1
|
Kim HU, Jeong MS, An MY, Park YH, Park SH, Chung SJ, Yi YS, Jun S, Kim YK, Jung HS. Comparative Analysis of Symmetry Parameters in the E2 Inner Core of the Pyruvate Dehydrogenase Complex. Int J Mol Sci 2024; 25:13731. [PMID: 39769492 PMCID: PMC11678472 DOI: 10.3390/ijms252413731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Recent advances in cryo-electron microscopy (cryo-EM) have facilitated the high-resolution structural determination of macromolecular complexes in their native states, providing valuable insights into their dynamic behaviors. However, insufficient understanding or experience with the cryo-EM image processing parameters can result in the loss of biological meaning. In this paper, we investigate the dihydrolipoyl acetyltransferase (E2) inner core complex of the pyruvate dehydrogenase complex (PDC) and reconstruct the 3D maps using five different symmetry parameters. The results demonstrate that the reconstructions yield structurally identical 3D models even at a near-atomic structure. This finding underscores a crucial message for researchers engaging in single-particle analysis (SPA) with relatively user-friendly and convenient image processing software. This approach helps reduce the risk of missing critical biological details, such as the dynamic properties of macromolecules.
Collapse
Affiliation(s)
- Han-ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Center for Systems Imaging, Chuncheon 24341, Republic of Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Center for Bio-Imaging Translational Research, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Mi Young An
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yoon Ho Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun Hee Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- AbTis Co., Ltd., Suwon 16648, Republic of Korea
| | - Sang J. Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- AbTis Co., Ltd., Suwon 16648, Republic of Korea
| | - Yoon-sun Yi
- Center for Bio-Imaging Translational Research, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Sangmi Jun
- Center for Bio-Imaging Translational Research, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Young Kwan Kim
- Kangwon Center for Systems Imaging, Chuncheon 24341, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Center for Systems Imaging, Chuncheon 24341, Republic of Korea
| |
Collapse
|
2
|
Kovalenko I, Fedorov V, Khruschev S, Antal T, Riznichenko G, Rubin A. Plastocyanin and Cytochrome f Complex Structures Obtained by NMR, Molecular Dynamics, and AlphaFold 3 Methods Compared to Cryo-EM Data. Int J Mol Sci 2024; 25:11083. [PMID: 39456865 PMCID: PMC11507376 DOI: 10.3390/ijms252011083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Plastocyanin is a small mobile protein that facilitates electron transfer through the formation of short-lived protein-protein complexes with cytochrome bf and photosystem 1. Due to the transient nature of plastocyanin-cytochrome f complex, the lack of a long-lived tight complex makes it impossible to determine its structure by X-ray diffraction analysis. Up to today, a number of slightly different structures of such complexes have been obtained by experimental and computer methods. Now, artificial intelligence gives us the possibility to predict the structures of intermolecular complexes. In this study, we compare encounter and final complexes obtained by Brownian and molecular dynamics methods, as well as the structures predicted by AlphaFold 3, with NMR and cryo-EM data. Surprisingly, the best match for the plastocyanin electron density obtained by cryo-EM was demonstrated by an AlphaFold 3 structure. The orientation of plastocyanin in this structure almost completely coincides with its orientation obtained by molecular dynamics calculation, and, at the same time, it is different from the orientation of plastocyanin predicted on the basis of NMR data. This is even more unexpected given that only NMR structures for the plastocyanin-cytochrome f complex are available in the PDB database, which was used to train AlphaFold 3.
Collapse
Affiliation(s)
- Ilya Kovalenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.F.); (S.K.); (G.R.); (A.R.)
- Institute of Computer Science and Mathematical Modeling, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Vladimir Fedorov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.F.); (S.K.); (G.R.); (A.R.)
| | - Sergei Khruschev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.F.); (S.K.); (G.R.); (A.R.)
| | - Taras Antal
- Laboratory of Integrated Ecological Research, Pskov State University, Pskov 180000, Russia;
| | - Galina Riznichenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.F.); (S.K.); (G.R.); (A.R.)
| | - Andrey Rubin
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.F.); (S.K.); (G.R.); (A.R.)
| |
Collapse
|
3
|
Trepte P, Secker C, Olivet J, Blavier J, Kostova S, Maseko SB, Minia I, Silva Ramos E, Cassonnet P, Golusik S, Zenkner M, Beetz S, Liebich MJ, Scharek N, Schütz A, Sperling M, Lisurek M, Wang Y, Spirohn K, Hao T, Calderwood MA, Hill DE, Landthaler M, Choi SG, Twizere JC, Vidal M, Wanker EE. AI-guided pipeline for protein-protein interaction drug discovery identifies a SARS-CoV-2 inhibitor. Mol Syst Biol 2024; 20:428-457. [PMID: 38467836 PMCID: PMC10987651 DOI: 10.1038/s44320-024-00019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/13/2024] Open
Abstract
Protein-protein interactions (PPIs) offer great opportunities to expand the druggable proteome and therapeutically tackle various diseases, but remain challenging targets for drug discovery. Here, we provide a comprehensive pipeline that combines experimental and computational tools to identify and validate PPI targets and perform early-stage drug discovery. We have developed a machine learning approach that prioritizes interactions by analyzing quantitative data from binary PPI assays or AlphaFold-Multimer predictions. Using the quantitative assay LuTHy together with our machine learning algorithm, we identified high-confidence interactions among SARS-CoV-2 proteins for which we predicted three-dimensional structures using AlphaFold-Multimer. We employed VirtualFlow to target the contact interface of the NSP10-NSP16 SARS-CoV-2 methyltransferase complex by ultra-large virtual drug screening. Thereby, we identified a compound that binds to NSP10 and inhibits its interaction with NSP16, while also disrupting the methyltransferase activity of the complex, and SARS-CoV-2 replication. Overall, this pipeline will help to prioritize PPI targets to accelerate the discovery of early-stage drug candidates targeting protein complexes and pathways.
Collapse
Affiliation(s)
- Philipp Trepte
- Proteomics and Molecular Mechanisms of Neurodegenerative Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany.
- Brain Development and Disease, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria.
| | - Christopher Secker
- Proteomics and Molecular Mechanisms of Neurodegenerative Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany.
- Zuse Institute Berlin, Berlin, Germany.
| | - Julien Olivet
- Laboratory of Viral Interactomes, Interdisciplinary Cluster for Applied Genoproteomics (GIGA)-Molecular Biology of Diseases, University of Liège, 4000, Liège, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Structural Biology Unit, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Jeremy Blavier
- Laboratory of Viral Interactomes, Interdisciplinary Cluster for Applied Genoproteomics (GIGA)-Molecular Biology of Diseases, University of Liège, 4000, Liège, Belgium
| | - Simona Kostova
- Proteomics and Molecular Mechanisms of Neurodegenerative Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Sibusiso B Maseko
- Laboratory of Viral Interactomes, Interdisciplinary Cluster for Applied Genoproteomics (GIGA)-Molecular Biology of Diseases, University of Liège, 4000, Liège, Belgium
| | - Igor Minia
- RNA Biology and Posttranscriptional Regulation, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125, Berlin, Germany
| | - Eduardo Silva Ramos
- Proteomics and Molecular Mechanisms of Neurodegenerative Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Patricia Cassonnet
- Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN (GMVR), Institut Pasteur, Centre National de la Recherche Scientifique (CNRS), Université de Paris, Paris, France
| | - Sabrina Golusik
- Proteomics and Molecular Mechanisms of Neurodegenerative Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Martina Zenkner
- Proteomics and Molecular Mechanisms of Neurodegenerative Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Stephanie Beetz
- Proteomics and Molecular Mechanisms of Neurodegenerative Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Mara J Liebich
- Proteomics and Molecular Mechanisms of Neurodegenerative Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Nadine Scharek
- Proteomics and Molecular Mechanisms of Neurodegenerative Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Anja Schütz
- Protein Production & Characterization, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Marcel Sperling
- Multifunctional Colloids and Coating, Fraunhofer Institute for Applied Polymer Research (IAP), 14476, Potsdam-Golm, Germany
| | - Michael Lisurek
- Structural Chemistry and Computational Biophysics, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Yang Wang
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kerstin Spirohn
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Markus Landthaler
- RNA Biology and Posttranscriptional Regulation, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125, Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, 13125, Berlin, Germany
| | - Soon Gang Choi
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, Interdisciplinary Cluster for Applied Genoproteomics (GIGA)-Molecular Biology of Diseases, University of Liège, 4000, Liège, Belgium.
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium.
- Laboratory of Algal Synthetic and Systems Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Erich E Wanker
- Proteomics and Molecular Mechanisms of Neurodegenerative Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany.
| |
Collapse
|
4
|
Obi CD, Bhuiyan T, Dailey HA, Medlock AE. Ferrochelatase: Mapping the Intersection of Iron and Porphyrin Metabolism in the Mitochondria. Front Cell Dev Biol 2022; 10:894591. [PMID: 35646904 PMCID: PMC9133952 DOI: 10.3389/fcell.2022.894591] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Porphyrin and iron are ubiquitous and essential for sustaining life in virtually all living organisms. Unlike iron, which exists in many forms, porphyrin macrocycles are mostly functional as metal complexes. The iron-containing porphyrin, heme, serves as a prosthetic group in a wide array of metabolic pathways; including respiratory cytochromes, hemoglobin, cytochrome P450s, catalases, and other hemoproteins. Despite playing crucial roles in many biological processes, heme, iron, and porphyrin intermediates are potentially cytotoxic. Thus, the intersection of porphyrin and iron metabolism at heme synthesis, and intracellular trafficking of heme and its porphyrin precursors are tightly regulated processes. In this review, we discuss recent advances in understanding the physiological dynamics of eukaryotic ferrochelatase, a mitochondrially localized metalloenzyme. Ferrochelatase catalyzes the terminal step of heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX to produce heme. In most eukaryotes, except plants, ferrochelatase is localized to the mitochondrial matrix, where substrates are delivered and heme is synthesized for trafficking to multiple cellular locales. Herein, we delve into the structural and functional features of ferrochelatase, as well as its metabolic regulation in the mitochondria. We discuss the regulation of ferrochelatase via post-translational modifications, transportation of substrates and product across the mitochondrial membrane, protein-protein interactions, inhibition by small-molecule inhibitors, and ferrochelatase in protozoal parasites. Overall, this review presents insight on mitochondrial heme homeostasis from the perspective of ferrochelatase.
Collapse
Affiliation(s)
- Chibuike David Obi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Tawhid Bhuiyan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Harry A. Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
Wood DM, Dobson RC, Horne CR. Using cryo-EM to uncover mechanisms of bacterial transcriptional regulation. Biochem Soc Trans 2021; 49:2711-2726. [PMID: 34854920 PMCID: PMC8786299 DOI: 10.1042/bst20210674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Transcription is the principal control point for bacterial gene expression, and it enables a global cellular response to an intracellular or environmental trigger. Transcriptional regulation is orchestrated by transcription factors, which activate or repress transcription of target genes by modulating the activity of RNA polymerase. Dissecting the nature and precise choreography of these interactions is essential for developing a molecular understanding of transcriptional regulation. While the contribution of X-ray crystallography has been invaluable, the 'resolution revolution' of cryo-electron microscopy has transformed our structural investigations, enabling large, dynamic and often transient transcription complexes to be resolved that in many cases had resisted crystallisation. In this review, we highlight the impact cryo-electron microscopy has had in gaining a deeper understanding of transcriptional regulation in bacteria. We also provide readers working within the field with an overview of the recent innovations available for cryo-electron microscopy sample preparation and image reconstruction of transcription complexes.
Collapse
Affiliation(s)
- David M. Wood
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C.J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Christopher R. Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
6
|
Conquer by cryo-EM without physically dividing. Biochem Soc Trans 2021; 49:2287-2298. [PMID: 34709401 DOI: 10.1042/bst20210360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022]
Abstract
This mini-review provides an update regarding the substantial progress that has been made in using single-particle cryo-EM to obtain high-resolution structures for proteins and other macromolecules whose particle sizes are smaller than 100 kDa. We point out that establishing the limits of what can be accomplished, both in terms of particle size and attainable resolution, serves as a guide for what might be expected when attempting to improve the resolution of small flexible portions of a larger structure using focused refinement approaches. These approaches, which involve computationally ignoring all but a specific, targeted region of interest on the macromolecules, is known as 'masking and refining,' and it thus is the computational equivalent of the 'divide and conquer' approach that has been used so successfully in X-ray crystallography. The benefit of masked refinement, however, is that one is able to determine structures in their native architectural context, without physically separating them from the biological connections that they require for their function. This mini-review also compares where experimental achievements currently stand relative to various theoretical estimates for the smallest particle size that can be successfully reconstructed to high resolution. Since it is clear that a substantial gap still remains between the two, we briefly recap the areas in which further improvement seems possible, both in equipment and in methods.
Collapse
|
7
|
Abstract
Knowledge of protein structure is crucial to our understanding of biological function and is routinely used in drug discovery. High-resolution techniques to determine the three-dimensional atomic coordinates of proteins are available. However, such methods are frequently limited by experimental challenges such as sample quantity, target size, and efficiency. Structural mass spectrometry (MS) is a technique in which structural features of proteins are elucidated quickly and relatively easily. Computational techniques that convert sparse MS data into protein models that demonstrate agreement with the data are needed. This review features cutting-edge computational methods that predict protein structure from MS data such as chemical cross-linking, hydrogen-deuterium exchange, hydroxyl radical protein footprinting, limited proteolysis, ion mobility, and surface-induced dissociation. Additionally, we address future directions for protein structure prediction with sparse MS data. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sarah E Biehn
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA;
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
8
|
Wang J, Natchiar SK, Moore PB, Klaholz BP. Identification of Mg 2+ ions next to nucleotides in cryo-EM maps using electrostatic potential maps. Acta Crystallogr D Struct Biol 2021; 77:534-539. [PMID: 33825713 PMCID: PMC8025889 DOI: 10.1107/s2059798321001893] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/16/2021] [Indexed: 11/10/2022] Open
Abstract
Cryo electron microscopy (cryo-EM) can produce maps of macromolecules that have resolutions that are sufficiently high that structural details such as chemical modifications, water molecules and bound metal ions can be discerned. However, those accustomed to interpreting the electron-density maps of macromolecules produced by X-ray crystallography need to be careful when assigning features such as these in cryo-EM maps because cations, for example, interact far more strongly with electrons than they do with X-rays. Using simulated electrostatic potential (ESP) maps as a tool led us to re-examine a recent cryo-EM map of the human ribosome, and we realized that some of the ESP peaks originally identified as novel groups covalently bonded to the N7, O6 or O4 atoms of several guanines, adenines or uridines, respectively, in this structure are likely to instead represent Mg2+ ions coordinated to these atoms, which provide only partial charge compensation compared with Mg2+ ions located next to phosphate groups. In addition, direct evidence is provided for a variation in the level of 2'-O ribose methylation of nucleotides in the human ribosome. ESP maps can thus help in identifying ions next to nucleotide bases, i.e. at positions that can be difficult to address in cryo-EM maps due to charge effects, which are specifically encountered in cryo-EM. This work is particularly relevant to nucleoprotein complexes and shows that it is important to consider charge effects when interpreting cryo-EM maps, thus opening possibilities for localizing charges in structures that may be relevant for enzymatic mechanisms and drug interactions.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - S. Kundhavai Natchiar
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 Rue Laurent Fries, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Peter B. Moore
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Bruno P. Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 Rue Laurent Fries, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
9
|
Olinares PDB, Kang JY, Llewellyn E, Chiu C, Chen J, Malone B, Saecker RM, Campbell EA, Darst SA, Chait BT. Native Mass Spectrometry-Based Screening for Optimal Sample Preparation in Single-Particle Cryo-EM. Structure 2021; 29:186-195.e6. [PMID: 33217329 PMCID: PMC7867593 DOI: 10.1016/j.str.2020.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/26/2020] [Accepted: 11/02/2020] [Indexed: 01/19/2023]
Abstract
Recent advances in single-particle cryogenic electron microscopy (cryo-EM) have enabled the structural determination of numerous protein assemblies at high resolution, yielding unprecedented insights into their function. However, despite its extraordinary capabilities, cryo-EM remains time-consuming and resource-intensive. It is therefore beneficial to have a means for rapidly assessing and optimizing the quality of samples prior to lengthy cryo-EM analyses. To do this, we have developed a native mass spectrometry (nMS) platform that provides rapid feedback on sample quality and highly streamlined biochemical screening. Because nMS enables accurate mass analysis of protein complexes, it is well suited to routine evaluation of the composition, integrity, and homogeneity of samples prior to their plunge-freezing on EM grids. We demonstrate the utility of our nMS-based platform for facilitating cryo-EM studies using structural characterizations of exemplar bacterial transcription complexes as well as the replication-transcription assembly from the SARS-CoV-2 virus that is responsible for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA.
| | - Jin Young Kang
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Eliza Llewellyn
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Courtney Chiu
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Brandon Malone
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Ruth M Saecker
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
10
|
Wu M, Lander GC. How low can we go? Structure determination of small biological complexes using single-particle cryo-EM. Curr Opin Struct Biol 2020; 64:9-16. [PMID: 32599507 PMCID: PMC7666008 DOI: 10.1016/j.sbi.2020.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
Abstract
For decades, high-resolution structural studies of biological macromolecules with masses of <200kDa by cryo-EM single-particle analysis were considered infeasible. It was not until several years after the advent of direct detectors that the overlooked potential of cryo-EM for studying small complexes was first realized. Subsequent advances in sample preparation, imaging, and data processing algorithms have improved our ability to visualize small biological targets. In the past two years alone, nearly two hundred high-resolution structures have been determined of small (<200kDa) macromolecules, the smallest being approximately 39kDa in molecular weight. Here we summarize some salient lessons and strategies for cryo-EM studies of small biological complexes, and also consider future prospects for routine structure determination.
Collapse
Affiliation(s)
- Mengyu Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
11
|
Hernando M, Orriss G, Perodeau J, Lei S, Ferens FG, Patel TR, Stetefeld J, Nieuwkoop AJ, O'Neil JD. Solution structure and oligomeric state of the E. coliglycerol facilitator. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183191. [PMID: 31953232 DOI: 10.1016/j.bbamem.2020.183191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022]
Abstract
Protein dynamics at atomic resolution can provide deep insights into the biological activities of proteins and enzymes but they can also make structure and dynamics studies challenging. Despite their well-known biological and pharmaceutical importance, integral membrane protein structure and dynamics studies lag behind those of water-soluble proteins mainly owing to solubility problems that result upon their removal from the membrane. Escherichia coli glycerol facilitator (GF) is a member of the aquaglyceroporin family that allows for the highly selective passive diffusion of its substrate glycerol across the inner membrane of the bacterium. Previous molecular dynamics simulations and hydrogen-deuterium exchange studies suggested that protein dynamics play an important role in the passage of glycerol through the protein pore. With the aim of studying GF dynamics by solution and solid-state nuclear magnetic resonance (NMR) spectroscopy we optimized the expression of isotope-labelled GF and explored various solubilizing agents including detergents, osmolytes, amphipols, random heteropolymers, lipid nanodiscs, bicelles and other buffer additives to optimize the solubility and polydispersity of the protein. The GF protein is most stable and soluble in lauryl maltose neopentyl glycol (LMNG), where it exists in a tetramer-octamer equilibrium. The solution structures of the GF tetramer and octamer were determined by negative-stain transmission electron microscopy (TEM), size-exclusion chromatography small-angle X-ray scattering (SEC-SAXS) and solid-state magic-angle spinning NMR spectroscopy. Although NMR sample preparation still needs optimization for full structure and dynamics studies, negative stain TEM and SEC-SAXS revealed low-resolution structures of the detergent-solubilized tetramer and octamer particles. The non-native octamer appears to form from the association of the cytoplasmic faces of two tetramers, the interaction apparently mediated by their disordered N- and C-termini. This information may be useful in future studies directed at reducing the heterogeneity and self-association of the protein.
Collapse
Affiliation(s)
- Mary Hernando
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - George Orriss
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jacqueline Perodeau
- Department of Chemistry and Chemical Biology, Rutgers School of Arts and Sciences, 123 Bevier Rd., Piscataway, NJ 08854, USA
| | - Shixing Lei
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fraser G Ferens
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Trushar R Patel
- Alberta RNA Research & Training Institute, Department of Chemistry & Biochemistry, Lethbridge University, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers School of Arts and Sciences, 123 Bevier Rd., Piscataway, NJ 08854, USA
| | - Joe D O'Neil
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|