants were conveniently approached using a Google Forms survey, where they responded to a semi-structured questionnaire pertaining to socio-demographic questions and in-depth questions related to COVID-19, including whether they suffer from any comorbidities, the most commonly encountered post-vaccination side effects, and the severity of their symptoms, using a 5-point Likert scale. Results were analyzed using SPSS version 24, calculations of p-values and descriptive statistics were used for data differentiation. RESULTS The majority of the participants (n = 612 or 94.4%) stated that they did not become reinfected after receiving two doses of COVID-19 vaccine. In addition, the incidence of being hospitalized after vaccination was negligible. In terms of adverse effects, the most common individually reported side effects, regardless of the vaccination type, included "pain at the site of injection", followed by "general fatigue", then "lethargy". Moreover, most of these side effects occurred after the second dose of the vaccine, irrespective of the type of vaccine. Females were found to be more susceptible to the adversities of COVID-19 vaccination. The occurrence of side effects was not found to be related to the nationality/ethnicity of the vaccine recipient. Furthermore, none of the vaccines affected sleep pattern, since a significant number of respondents reported a regular sleep pattern after being vaccinated. The majority respondents who received two doses of vaccination (n = 585 or 76.6%) reported that they did not become infected post vaccination, regardless the type of vaccine received, whereas only (n = 11 or 1.9%) were reinfected with COVID-19 after 2-4 weeks. CONCLUSION The findings of this study suggest that vaccines can offer short-term protection against COVID-19 reinfection. Moreover, both the first- and second-vaccination side effects were described as very mild to moderate, which indicates tolerability. These data may strengthen the public confidence in receiving vaccinations.
Collapse
Affiliation(s)
- Mustafa Ameen AlHamaidah
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Noora Noureldin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Adham Yehia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Ibrahim Alani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Abdelaziz Al-Qussain
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Osama Abdou
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Akram Ashames
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Medical and Bio-Allied Health Sciences Research Centre, Ajman University, Ajman P.O. Box 340, United Arab Emirates
- Correspondence:
| | - Zelal Kharaba
- Department of Clinical Pharmacy, College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Type NE2 4HH, UK
| |
Collapse
|
33
|
Valentin A, Bergamaschi C, Rosati M, Angel M, Burns R, Agarwal M, Gergen J, Petsch B, Oostvogels L, Loeliger E, Chew KW, Deeks SG, Mullins JI, Pavlakis GN, Felber BK. Comparative immunogenicity of an mRNA/LNP and a DNA vaccine targeting HIV gag conserved elements in macaques. Front Immunol 2022; 13:945706. [PMID: 35935984 PMCID: PMC9355630 DOI: 10.3389/fimmu.2022.945706] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023] Open
Abstract
Immunogenicity of HIV-1 mRNA vaccine regimens was analyzed in a non-human primate animal model. Rhesus macaques immunized with mRNA in lipid nanoparticle (mRNA/LNP) formulation expressing HIV-1 Gag and Gag conserved regions (CE) as immunogens developed robust, durable antibody responses but low adaptive T-cell responses. Augmentation of the dose resulted in modest increases in vaccine-induced cellular immunity, with no difference in humoral responses. The gag mRNA/lipid nanoparticle (LNP) vaccine provided suboptimal priming of T cell responses for a heterologous DNA booster vaccination regimen. In contrast, a single immunization with gag mRNA/LNP efficiently boosted both humoral and cellular responses in macaques previously primed by a gag DNA-based vaccine. These anamnestic cellular responses were mediated by activated CD8+ T cells with a phenotype of differentiated T-bet+ cytotoxic memory T lymphocytes. The heterologous prime/boost regimens combining DNA and mRNA/LNP vaccine modalities maximized vaccine-induced cellular and humoral immune responses. Analysis of cytokine responses revealed a transient systemic signature characterized by the release of type I interferon, IL-15 and IFN-related chemokines. The pro-inflammatory status induced by the mRNA/LNP vaccine was also characterized by IL-23 and IL-6, concomitant with the release of IL-17 family of cytokines. Overall, the strong boost of cellular and humoral immunity induced by the mRNA/LNP vaccine suggests that it could be useful as a prophylactic vaccine in heterologous prime/boost modality and in immune therapeutic interventions against HIV infection or other chronic human diseases.
Collapse
Affiliation(s)
- Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Matthew Angel
- Vaccine Branch, Center for Cancer Research, National Cncer Institute, Bethesda, MD, United States
- Center for Cancer Research Collaborative Bioinformatics Resource, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Robert Burns
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Mahesh Agarwal
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | | | | | | | | | - Kara W. Chew
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, United States
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
- *Correspondence: Barbara K. Felber,
| |
Collapse
|
34
|
Franco MK, Koutmou KS. Chemical modifications to mRNA nucleobases impact translation elongation and termination. Biophys Chem 2022; 285:106780. [PMID: 35313212 PMCID: PMC9373004 DOI: 10.1016/j.bpc.2022.106780] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
Messenger RNAs (mRNAs) serve as blueprints for protein synthesis by the molecular machine the ribosome. The ribosome relies on hydrogen bonding interactions between adaptor aminoacyl-transfer RNA molecules and mRNAs to ensure the rapid and faithful translation of the genetic code into protein. There is a growing body of evidence suggesting that chemical modifications to mRNA nucleosides impact the speed and accuracy of protein synthesis by the ribosome. Modulations in translation rates have downstream effects beyond protein production, influencing protein folding and mRNA stability. Given the prevalence of such modifications in mRNA coding regions, it is imperative to understand the consequences of individual modifications on translation. In this review we present the current state of our knowledge regarding how individual mRNA modifications influence ribosome function. Our comprehensive comparison of the impacts of 16 different mRNA modifications on translation reveals that most modifications can alter the elongation step in the protein synthesis pathway. Additionally, we discuss the context dependence of these effects, highlighting the necessity of further study to uncover the rules that govern how any given chemical modification in an mRNA codon is read by the ribosome.
Collapse
Affiliation(s)
| | - Kristin S Koutmou
- Program in Chemical Biology, University of Michigan, USA; Department of Chemistry, University of Michigan, USA.
| |
Collapse
|
35
|
Szabó GT, Mahiny AJ, Vlatkovic I. COVID-19 mRNA vaccines: Platforms and current developments. Mol Ther 2022; 30:1850-1868. [PMID: 35189345 PMCID: PMC8856755 DOI: 10.1016/j.ymthe.2022.02.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
Since the first successful application of messenger ribonucleic acid (mRNA) as a vaccine agent in a preclinical study nearly 30 years ago, numerous advances have been made in the field of mRNA therapeutic technologies. This research uncovered the unique favorable characteristics of mRNA vaccines, including their ability to give rise to non-toxic, potent immune responses and the potential to design and upscale them rapidly, making them excellent vaccine candidates during the coronavirus disease 2019 (COVID-19) pandemic. Indeed, the first two vaccines against COVID-19 to receive accelerated regulatory authorization were nucleoside-modified mRNA vaccines, which showed more than 90% protective efficacy against symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alongside tolerable safety profiles in the pivotal phase III clinical trials. Real-world evidence following the deployment of global vaccination campaigns utilizing mRNA vaccines has bolstered clinical trial evidence and further illustrated that this technology can be used safely and effectively to combat COVID-19. This unprecedented success also emphasized the broader potential of this new drug class, not only for other infectious diseases, but also for other indications, such as cancer and inherited diseases. This review presents a brief history and the current status of development of four mRNA vaccine platforms, nucleoside-modified and unmodified mRNA, circular RNA, and self-amplifying RNA, as well as an overview of the recent progress and status of COVID-19 mRNA vaccines. We also discuss the current and anticipated challenges of these technologies, which may be important for future research endeavors and clinical applications.
Collapse
|
36
|
Abstract
The rapid development of two nucleoside-modified mRNA vaccines that are safe and highly effective against coronavirus disease 2019 has transformed the vaccine field. The mRNA technology has the advantage of accelerated immunogen discovery, induction of robust immune responses, and rapid scale up of manufacturing. Efforts to develop genital herpes vaccines have been ongoing for 8 decades without success. The advent of mRNA technology has the potential to change that narrative. Developing a genital herpes vaccine is a high public health priority. A prophylactic genital herpes vaccine should prevent HSV-1 and HSV-2 genital lesions and infection of dorsal root ganglia, the site of latency. Vaccine immunity should be durable for decades, perhaps with the assistance of booster doses. While these goals have been elusive, new efforts with nucleoside-modified mRNA-lipid nanoparticle vaccines show great promise. We review past approaches to vaccine development that were unsuccessful or partially successful in large phase 3 trials, and describe lessons learned from these trials. We discuss our trivalent mRNA-lipid nanoparticle approach for a prophylactic genital herpes vaccine and the ability of the vaccine to induce higher titers of neutralizing antibodies and more durable CD4+ T follicular helper cell and memory B cell responses than protein-adjuvanted vaccines.
Collapse
Affiliation(s)
- Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Harvey M Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
He Q, Gao H, Tan D, Zhang H, Wang JZ. mRNA cancer vaccines: Advances, trends and challenges. Acta Pharm Sin B 2022; 12:2969-2989. [PMID: 35345451 PMCID: PMC8942458 DOI: 10.1016/j.apsb.2022.03.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Patients exhibit good tolerance to messenger ribonucleic acid (mRNA) vaccines, and the choice of encoded molecules is flexible and diverse. These vaccines can be engineered to express full-length antigens containing multiple epitopes without major histocompatibility complex (MHC) restriction, are relatively easy to control and can be rapidly mass produced. In 2021, the U.S. Food and Drug Administration (FDA) approved the first mRNA-based coronavirus disease 2019 (COVID-19) vaccine produced by Pfizer and BioNTech, which has generated enthusiasm for mRNA vaccine research and development. Based on the above characteristics and the development of mRNA vaccines, mRNA cancer vaccines have become a research hotspot and have undergone rapid development, especially in the last five years. This review analyzes the advances in mRNA cancer vaccines from various perspectives, including the selection and expression of antigens/targets, the application of vectors and adjuvants, different administration routes, and preclinical evaluation, to reflect the trends and challenges associated with these vaccines.
Collapse
|
38
|
D’Esposito RJ, Myers CA, Chen AA, Vangaveti S. Challenges with Simulating Modified RNA: Insights into Role and Reciprocity of Experimental and Computational Approaches. Genes (Basel) 2022; 13:540. [PMID: 35328093 PMCID: PMC8949676 DOI: 10.3390/genes13030540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/12/2023] Open
Abstract
RNA is critical to a broad spectrum of biological and viral processes. This functional diversity is a result of their dynamic nature; the variety of three-dimensional structures that they can fold into; and a host of post-transcriptional chemical modifications. While there are many experimental techniques to study the structural dynamics of biomolecules, molecular dynamics simulations (MDS) play a significant role in complementing experimental data and providing mechanistic insights. The accuracy of the results obtained from MDS is determined by the underlying physical models i.e., the force-fields, that steer the simulations. Though RNA force-fields have received a lot of attention in the last decade, they still lag compared to their protein counterparts. The chemical diversity imparted by the RNA modifications adds another layer of complexity to an already challenging problem. Insight into the effect of RNA modifications upon RNA folding and dynamics is lacking due to the insufficiency or absence of relevant experimental data. This review provides an overview of the state of MDS of modified RNA, focusing on the challenges in parameterization of RNA modifications as well as insights into relevant reference experiments necessary for their calibration.
Collapse
Affiliation(s)
- Rebecca J. D’Esposito
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (R.J.D.); (A.A.C.)
| | - Christopher A. Myers
- Department of Physics, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA;
| | - Alan A. Chen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (R.J.D.); (A.A.C.)
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
39
|
Huff AL, Jaffee EM, Zaidi N. Messenger RNA vaccines for cancer immunotherapy: progress promotes promise. J Clin Invest 2022; 132:e156211. [PMID: 35289317 PMCID: PMC8920340 DOI: 10.1172/jci156211] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic has elevated mRNA vaccines to global recognition due to their unprecedented success rate in protecting against a deadly virus. This international success is underscored by the remarkable versatility, favorable immunogenicity, and overall safety of the mRNA platform in diverse populations. Although mRNA vaccines have been studied in preclinical models and patients with cancer for almost three decades, development has been slow. The recent technological advances responsible for the COVID-19 vaccines have potential implications for successfully adapting this vaccine platform for cancer therapeutics. Here we discuss the lessons learned along with the chemical, biologic, and immunologic adaptations needed to optimize mRNA technology to successfully treat cancers.
Collapse
Affiliation(s)
- Amanda L. Huff
- Department of Oncology
- The Sidney Kimmel Comprehensive Cancer Center
- The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, and
- The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth M. Jaffee
- Department of Oncology
- The Sidney Kimmel Comprehensive Cancer Center
- The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, and
- The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Neeha Zaidi
- Department of Oncology
- The Sidney Kimmel Comprehensive Cancer Center
- The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, and
- The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Abusalah MAH, Khalifa M, Al-Hatamleh MAI, Jarrar M, Mohamud R, Chan YY. Nucleic Acid-Based COVID-19 Therapy Targeting Cytokine Storms: Strategies to Quell the Storm. J Pers Med 2022; 12:386. [PMID: 35330388 PMCID: PMC8948998 DOI: 10.3390/jpm12030386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has shaken the world and triggered drastic changes in our lifestyle to control it. Despite the non-typical efforts, COVID-19 still thrives and plagues humanity worldwide. The unparalleled degree of infection has been met with an exceptional degree of research to counteract it. Many drugs and therapeutic technologies have been repurposed and discovered, but no groundbreaking antiviral agent has been introduced yet to eradicate COVID-19 and restore normalcy. As lethality is directly correlated with the severity of disease, hospitalized severe cases are of the greatest importance to reduce, especially the cytokine storm phenomenon. This severe inflammatory phenomenon characterized by elevated levels of inflammatory mediators can be targeted to relieve symptoms and save the infected patients. One of the promising therapeutic strategies to combat COVID-19 is nucleic acid-based therapeutic approaches, including microRNAs (miRNAs). This work is an up-to-date review aimed to comprehensively discuss the current nucleic acid-based therapeutics against COVID-19 and their mechanisms of action, taking into consideration the emerging SARS-CoV-2 variants of concern, as well as providing potential future directions. miRNAs can be used to run interference with the expression of viral proteins, while endogenous miRNAs can be targeted as well, offering a versatile platform to control SARS-CoV-2 infection. By targeting these miRNAs, the COVID-19-induced cytokine storm can be suppressed. Therefore, nucleic acid-based therapeutics (miRNAs included) have a latent ability to break the COVID-19 infection in general and quell the cytokine storm in particular.
Collapse
Affiliation(s)
- Mai Abdel Haleem Abusalah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| | - Moad Khalifa
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Mu’taman Jarrar
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
- Medical Education Department, King Fahd Hospital of the University, Al-Khobar 34445, Saudi Arabia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| |
Collapse
|
41
|
Iyer S, Yadav R, Agarwal S, Tripathi S, Agarwal R. Bioengineering Strategies for Developing Vaccines against Respiratory Viral Diseases. Clin Microbiol Rev 2022; 35:e0012321. [PMID: 34788128 PMCID: PMC8597982 DOI: 10.1128/cmr.00123-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Respiratory viral pathogens like influenza and coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused outbreaks leading to millions of deaths. Vaccinations are, to date, the best and most economical way to control such outbreaks and have been highly successful for several pathogens. Currently used vaccines for respiratory viral pathogens are primarily live attenuated or inactivated and can risk reversion to virulence or confer inadequate immunity. The recent trend of using potent biomolecules like DNA, RNA, and protein antigenic components to synthesize vaccines for diseases has shown promising results. Still, it remains challenging to translate due to their high susceptibility to degradation during storage and after delivery. Advances in bioengineering technology for vaccine design have made it possible to control the physicochemical properties of the vaccines for rapid synthesis, heightened antigen presentation, safer formulations, and more robust immunogenicity. Bioengineering techniques and materials have been used to synthesize several potent vaccines, approved or in trials, against coronavirus disease 2019 (COVID-19) and are being explored for influenza, SARS, and Middle East respiratory syndrome (MERS) vaccines as well. Here, we review bioengineering strategies such as the use of polymeric particles, liposomes, and virus-like particles in vaccine development against influenza and coronaviruses and the feasibility of adopting these technologies for clinical use.
Collapse
Affiliation(s)
- Shalini Iyer
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rajesh Yadav
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Smriti Agarwal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Department of Microbiology and Cell Biology, Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Rachit Agarwal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
42
|
Szczepanek J, Skorupa M, Goroncy A, Jarkiewicz-Tretyn J, Wypych A, Sandomierz D, Jarkiewicz-Tretyn A, Dejewska J, Ciechanowska K, Pałgan K, Rajewski P, Tretyn A. Anti-SARS-CoV-2 IgG against the S Protein: A Comparison of BNT162b2, mRNA-1273, ChAdOx1 nCoV-2019 and Ad26.COV2.S Vaccines. Vaccines (Basel) 2022; 10:99. [PMID: 35062760 PMCID: PMC8778136 DOI: 10.3390/vaccines10010099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND COVID-19 vaccines induce a differentiated humoral and cellular response, and one of the comparable parameters of the vaccine response is the determination of IgG antibodies. MATERIALS AND METHODS Concentrations of IgG anti-SARS-CoV-2 antibodies were analyzed at three time points (at the beginning of May, at the end of June and at the end of September). Serum samples were obtained from 954 employees of the Nicolaus Copernicus University in Toruń (a total of three samples each were obtained from 511 vaccinated participants). IgG antibody concentrations were determined by enzyme immunoassay. The statistical analysis included comparisons between vaccines, between convalescents and COVID-19 non-patients, between individual measurements and included the gender, age and blood groups of participants. RESULTS There were significant differences in antibody levels between mRNA and vector vaccines. People vaccinated with mRNA-1273 achieved the highest levels of antibodies, regardless of the time since full vaccination. People vaccinated with ChAdOx1 nCoV-2019 produced several times lower antibody levels compared to the mRNA vaccines, while the antibody levels were more stable. In the case of each of the vaccines, the factor having the strongest impact on the level and stability of the IgG antibody titers was previous SARS-CoV-2 infection. There were no significant correlations with age, gender and blood type. SUMMARY mRNA vaccines induce a stronger humoral response of the immune system with the fastest loss of antibodies over time.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland; (M.S.); (A.W.)
| | - Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland; (M.S.); (A.W.)
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Agnieszka Goroncy
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Joanna Jarkiewicz-Tretyn
- Cancer Genetics Laboratory Ltd., 87-100 Torun, Poland; (J.J.-T.); (D.S.); (A.J.-T.); (J.D.); (K.C.)
| | - Aleksandra Wypych
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland; (M.S.); (A.W.)
- Academic Research Center AKAMED Ltd., 87-100 Torun, Poland
| | - Dorota Sandomierz
- Cancer Genetics Laboratory Ltd., 87-100 Torun, Poland; (J.J.-T.); (D.S.); (A.J.-T.); (J.D.); (K.C.)
| | - Aleksander Jarkiewicz-Tretyn
- Cancer Genetics Laboratory Ltd., 87-100 Torun, Poland; (J.J.-T.); (D.S.); (A.J.-T.); (J.D.); (K.C.)
- Polish-Japanese Academy of Information Technology, 02-008 Warszawa, Poland
| | - Joanna Dejewska
- Cancer Genetics Laboratory Ltd., 87-100 Torun, Poland; (J.J.-T.); (D.S.); (A.J.-T.); (J.D.); (K.C.)
| | - Karolina Ciechanowska
- Cancer Genetics Laboratory Ltd., 87-100 Torun, Poland; (J.J.-T.); (D.S.); (A.J.-T.); (J.D.); (K.C.)
| | - Krzysztof Pałgan
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland;
| | - Paweł Rajewski
- Department of Internal and Infectious Diseases, Provincial Infectious Disease Hospital, 85-067 Bydgoszcz, Poland;
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| |
Collapse
|
43
|
Naik R, Peden K. Regulatory Considerations on the Development of mRNA Vaccines. Curr Top Microbiol Immunol 2022; 440:187-205. [PMID: 32638114 DOI: 10.1007/82_2020_220] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Developing traditional viral vaccines for infectious diseases usually takes years, as these are usually produced either by chemical inactivation of the virus or attenuation of the pathogen, processes that can take considerable time to validate and also require the live pathogen. With the advent of nucleic-acid vaccines (DNA and mRNA), the time to vaccine design and production is considerably shortened, since once the platform has been established, all that is required is the sequence of the antigen gene, its synthesis and insertion into an appropriate expression vector; importantly, no infectious virus is required. mRNA vaccines have some advantages over DNA vaccines, such as expression in non-dividing cells and the absence of the perceived risk of integration into host genome. Also, generally lower doses are required to induce the immune response. Based on experience in recent clinical trials, mRNA-based vaccines are a promising novel platform that might be useful for the development of vaccines against emerging pandemic infectious diseases. This chapter discusses some of the specific issues that mRNA vaccines raise with respect to production, quality, safety and efficacy, and how they have been addressed so as to allow their evaluation in clinical trials.
Collapse
Affiliation(s)
- Ramachandra Naik
- Division of Vaccines and Related Products Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 71, Room 3045, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Keith Peden
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 52/72, Room 1220, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| |
Collapse
|
44
|
Current view on novel vaccine technologies to combat human infectious diseases. Appl Microbiol Biotechnol 2022; 106:25-56. [PMID: 34889981 PMCID: PMC8661323 DOI: 10.1007/s00253-021-11713-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Inactivated and live attenuated vaccines have improved human life and significantly reduced morbidity and mortality of several human infectious diseases. However, these vaccines have faults, such as reactivity or suboptimal efficacy and expensive and time-consuming development and production. Additionally, despite the enormous efforts to develop vaccines against some infectious diseases, the traditional technologies have not been successful in achieving this. At the same time, the concerns about emerging and re-emerging diseases urge the need to develop technologies that can be rapidly applied to combat the new challenges. Within the last two decades, the research of vaccine technologies has taken several directions to achieve safe, efficient, and economic platforms or technologies for novel vaccines. This review will give a brief overview of the current state of the novel vaccine technologies, new vaccine candidates in clinical trial phases 1-3 (listed by European Medicines Agency (EMA) and Food and Drug Administration (FDA)), and vaccines based on the novel technologies which have already been commercially available (approved by EMA and FDA) with the special reference to pandemic COVID-19 vaccines. KEY POINTS: • Vaccines of the new generation follow the minimalist strategy. • Some infectious diseases remain a challenge for the vaccine development. • The number of new vaccine candidates in the late phase clinical trials remains low.
Collapse
|
45
|
Abbaspour M, Akbari V. Cancer vaccines as a targeted immunotherapy approach for breast cancer: an update of clinical evidence. Expert Rev Vaccines 2021; 21:337-353. [PMID: 34932427 DOI: 10.1080/14760584.2022.2021884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the first common neoplastic malignancy and the second leading cause of death in women worldwide. Conventional treatments for BC are often associated with severe side effects and may even lead to late recurrence. For this reason, in recent years, cancer immunotherapy (e.g., cancer vaccines), a novel approach based on the specificity and amplification of acquired immune responses, has been considered as a potential candidate in particular to treat metastatic BC. AREAS COVERED In this review, we summarize and discuss the recent development of therapeutic vaccines for BC, use of specific BC cellular antigens, antigen selection, and probable causes for their insufficient effectiveness. EXPERT OPINION Despite development of several different BC vaccines strategies including protein/peptide, dendritic cell, and genetic vaccines, until now, no BC vaccine has been approved for clinical use. Most of the current BC vaccines themselves fail to bring clinical benefit to BC patients and are applied in combination with radiotherapy, chemotherapy, or targeted therapy. It is hoped that with advances in our knowledge about tumor microenvironment and the development of novel combination strategies, the tumor immunosuppressive mechanisms can be overcome and prolonged immunologic and effective anti-tumor response can be developed in patients.
Collapse
Affiliation(s)
- Maryam Abbaspour
- Department of pharmaceutical biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of pharmaceutical biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
46
|
Abstract
Coronavirus disease, COVID-19, has touched every country globally except five countries (North Korea, Turkmenistan, Tonga, Tuvalu and Nauru). Vaccination is the most effective method to protect against infectious diseases. The objective is to ensure that everyone has access to a COVID-19 vaccine. The conventional vaccine development platforms are complex and time-consuming to obtain desired approved vaccine candidates through rigorous regulatory pathways. These safeguards guarantee that the optimized vaccine product is safe and efficacious for various demographic populations prior to it being approved for general use. Nucleic acid vaccines employ genetic material from a pathogen, such as a virus or bacteria, to induce an immune response against it. Based on the vaccination, the genetic material might be DNA or RNA; as such, it offers instructions for producing a specific pathogen protein that the immune system will perceive as foreign and mount an immune response. Nucleic acid vaccines for multiple antigens might be made in the same facility, lowering costs even more. Most traditional vaccine regimens do not allow for this. Herein, we demonstrate the recent understanding and advances in nucleic acid vaccines (DNA and mRNA based) against COVID-19, specifically those in human clinical trials.
Collapse
|
47
|
Feliciello I, Procino A. mRNA vaccines: Why and how they should be modified. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2021. [DOI: 10.4081/jbr.2021.10072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The COVID-19 pandemic has stimulated the production of different therapeutic approaches for the resolution of coronavirus infections. On one hand, nanobiomolecules have been proposed as bait material for viruses,1,2 on the other hand unconventional messenger RNA vaccines have been produced like SARS-CoV-2 mRNA vaccines (BioNTech/Pfizer BNT162b2 and Moderna mRNA-1273). [...]
Collapse
|
48
|
Li J, Song M, Guo D, Yi Y. Safety and Considerations of the COVID-19 Vaccine Massive Deployment. Virol Sin 2021; 36:1097-1103. [PMID: 34061319 PMCID: PMC8167387 DOI: 10.1007/s12250-021-00408-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Junwei Li
- Department of Infectious Diseases, The Second Hospital of Nanjing, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210003, China
- Public Health and Therapy Center of Nanjing, Nanjing, 211113, China
| | - Mingyue Song
- Department of Infectious Diseases, The Second Hospital of Nanjing, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210003, China
- Public Health and Therapy Center of Nanjing, Nanjing, 211113, China
| | - Deyin Guo
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yongxiang Yi
- Department of Infectious Diseases, The Second Hospital of Nanjing, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210003, China.
- Public Health and Therapy Center of Nanjing, Nanjing, 211113, China.
| |
Collapse
|
49
|
Abstract
The COVID-19 (coronavirus disease 2019) pandemic has spread worldwide, leading to the deaths of millions and changing the way we live; we all hope to see the end of the pandemic soon. Nonetheless, an urgent need for medical interventions led to unprecedented and focused research efforts to translate scientific knowledge to new therapeutic and preventative interventions. Procedures were simplified, and new norms were established to expedite high-quality scientific output. We do hope that these changes will be adopted and streamlined to advance science in the future.
Collapse
Affiliation(s)
- Alon Herschhorn
- Division of Infectious Diseases and International
Medicine, Department of Medicine, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| | - Ashley T. Haase
- Department of Microbiology and Immunology,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| |
Collapse
|
50
|
Insuline et vaccins à ARN messager : deux découvertes majeures à 100 ans de distance. Une disponibilité pour tous les pays ? MÉDECINE DES MALADIES MÉTABOLIQUES 2021. [PMCID: PMC7925233 DOI: 10.1016/j.mmm.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|