1
|
Ashraf MA, Raza MA, Imran A, Amjad MN. Next-generation vaccines for influenza B virus: advancements and challenges. Arch Virol 2025; 170:25. [PMID: 39762648 DOI: 10.1007/s00705-024-06210-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/07/2024] [Indexed: 02/08/2025]
Abstract
To battle seasonal outbreaks of influenza B virus infection, which continue to pose a major threat to world health, new and improved vaccines are urgently needed. In this article, we discuss the current state of next-generation influenza B vaccine development, including both advancements and challenges. This review covers the shortcomings of existing influenza vaccines and stresses the need for more-effective and broadly protective vaccines and more-easily scalable manufacturing processes. New possibilities for vaccine development have emerged due to recent technical developments such as virus-like particle (VLP) platforms, recombinant DNA technologies, and reverse genetics. By using these methods, vaccines can be developed that elicit stronger and longer-lasting immune responses against various strains of influenza B virus. Vaccines may be more effective and immunogenic when adjuvants and new delivery mechanisms are used. Progress has been made in the development of influenza B vaccine mRNA vaccines, nanoparticle-based vaccines, and vector-based vaccines. However, there are still several obstacles to overcome before next-generation influenza B vaccines can be widely used, including the challenge of antigenic drift, the extinction of the B/Yamagata lineage, and difficulties in strain selection. There are also other challenges related to public acceptance, vaccine distribution, manufacturing complexity, and regulations. To overcome these challenges, scientists, politicians, and pharmaceutical firms must work together to expedite the development and licensing of vaccines and the establishment of immunization programs. The need for constant monitoring and quick adaptation of vaccines to match the currently circulating strains is further highlighted by the appearance of novel influenza B virus variants. To be ready for future pandemics and influenza B outbreaks, we need better vaccines and better monitoring systems.
Collapse
Affiliation(s)
- Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Azka Imran
- University of Veterinary and Animal Sciences UVAS, Lahore, Pakistan
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Din GU, Wu C, Tariq Z, Hasham K, Amjad MN, Shen B, Yue L, Raza MA, Ashraf MA, Chen L, Hu Y. Unlocking influenza B: exploring molecular biology and reverse genetics for epidemic control and vaccine innovation. Virol J 2024; 21:196. [PMID: 39180083 PMCID: PMC11344405 DOI: 10.1186/s12985-024-02433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/26/2024] Open
Abstract
Influenza is a highly contagious acute viral illness that affects the respiratory system, posing a significant global public health concern. Influenza B virus (IBV) causes annual seasonal epidemics. The exploration of molecular biology and reverse genetics of IBV is pivotal for understanding its replication, pathogenesis, and evolution. Reverse genetics empowers us to purposefully alter the viral genome, engineer precise genetic modifications, and unveil the secrets of virulence and resistance mechanisms. It helps us in quickly analyzing new virus strains by viral genome manipulation and the development of innovative influenza vaccines. Reverse genetics has been employed to create mutant or reassortant influenza viruses for evaluating their virulence, pathogenicity, host range, and transmissibility. Without this technique, these tasks would be difficult or impossible, making it crucial for preparing for epidemics and protecting public health. Here, we bring together the latest information on how we can manipulate the genes of the influenza B virus using reverse genetics methods, most importantly helper virus-independent techniques.
Collapse
Affiliation(s)
- Ghayyas Ud Din
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, People's Republic of China
| | - Zahra Tariq
- Sundas Molecular Analysis Center, Sundas Foundation, Gujranwala, Punjab, Pakistan
| | - Kinza Hasham
- Sundas Molecular Analysis Center, Sundas Foundation, Gujranwala, Punjab, Pakistan
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
| | - Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingdie Chen
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Cardenas-Garcia S, Cáceres CJ, Jain A, Geiger G, Mo JS, Gay LC, Seibert B, Jasinskas A, Nakajima R, Rajao DS, Davies DH, Perez DR. Impact of sex on humoral immunity with live influenza B virus vaccines in mice. NPJ Vaccines 2024; 9:45. [PMID: 38409236 PMCID: PMC10897209 DOI: 10.1038/s41541-024-00827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
Influenza B virus (FLUBV) poses a significant infectious threat, with frequent vaccine mismatch limiting its effectiveness. Our previous work investigated the safety and efficacy of modified live attenuated FLUBV vaccines with rearranged genomes (FluB-RAM and FluB-RANS) or a temperature-sensitive PB1 segment with a C-terminal HA tag (FluB-att). In this study, we compared the immune responses of female and male DBA/2J mice vaccinated with these vaccines, including versions containing a chimeric HA segment with an N-terminal IgA-inducing peptide (IGIP). Importantly, both recombinant viruses with and without IGIP remained genetically stable during egg passage. We found that introducing IGIP strengthened vaccine attenuation, particularly for FluB-RAM/IGIP. Prime-boost vaccination completely protected mice against lethal challenge with a homologous FLUBV strain. Notably, recombinant viruses induced robust neutralizing antibody responses (hemagglutination inhibition titers ≥40) alongside antibodies against NA and NP. Interestingly, female mice displayed a consistent trend of enhanced humoral and cross-reactive IgG and IgA responses against HA, NA, and NP compared to male counterparts, regardless of the vaccine used. However, the presence of IGIP generally led to lower anti-HA responses but higher anti-NA and anti-NP responses, particularly of the IgA isotype. These trends were further reflected in mucosal and serological responses two weeks after challenge, with clear distinctions based on sex, vaccine backbone, and IGIP inclusion. These findings hold significant promise for advancing the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Stivalis Cardenas-Garcia
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - C Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Aarti Jain
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Jong-Suk Mo
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - L Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Algimantas Jasinskas
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Rie Nakajima
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Daniela S Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - D Huw Davies
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Piepenbrink M, Oladunni F, Nogales A, Khalil AM, Fitzgerald T, Basu M, Fucile C, Topham DJ, Rosenberg AF, Martinez-Sobrido L, Kobie JJ. Highly Cross-Reactive and Protective Influenza A Virus H3N2 Hemagglutinin- and Neuraminidase-Specific Human Monoclonal Antibodies. Microbiol Spectr 2023; 11:e0472822. [PMID: 37318331 PMCID: PMC10433997 DOI: 10.1128/spectrum.04728-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/29/2023] [Indexed: 06/16/2023] Open
Abstract
Due to antigenic drift and shift of influenza A viruses (IAV) and the tendency to elicit predominantly strain-specific antibodies, humanity remains susceptible to new strains of seasonal IAV and is at risk from viruses with pandemic potential for which limited or no immunity may exist. The genetic drift of H3N2 IAV is specifically pronounced, resulting in two distinct clades since 2014. Here, we demonstrate that immunization with a seasonal inactivated influenza vaccine (IIV) results in increased levels of H3N2 IAV-specific serum antibodies against hemagglutinin (HA) and neuraminidase (NA). Detailed analysis of the H3N2 B cell response indicated expansion of H3N2-specific peripheral blood plasmablasts 7 days after IIV immunization which expressed monoclonal antibodies (MAbs) with broad and potent antiviral activity against many H3N2 IAV strains as well as prophylactic and therapeutic activity in mice. These H3N2-specific B cell clonal lineages persisted in CD138+ long-lived bone marrow plasma cells. These results demonstrate that IIV-induced H3N2 human MAbs can protect and treat influenza virus infection in vivo and suggest that IIV can induce a subset of IAV H3N2-specific B cells with broad protective potential, a feature that warrants further study for universal influenza vaccine development. IMPORTANCE Influenza A virus (IAV) infections continue to cause substantial morbidity and mortality despite the availability of seasonal vaccines. The extensive genetic variability in seasonal and potentially pandemic influenza strains necessitates new vaccine strategies that can induce universal protection by focusing the immune response on generating protective antibodies against conserved targets within the influenza virus hemagglutinin and neuraminidase proteins. We have demonstrated that seasonal immunization with inactivated influenza vaccine (IIV) stimulates H3N2-specific monoclonal antibodies in humans that are broad and potent in their neutralization of virus in vitro. These antibodies also provide protection from H3N2 IAV in a mouse model of infection. Furthermore, they persist in the bone marrow, where they are expressed by long-lived antibody-producing plasma cells. This significantly demonstrates that seasonal IIV can induce a subset of H3N2-specific B cells with broad protective potential, a process that if further studied and enhanced could aid in the development of a universal influenza vaccine.
Collapse
Affiliation(s)
- Michael Piepenbrink
- Heersink School of Medicine, Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Infectious Diseases Division, University of Rochester, Rochester, New York, USA
| | - Fatai Oladunni
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| | - Ahmed M. Khalil
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Theresa Fitzgerald
- Department of Microbiology and Immunology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| | - Madhubanti Basu
- Heersink School of Medicine, Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher Fucile
- Heersink School of Medicine, Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David J. Topham
- Department of Microbiology and Immunology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| | - Alexander F. Rosenberg
- Heersink School of Medicine, Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Luis Martinez-Sobrido
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| | - James J. Kobie
- Heersink School of Medicine, Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Infectious Diseases Division, University of Rochester, Rochester, New York, USA
| |
Collapse
|
5
|
Chiem K, Park JG, Morales Vasquez D, Plemper RK, Torrelles JB, Kobie JJ, Walter MR, Ye C, Martinez-Sobrido L. Monitoring SARS-CoV-2 Infection Using a Double Reporter-Expressing Virus. Microbiol Spectr 2022; 10:e0237922. [PMID: 35980204 PMCID: PMC9603146 DOI: 10.1128/spectrum.02379-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/02/2022] [Indexed: 01/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the highly contagious agent responsible for the coronavirus disease 2019 (COVID-19) pandemic. An essential requirement for understanding SARS-CoV-2 biology and the impact of antiviral therapeutics is a robust method to detect the presence of the virus in infected cells or animal models. Despite the development and successful generation of recombinant (r)SARS-CoV-2-expressing fluorescent or luciferase reporter genes, knowledge acquired from their use in in vitro assays and/or in live animals is limited to the properties of the fluorescent or luciferase reporter genes. Herein, for the first time, we engineered a replication-competent rSARS-CoV-2 that expresses both fluorescent (mCherry) and luciferase (Nluc) reporter genes (rSARS-CoV-2/mCherry-Nluc) to overcome limitations associated with the use of a single reporter gene. In cultured cells, rSARS-CoV-2/mCherry-Nluc displayed similar viral fitness as rSARS-CoV-2 expressing single reporter fluorescent and luciferase genes (rSARS-CoV-2/mCherry and rSARS-CoV-2/Nluc, respectively) or wild-type (WT) rSARS-CoV-2, while maintaining comparable expression levels of both reporter genes. In vivo, rSARS-CoV-2/mCherry-Nluc has similar pathogenicity in K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice than rSARS-CoV-2 expressing individual reporter genes or WT rSARS-CoV-2. Importantly, rSARS-CoV-2/mCherry-Nluc facilitates the assessment of viral infection and transmission in golden Syrian hamsters using in vivo imaging systems (IVIS). Altogether, this study demonstrates the feasibility of using this novel bioreporter-expressing rSARS-CoV-2 for the study of SARS-CoV-2 in vitro and in vivo. IMPORTANCE Despite the availability of vaccines and antivirals, the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to ravage health care institutions worldwide. Previously, we generated replication-competent recombinant (r)SARS-CoV-2 expressing fluorescent or luciferase reporter proteins to track viral infection in vitro and/or in vivo. However, these rSARS-CoV-2 are restricted to express only a single fluorescent or a luciferase reporter gene, limiting or preventing their use in specific in vitro assays and/or in vivo studies. To overcome this limitation, we have engineered a rSARS-CoV-2 expressing both fluorescent (mCherry) and luciferase (Nluc) genes and demonstrated its feasibility to study the biology of SARS-CoV-2 in vitro and/or in vivo, including the identification and characterization of neutralizing antibodies and/or antivirals. Using rodent models, we visualized SARS-CoV-2 infection and transmission through in vivo imaging systems (IVIS).
Collapse
Affiliation(s)
- Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | | | - Richard K. Plemper
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | | | - James J. Kobie
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mark R. Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | | |
Collapse
|
6
|
Nogales A, DeDiego ML, Martínez-Sobrido L. Live attenuated influenza A virus vaccines with modified NS1 proteins for veterinary use. Front Cell Infect Microbiol 2022; 12:954811. [PMID: 35937688 PMCID: PMC9354547 DOI: 10.3389/fcimb.2022.954811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza A viruses (IAV) spread rapidly and can infect a broad range of avian or mammalian species, having a tremendous impact in human and animal health and the global economy. IAV have evolved to develop efficient mechanisms to counteract innate immune responses, the first host mechanism that restricts IAV infection and replication. One key player in this fight against host-induced innate immune responses is the IAV non-structural 1 (NS1) protein that modulates antiviral responses and virus pathogenicity during infection. In the last decades, the implementation of reverse genetics approaches has allowed to modify the viral genome to design recombinant IAV, providing researchers a powerful platform to develop effective vaccine strategies. Among them, different levels of truncation or deletion of the NS1 protein of multiple IAV strains has resulted in attenuated viruses able to induce robust innate and adaptive immune responses, and high levels of protection against wild-type (WT) forms of IAV in multiple animal species and humans. Moreover, this strategy allows the development of novel assays to distinguish between vaccinated and/or infected animals, also known as Differentiating Infected from Vaccinated Animals (DIVA) strategy. In this review, we briefly discuss the potential of NS1 deficient or truncated IAV as safe, immunogenic and protective live-attenuated influenza vaccines (LAIV) to prevent disease caused by this important animal and human pathogen.
Collapse
Affiliation(s)
- Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Madrid, Spain
- *Correspondence: Aitor Nogales, ; Luis Martínez-Sobrido,
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Martínez-Sobrido
- Department of Disease Intervention and Prevetion, Texas Biomedical Research Institute, San Antonio, TX, United States
- *Correspondence: Aitor Nogales, ; Luis Martínez-Sobrido,
| |
Collapse
|
7
|
Krischuns T, Isel C, Drncova P, Lukarska M, Pflug A, Paisant S, Navratil V, Cusack S, Naffakh N. Type B and type A influenza polymerases have evolved distinct binding interfaces to recruit the RNA polymerase II CTD. PLoS Pathog 2022; 18:e1010328. [PMID: 35605026 PMCID: PMC9242477 DOI: 10.1371/journal.ppat.1010328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/29/2022] [Accepted: 04/09/2022] [Indexed: 01/05/2023] Open
Abstract
During annual influenza epidemics, influenza B viruses (IBVs) co-circulate with influenza A viruses (IAVs), can become predominant and cause severe morbidity and mortality. Phylogenetic analyses suggest that IAVs (primarily avian viruses) and IBVs (primarily human viruses) have diverged over long time scales. Identifying their common and distinctive features is an effective approach to increase knowledge about the molecular details of influenza infection. The virus-encoded RNA-dependent RNA polymerases (FluPolB and FluPolA) are PB1-PB2-PA heterotrimers that perform transcription and replication of the viral genome in the nucleus of infected cells. Initiation of viral mRNA synthesis requires a direct association of FluPol with the host RNA polymerase II (RNAP II), in particular the repetitive C-terminal domain (CTD) of the major RNAP II subunit, to enable "cap-snatching" whereby 5'-capped oligomers derived from nascent RNAP II transcripts are pirated to prime viral transcription. Here, we present the first high-resolution co-crystal structure of FluPolB bound to a CTD mimicking peptide at a binding site crossing from PA to PB2. By performing structure-based mutagenesis of FluPolB and FluPolA followed by a systematic investigation of FluPol-CTD binding, FluPol activity and viral phenotype, we demonstrate that IBVs and IAVs have evolved distinct binding interfaces to recruit the RNAP II CTD, despite the CTD sequence being highly conserved across host species. We find that the PB2 627 subdomain, a major determinant of FluPol-host cell interactions and IAV host-range, is involved in CTD-binding for IBVs but not for IAVs, and we show that FluPolB and FluPolA bind to the host RNAP II independently of the CTD. Altogether, our results suggest that the CTD-binding modes of IAV and IBV may represent avian- and human-optimized binding modes, respectively, and that their divergent evolution was shaped by the broader interaction network between the FluPol and the host transcriptional machinery.
Collapse
Affiliation(s)
- Tim Krischuns
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité Biologie des ARN et Virus Influenza, Paris, France
| | - Catherine Isel
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité Biologie des ARN et Virus Influenza, Paris, France
| | - Petra Drncova
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Maria Lukarska
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Alexander Pflug
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Sylvain Paisant
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité Biologie des ARN et Virus Influenza, Paris, France
| | - Vincent Navratil
- PRABI, Rhône Alpes Bioinformatics Center, UCBL, Lyon1, Université de Lyon, Lyon, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
- * E-mail: (SC); (NN)
| | - Nadia Naffakh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité Biologie des ARN et Virus Influenza, Paris, France
- * E-mail: (SC); (NN)
| |
Collapse
|
8
|
Rattan A, White CL, Nelson S, Eismann M, Padilla-Quirarte H, Glover MA, Dileepan T, Marathe BM, Govorkova EA, Webby RJ, Richards KA, Sant AJ. Development of a Mouse Model to Explore CD4 T Cell Specificity, Phenotype, and Recruitment to the Lung after Influenza B Infection. Pathogens 2022; 11:251. [PMID: 35215193 PMCID: PMC8875387 DOI: 10.3390/pathogens11020251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/30/2023] Open
Abstract
The adaptive T cell response to influenza B virus is understudied, relative to influenza A virus, for which there has been considerable attention and progress for many decades. Here, we have developed and utilized the C57BL/6 mouse model of intranasal infection with influenza B (B/Brisbane/60/2008) virus and, using an iterative peptide discovery strategy, have identified a series of robustly elicited individual CD4 T cell peptide specificities. The CD4 T cell repertoire encompassed at least eleven major epitopes distributed across hemagglutinin, nucleoprotein, neuraminidase, and non-structural protein 1 and are readily detected in the draining lymph node, spleen, and lung. Within the lung, the CD4 T cells are localized to both lung vasculature and tissue but are highly enriched in the lung tissue after infection. When studied by flow cytometry and MHC class II: peptide tetramers, CD4 T cells express prototypical markers of tissue residency including CD69, CD103, and high surface levels of CD11a. Collectively, our studies will enable more sophisticated analyses of influenza B virus infection, where the fate and function of the influenza B-specific CD4 T cells elicited by infection and vaccination can be studied as well as the impact of anti-viral reagents and candidate vaccines on the abundance, functionality, and localization of the elicited CD4 T cells.
Collapse
Affiliation(s)
- Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
| | - Chantelle L. White
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
| | - Sean Nelson
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
| | - Max Eismann
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
| | - Herbey Padilla-Quirarte
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Maryah A. Glover
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
| | - Thamotharampillai Dileepan
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Bindumadhav M. Marathe
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.M.M.); (E.A.G.); (R.J.W.)
| | - Elena A. Govorkova
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.M.M.); (E.A.G.); (R.J.W.)
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (B.M.M.); (E.A.G.); (R.J.W.)
| | - Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
- Center for Influenza Disease and Emergence Response (CIDER), University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.R.); (C.L.W.); (S.N.); (M.E.); (M.A.G.); (K.A.R.)
- Center for Influenza Disease and Emergence Response (CIDER), University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Hao S, Ning K, Küz ÇA, McFarlin S, Cheng F, Qiu J. Eight years' advances on Bourbon virus, a tick-born Thogotovirus of the Orthomyxovirus family. ZOONOSES (BURLINGTON, MASS.) 2022; 2:18. [PMID: 35727718 PMCID: PMC9206863 DOI: 10.15212/zoonoses-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bourbon virus (BRBV) was first isolated from a blood sample collected from a male patient living in Bourbon county, Kansas, during the spring of 2014. The patient later died due to complications associated with multiorgan failure. Currently, several BRBV infection-caused deaths have been reported in the United States, and misdiagnosed cases are often undercounted. BRBV is a member of the genus Thogotovirus of the Orthomyxoviridae family, and is transmitted through the Lone Star tick, Amblyomma Americanum, in North America. Currently, there are no specific antivirals or vaccinations available to treat or prevent BRBV infection. Several small molecular compounds have been identified to effectively inhibit BRBV infection of in vitro cell cultures at a single- or sub-micromolar level. Favipiravir, an RNA-dependent RNA polymerase inhibitor, prevented the death of Type I interferon receptor knockout mice infected with BRBV infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianming Qiu
- Corresponding author: Jianming Qiu, Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Blvd. Kansas City, KS 66160, Phone: (913) 588-4329, Fax: (913) 588-7295,
| |
Collapse
|
10
|
Nogales A, Chiem K, Breen M, DeDiego ML, Parrish CR, Martínez-Sobrido L. Generation and Characterization of Single-Cycle Infectious Canine Influenza A Virus (sciCIV) and Its Use as Vaccine Platform. Methods Mol Biol 2022; 2465:227-255. [PMID: 35118625 DOI: 10.1007/978-1-0716-2168-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Influenza A viruses (IAVs) infect a broad range of hosts, including multiple avian and mammalian species. The frequent emergence of novel IAV strains in different hosts, including in humans, results in the need for vigilance and ongoing development of new approaches to fighting or prevent those infections. Canine influenza is a contagious respiratory disease in dogs caused by two subtypes of IAV, the equine-origin H3N8 canine influenza virus (CIV), and the avian-origin H3N2 CIV. A novel approach to influenza vaccination involves single-cycle infectious influenza A viruses (sciIAVs), which are defective for an essential viral gene. They are propagated in complementing cell lines which provide the missing gene in trans. As sciIAV cannot complete their replication cycle in regular cells they are limited to a single round of viral replication. Because of their safety profile and ability to express foreign antigens inside infected cells, sciIAVs have served both as live-attenuated vaccines and as vaccine vectors for the expression of heterologous antigens. Here, we describe experimental procedures for the generation of a single-cycle infectious CIV (sciCIV), where the viral hemagglutinin (HA) gene was exchanged for the gene for green fluorescent protein (GFP). Complementation of the viral HA protein is provided in trans by stable HA-expressing cell lines. Methods for the in vitro characterization of HA deficient but GFP-expressing sciCIV (sciCIV ΔHA/GFP) are described, as well as its use as a potential vaccine.
Collapse
Affiliation(s)
- Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), INIA-CSIC, Madrid, Spain.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Kevin Chiem
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Michael Breen
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Marta L DeDiego
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Colin R Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
11
|
Chiem K, Nogales A, Martinez-Sobrido L. Generation, Characterization, and Applications of Influenza A Reporter Viruses. Methods Mol Biol 2022; 2524:249-268. [PMID: 35821477 DOI: 10.1007/978-1-0716-2453-1_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Secondary experimental procedures such as immunostaining have been utilized to study wild-type influenza A viruses (IAV) but are inadequate to rapidly determine the virus in infected cells or for the high-throughput screening (HTS) of antivirals or neutralizing antibodies. Reverse genetics approaches have allowed the generation of recombinant IAV expressing bioluminescent (BL) reporters or fluorescent proteins (FPs). These approaches can easily track viral infections in cultured cells and in validated animal models of infection using in vivo imaging systems (IVIS). Here, we describe the experimental procedures to generate recombinant monomeric (m)Cherry-expressing influenza A/Puerto Rico/8/34 (PR8-mCherry) H1N1 by altering the non-structural (NS) vRNA segment and its use in mCherry-based microneutralization assays to assess antivirals and neutralizing antibodies. The experimental procedures could be used for the generation of other recombinant influenza virus types (e.g., influenza B) or IAV subtypes (e.g., H3N2) expressing mCherry or other BL reporters or FPs from the NS or other vRNA segment. These recombinant reporter-expressing viruses represent an excellent toolbox for the identification of prophylactics or therapeutics for the treatment of influenza viral infections in HTS settings as well as to study different aspects related with the biology of influenza viruses and/or its interaction with the host.
Collapse
Affiliation(s)
- Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Aitor Nogales
- Center for Animal Health Research, INIA-CISA/CSIC, Madrid, Spain.
| | - Luis Martinez-Sobrido
- Texas Biomedical Research Institute, San Antonio, TX, USA.
- Department of Internal Research, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
12
|
Caddy S, Papa G, Borodavka A, Desselberger U. Rotavirus research: 2014-2020. Virus Res 2021; 304:198499. [PMID: 34224769 DOI: 10.1016/j.virusres.2021.198499] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/09/2023]
Abstract
Rotaviruses are major causes of acute gastroenteritis in infants and young children worldwide and also cause disease in the young of many other mammalian and of avian species. During the recent 5-6 years rotavirus research has benefitted in a major way from the establishment of plasmid only-based reverse genetics systems, the creation of human and other mammalian intestinal enteroids, and from the wide application of structural biology (cryo-electron microscopy, cryo-EM tomography) and complementary biophysical approaches. All of these have permitted to gain new insights into structure-function relationships of rotaviruses and their interactions with the host. This review follows different stages of the viral replication cycle and summarizes highlights of structure-function studies of rotavirus-encoded proteins (both structural and non-structural), molecular mechanisms of viral replication including involvement of cellular proteins and lipids, the spectrum of viral genomic and antigenic diversity, progress in understanding of innate and acquired immune responses, and further developments of prevention of rotavirus-associated disease.
Collapse
Affiliation(s)
- Sarah Caddy
- Cambridge Institute for Therapeutic Immunology and Infectious Disease Jeffery Cheah Biomedical Centre, Cambridge, CB2 0AW, UK.
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
13
|
A New Master Donor Virus for the Development of Live-Attenuated Influenza B Virus Vaccines. Viruses 2021; 13:v13071278. [PMID: 34208979 PMCID: PMC8310163 DOI: 10.3390/v13071278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 06/27/2021] [Indexed: 12/23/2022] Open
Abstract
Influenza B viruses (IBV) circulate annually, with young children, the elderly and immunocompromised individuals being at high risk. Yearly vaccinations are recommended to protect against seasonally influenza viruses, including IBV. Live attenuated influenza vaccines (LAIV) provide the unique opportunity for direct exposure to the antigenically variable surface glycoproteins as well as the more conserved internal components. Ideally, LAIV Master Donor Viruses (MDV) should accurately reflect seasonal influenza strains. Unfortunately, the continuous evolution of IBV have led to significant changes in conserved epitopes compared to the IBV MDV based on B/Ann Arbor/1/1966 strain. Here, we propose a recent influenza B/Brisbane/60/2008 as an efficacious MDV alternative, as its internal viral proteins more accurately reflect those of circulating IBV strains. We introduced the mutations responsible for the temperature sensitive (ts), cold adapted (ca) and attenuated (att) phenotype of B/Ann Arbor/1/1966 MDV LAIV into B/Brisbane/60/2008 to generate a new MDV LAIV. In vitro and in vivo analysis demonstrated that the mutations responsible of the ts, ca, and att phenotype of B/Ann Arbor/1/1966 MDV LAIV were able to infer the same phenotype to B/Brisbane/60/2008, demonstrating its potential as a new MDV for the development of LAIV to protect against contemporary IBV strains.
Collapse
|
14
|
Replication-Competent ΔNS1 Influenza A Viruses Expressing Reporter Genes. Viruses 2021; 13:v13040698. [PMID: 33920517 PMCID: PMC8072579 DOI: 10.3390/v13040698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
The influenza A virus (IAV) is able to infect multiple mammalian and avian species, and in humans IAV is responsible for annual seasonal epidemics and occasional pandemics of respiratory disease with significant health and economic impacts. Studying IAV involves laborious secondary methodologies to identify infected cells. Therefore, to circumvent this requirement, in recent years, multiple replication-competent infectious IAV expressing traceable reporter genes have been developed. These IAVs have been very useful for in vitro and/or in vivo studies of viral replication, identification of neutralizing antibodies or antivirals, and in studies to evaluate vaccine efficacy, among others. In this report, we describe, for the first time, the generation and characterization of two replication-competent influenza A/Puerto Rico/8/1934 H1N1 (PR8) viruses where the viral non-structural protein 1 (NS1) was substituted by the monomeric (m)Cherry fluorescent or the NanoLuc luciferase (Nluc) proteins. The ΔNS1 mCherry was able to replicate in cultured cells and in Signal Transducer and Activator of Transcription 1 (STAT1) deficient mice, although at a lower extent than a wild-type (WT) PR8 virus expressing the same mCherry fluorescent protein (WT mCherry). Notably, expression of either reporter gene (mCherry or Nluc) was detected in infected cells by fluorescent microscopy or luciferase plate readers, respectively. ΔNS1 IAV expressing reporter genes provide a novel approach to better understand the biology and pathogenesis of IAV, and represent an excellent tool to develop new therapeutic approaches against IAV infections.
Collapse
|
15
|
Malausse N, van der Werf S, Naffakh N, Munier S. Influenza B Virus Infection Is Enhanced Upon Heterotypic Co-infection With Influenza A Virus. Front Microbiol 2021; 12:631346. [PMID: 33717023 PMCID: PMC7947630 DOI: 10.3389/fmicb.2021.631346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Homotypic co-infections with influenza viruses are described to increase genetic population diversity, to drive viral evolution and to allow genetic complementation. Less is known about heterotypic co-infections between influenza A (IAV) and influenza B (IBV) viruses. Previous publications showed that IAV replication was suppressed upon co-infection with IBV. However, the effect of heterotypic co-infections on IBV replication was not investigated. To do so, we produced by reverse genetics a pair of replication-competent recombinant IAV (A/WSN/33) and IBV (B/Brisbane/60/2008) expressing a GFP and mCherry fluorescent reporter, respectively. A549 cells were infected simultaneously or 1 h apart at a high MOI with IAV-GFP or IBV-mCherry and the fluorescence was measured at 6 h post-infection by flow cytometry. Unexpectedly, we observed that IBV-mCherry infection was enhanced upon co-infection with IAV-GFP, and more strongly so when IAV was added 1 h prior to IBV. The same effect was observed with wild-type viruses and with various strains of IAV. Using UV-inactivated IAV or type-specific antiviral compounds, we showed that the enhancing effect of IAV infection on IBV infection was dependent on transcription/replication of the IAV genome. Our results, taken with available data in the literature, support the hypothesis that the presence of IAV proteins can enhance IBV genome expression and/or complement IBV defective particles.
Collapse
Affiliation(s)
- Nicolas Malausse
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Sylvie van der Werf
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
| | - Nadia Naffakh
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
| | - Sandie Munier
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
| |
Collapse
|
16
|
In Vitro Characterization of the Carbohydrate-Binding Agents HHA, GNA, and UDA as Inhibitors of Influenza A and B Virus Replication. Antimicrob Agents Chemother 2021; 65:AAC.01732-20. [PMID: 33288640 DOI: 10.1128/aac.01732-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/02/2020] [Indexed: 12/30/2022] Open
Abstract
Here, we report on the anti-influenza virus activity of the mannose-binding agents Hippeastrum hybrid agglutinin (HHA) and Galanthus nivalis agglutinin (GNA) and the (N-acetylglucosamine) n -specific Urtica dioica agglutinin (UDA). These carbohydrate-binding agents (CBA) strongly inhibited various influenza A(H1N1), A(H3N2), and B viruses in vitro, with 50% effective concentration values ranging from 0.016 to 83 nM, generating selectivity indexes up to 125,000. Somewhat less activity was observed against A/Puerto Rico/8/34 and an A(H1N1)pdm09 strain. In time-of-addition experiments, these CBA lost their inhibitory activity when added 30 min postinfection (p.i.). Interference with virus entry processes was also evident from strong inhibition of virus-induced hemolysis at low pH. However, a direct effect on acid-induced refolding of the viral hemagglutinin (HA) was excluded by the tryptic digestion assay. Instead, HHA treatment of HA-expressing cells led to a significant reduction of plasma membrane mobility. Crosslinking of membrane glycoproteins, through interaction with HA, could also explain the inhibitory effect on the release of newly formed virions when HHA was added at 6 h p.i. These CBA presumably interact with one or more N-glycans on the globular head of HA, since their absence led to reduced activity against mutant influenza B viruses and HHA-resistant A(H1N1) viruses. The latter condition emerged only after 33 cell culture passages in the continuous presence of HHA, and the A(H3N2) virus retained full sensitivity even after 50 passages. Thus, these CBA qualify as potent inhibitors of influenza A and B viruses in vitro with a pleiotropic mechanism of action and a high barrier for viral resistance.
Collapse
|
17
|
Abstract
Reverse genetics is the process of generating an RNA virus from a cDNA copy. Reverse genetics systems have truly transformed our ability to manipulate and study negative-strand RNA viruses. Plasmid-based reverse genetics approaches for influenza viruses provide a better understanding of virulence, transmission, mechanisms of antiviral resistance, and the development of alternative vaccines and vaccination strategies. Studying the molecular changes that allow influenza A viruses (IAVs) to transmit among animal species is important to better understand their animal health and public health risks. In this chapter, the cloning of cDNA copies of IAV's RNA segments into a reverse genetics plasmid vector, the experimental procedures for studying viral polymerase activity, and the successful generation of recombinant IAVs are described.
Collapse
|
18
|
Identification and Characterization of Novel Compounds with Broad-Spectrum Antiviral Activity against Influenza A and B Viruses. J Virol 2020; 94:JVI.02149-19. [PMID: 31941776 DOI: 10.1128/jvi.02149-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/23/2022] Open
Abstract
Influenza A (IAV) and influenza B (IBV) viruses are highly contagious pathogens that cause fatal respiratory disease every year, with high economic impact. In addition, IAV can cause pandemic infections with great consequences when new viruses are introduced into humans. In this study, we evaluated 10 previously described compounds with antiviral activity against mammarenaviruses for their ability to inhibit IAV infection using our recently described bireporter influenza A/Puerto Rico/8/34 (PR8) H1N1 (BIRFLU). Among the 10 tested compounds, eight (antimycin A [AmA], brequinar [BRQ], 6-azauridine, azaribine, pyrazofurin [PF], AVN-944, mycophenolate mofetil [MMF], and mycophenolic acid [MPA]), but not obatoclax or Osu-03012, showed potent anti-influenza virus activity under posttreatment conditions [median 50% effective concentration (EC50) = 3.80 nM to 1.73 μM; selective index SI for 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, >28.90 to 13,157.89]. AmA, 6-azauridine, azaribine, and PF also showed potent inhibitory effect in pretreatment (EC50 = 0.14 μM to 0.55 μM; SI-MTT = 70.12 to >357.14) or cotreatment (EC50 = 34.69 nM to 7.52 μM; SI-MTT = 5.24 to > 1,441.33) settings. All of the compounds tested inhibited viral genome replication and gene transcription, and none of them affected host cellular RNA polymerase II activities. The antiviral activity of the eight identified compounds against BIRFLU was further confirmed with seasonal IAVs (A/California/04/2009 H1N1 and A/Wyoming/3/2003 H3N2) and an IBV (B/Brisbane/60/2008, Victoria lineage), demonstrating their broad-spectrum prophylactic and therapeutic activity against currently circulating influenza viruses in humans. Together, our results identified a new set of antiviral compounds for the potential treatment of influenza viral infections.IMPORTANCE Influenza viruses are highly contagious pathogens and are a major threat to human health. Vaccination remains the most effective tool to protect humans against influenza infection. However, vaccination does not always guarantee complete protection against drifted or, more noticeably, shifted influenza viruses. Although U.S. Food and Drug Administration (FDA) drugs are approved for the treatment of influenza infections, influenza viruses resistant to current FDA antivirals have been reported and continue to emerge. Therefore, there is an urgent need to find novel antivirals for the treatment of influenza viral infections in humans, a search that could be expedited by repurposing currently approved drugs. In this study, we assessed the influenza antiviral activity of 10 compounds previously shown to inhibit mammarenavirus infection. Among them, eight drugs showed antiviral activities, providing a new battery of drugs that could be used for the treatment of influenza infections.
Collapse
|
19
|
Nogales A, Aydillo T, Ávila-Pérez G, Escalera A, Chiem K, Cadagan R, DeDiego ML, Li F, García-Sastre A, Martínez-Sobrido L. Functional Characterization and Direct Comparison of Influenza A, B, C, and D NS1 Proteins in vitro and in vivo. Front Microbiol 2019; 10:2862. [PMID: 31921042 PMCID: PMC6927920 DOI: 10.3389/fmicb.2019.02862] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
Influenza viruses are important pathogens that affect multiple animal species, including humans. There are four types of influenza viruses: A, B, C, and D (IAV, IBV, ICV, and IDV, respectively). IAV and IBV are currently circulating in humans and are responsible of seasonal epidemics (IAV and IBV) and occasional pandemics (IAV). ICV is known to cause mild infections in humans and pigs, while the recently identified IDV primarily affect cattle and pigs. Influenza non-structural protein 1 (NS1) is a multifunctional protein encoded by the NS segment in all influenza types. The main function of NS1 is to counteract the host antiviral defense, including the production of interferon (IFN) and IFN-stimulated genes (ISGs), and therefore is considered an important viral pathogenic factor. Despite of homologous functions, the NS1 protein from the diverse influenza types share little amino acid sequence identity, suggesting possible differences in their mechanism(s) of action, interaction(s) with host factors, and contribution to viral replication and/or pathogenesis. In addition, although the NS1 protein of IAV, IBV and, to some extent ICV, have been previously studied, it is unclear if IDV NS1 has similar properties. Using an approach that allow us to express NS1 independently of the nuclear export protein from the viral NS segment, we have generated recombinant IAV expressing IAV, IBV, ICV, and IDV NS1 proteins. Although recombinant viruses expressing heterotypic (IBV, ICV, and IDV) NS1 proteins were able to replicate similarly in canine MDCK cells, their viral fitness was impaired in human A549 cells and they were highly attenuated in vivo. Our data suggest that despite the similarities to effectively counteract innate immune responses in vitro, the NS1 proteins of IBV, ICV, or IDV do not fully complement the functions of IAV NS1, resulting in deficient viral replication and pathogenesis in vivo.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Centro de Investigación en Sanidad Animal, Madrid, Spain
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gines Ávila-Pérez
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Alba Escalera
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kevin Chiem
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Richard Cadagan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Feng Li
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
20
|
Dumm RE, Heaton NS. The Development and Use of Reporter Influenza B Viruses. Viruses 2019; 11:E736. [PMID: 31404985 PMCID: PMC6723853 DOI: 10.3390/v11080736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
Influenza B viruses (IBVs) are major contributors to total human influenza disease, responsible for ~1/3 of all infections. These viruses, however, are relatively less studied than the related influenza A viruses (IAVs). While it has historically been assumed that the viral biology and mechanisms of pathogenesis for all influenza viruses were highly similar, studies have shown that IBVs possess unique characteristics. Relative to IAV, IBV encodes distinct viral proteins, displays a different mutational rate, has unique patterns of tropism, and elicits different immune responses. More work is therefore required to define the mechanisms of IBV pathogenesis. One valuable approach to characterize mechanisms of microbial disease is the use of genetically modified pathogens that harbor exogenous reporter genes. Over the last few years, IBV reporter viruses have been developed and used to provide new insights into the host response to infection, viral spread, and the testing of antiviral therapeutics. In this review, we will highlight the history and study of IBVs with particular emphasis on the use of genetically modified viruses and discuss some remaining gaps in knowledge that can be addressed using reporter expressing IBVs.
Collapse
Affiliation(s)
- Rebekah E Dumm
- Department of Molecular Genetics and Microbiology, University School of Medicine Durham, Durham, NC 27710, USA
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology (MGM), Duke University Medical Center, 213 Research Drive, 426 CARL Building, Box 3054, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Piepenbrink MS, Nogales A, Basu M, Fucile CF, Liesveld JL, Keefer MC, Rosenberg AF, Martinez-Sobrido L, Kobie JJ. Broad and Protective Influenza B Virus Neuraminidase Antibodies in Humans after Vaccination and their Clonal Persistence as Plasma Cells. mBio 2019; 10:e00066-19. [PMID: 30862743 PMCID: PMC6414695 DOI: 10.1128/mbio.00066-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
Although most seasonal inactivated influenza vaccines (IIV) contain neuraminidase (NA), the extent and mechanisms of action of protective human NA-specific humoral responses induced by vaccination are poorly resolved. Due to the propensity of influenza virus for antigenic drift and shift and its tendency to elicit predominantly strain-specific antibodies, humanity remains susceptible to waves of new strains of seasonal viruses and is at risk from viruses with pandemic potential for which limited or no immunity may exist. Here we demonstrate that the use of IIV results in increased levels of influenza B virus (IBV) NA-specific serum antibodies. Detailed analysis of the IBV NA B cell response indicates concurrent expansion of IBV NA-specific peripheral blood plasmablasts 7 days after IIV immunization which express monoclonal antibodies with broad and potent antiviral activity against both IBV Victoria and Yamagata lineages and prophylactic and therapeutic activity in mice. These IBV NA-specific B cell clonal lineages persisted in CD138+ long-lived bone marrow plasma cells. These results represent the first demonstration that IIV-induced NA human antibodies can protect and treat influenza virus infection in vivo and suggest that IIV can induce a subset of IBV NA-specific B cells with broad protective potential, a feature that warrants further study for universal influenza vaccine development.IMPORTANCE Influenza virus infections continue to cause substantial morbidity and mortality despite the availability of seasonal vaccines. The extensive genetic variability in seasonal and potentially pandemic influenza strains necessitates new vaccine strategies that can induce universal protection by focusing the immune response on generating protective antibodies against conserved targets such as regions within the influenza neuraminidase protein. We have demonstrated that seasonal immunization stimulates neuraminidase-specific antibodies in humans that are broad and potent in their protection from influenza B virus when tested in mice. These antibodies further persist in the bone marrow, where they are expressed by long-lived antibody-producing cells, referred to here as plasma cells. The significance in our research is the demonstration that seasonal influenza immunization can induce a subset of neuraminidase-specific B cells with broad protective potential, a process that if further studied and enhanced could aid in the development of a universal influenza vaccine.
Collapse
Affiliation(s)
| | - Aitor Nogales
- Department of Microbiology & Immunology, University of Rochester, Rochester, New York, USA
| | - Madhubanti Basu
- Infectious Diseases Division, University of Rochester, Rochester, New York, USA
| | - Christopher F Fucile
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jane L Liesveld
- Division of Hematology/Oncology/James P. Wilmot Cancer Institute, University of Rochester, Rochester, New York, USA
| | - Michael C Keefer
- Infectious Diseases Division, University of Rochester, Rochester, New York, USA
| | - Alexander F Rosenberg
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Luis Martinez-Sobrido
- Department of Microbiology & Immunology, University of Rochester, Rochester, New York, USA
| | - James J Kobie
- Infectious Diseases Division, University of Rochester, Rochester, New York, USA
| |
Collapse
|