1
|
Ab Aziz A, Mappiare S, Nam HY, Devi D, Johan MR, Kamarul T. Endotoxin Detection in Magnetic Resonance Imaging Contrast Agent Using Optimising Chromogenic Limulus Amebocyte Lysate Assay. Malays J Med Sci 2024; 31:284-291. [PMID: 39416745 PMCID: PMC11477474 DOI: 10.21315/mjms2024.31.5.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 10/19/2024] Open
Abstract
Endotoxin contamination in magnetic resonance imaging (MRI) contrast agents can pose a risk to patient safety causing immune reactions. Strict endotoxin limits are enforced for implants and catheters inserted into the body, but there are not clear rules for MRI contrast agents. Here, we investigated the efficacy of chromogenic LAL assay test for screening endotoxin activity in MRI contrast media manufactured in Malaysia. The powdered agent was dissolved in water for injection and endotoxin levels were measured. The coefficient of efficiency value for the standard curve, exhibiting r 2 ≥ 0.98, along with the absence of interfering substances and endotoxin activity below the regulatory threshold of 0.5 EU/mL, support the conclusion that the agent is unlikely to be pyrogenic or induce pyrogenic effect.
Collapse
Affiliation(s)
- Atiqah Ab Aziz
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sahrinanah Mappiare
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hui Yin Nam
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Durga Devi
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Lathia JD, Watson DC. Dose Determination and Administration of Bacterial Extracellular Vesicles for In Vivo Preclinical Studies. Methods Mol Biol 2024; 2843:219-237. [PMID: 39141303 PMCID: PMC11423358 DOI: 10.1007/978-1-0716-4055-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Essentially all bacteria secrete nano-sized (~20-200 nm) bacterial extracellular vesicles (bEVs) loaded with proteins, lipids, glycans, and nucleic acids. bEVs facilitate interactions among cells of the same species, different microbial species, and even with cells of multicellular organisms in the context of colonization or infection. Their interactions with host organism immune cell receptors vary depending on the producing bacterial species and are now being harnessed for the development of bEVs as a potential immunotherapeutic platform. Both basic/mechanistic and preclinical therapeutic development studies are thus increasing in number and require implementation of methods for multiparametric analytical characterization as well as in vivo administration in preclinical animal models of disease. We summarize a variety of analytical methods that can be used to calculate bEV dose for preparations made from diverse bacterial sources (including sterility testing, total protein concentration, particle concentration, and lipopolysaccharide concentration). We also describe basic methodology for intravenous administration of bEV preparations via tail vein injection in laboratory mice. Throughout the description of methodology, we highlight potential pitfalls and alternatives to further equip the reader for troubleshooting should challenges arise. Robust and reproducible characterization is a prerequisite of bEV preparation quality control and consistent dosing during preclinical development. This will allow for more streamlined testing of candidate therapeutic bEVs within a given research laboratory, and furthermore facilitate reproducibility of findings across laboratories.
Collapse
Affiliation(s)
- Justin D Lathia
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Dionysios C Watson
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
3
|
Mitri N, Rahme K, Fracasso G, Ghanem E. Human blood biocompatibility and immunogenicity of scFvD2B PEGylated gold nanoparticles. NANOTECHNOLOGY 2022; 33:315101. [PMID: 35417900 DOI: 10.1088/1361-6528/ac66ef] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Single chain variable D2B antibody fragments (scFvD2Bs) exhibit high affinity binding to prostate specific membrane antigens overexpressed in metastatic prostate cancer (PC). Conjugation of scFvD2B to gold nanoparticles (AuNPs) would enhance its stability and plasma half-life circulation to shuttle theranostic agents in PC. In this study, we synthesized PEGylated scFvD2B-AuNPs (AuNPs-scFvD2B-PEG) and tested their integrity, biocompatibility, and immunogenicity in freshly withdrawn human blood. Prior to blood incubation, Zeta potential measurements, UV-Vis spectroscopy, and dynamic light scattering (DLS) were used to assess the physicochemical properties of our nano-complexes in the presence or absence of PEGylation. A surface plasmon resonance band shift of 2 and 4 nm confirmed the successful coating for AuNPs-scFvD2B and AuNPs-scFvD2B-PEG, respectively. Likewise, DLS revealed a size increase of ∼3 nm for AuNPs-scFvD2B and ∼19 nm for AuNPs-scFvD2B-PEG. Zeta potential increased from -34 to -19 mV for AuNPs-scFvD2B and reached -3 mV upon PEGylation. Similar assessment measures were applied post-incubation in human blood with additional immunogenicity tests, such as hemolysis assay, neutrophil function test, and pyridine formazan extraction. Interestingly, grafting PEG chains on AuNPs-scFvD2B precluded the binding of blood plasma proteins and reduced neutrophil activation level compared with naked AuNPs-citrate counterparts. Most likely, a hydrated negative PEG cloud shielded the NPs rendering blood compatiblility with less than 10% hemolysis. In conclusion, the biocompatible AuNPs-scFvD2B-PEG presents promising characteristics for PC targeted therapy, with minimal protein adsorption affinity, low immunorecognition, and reduced hemolytic activity.
Collapse
Affiliation(s)
- Nadim Mitri
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh, PO Box: 72, Lebanon
| | - Kamil Rahme
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh, PO Box: 72, Lebanon
| | | | - Esther Ghanem
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh, PO Box: 72, Lebanon
| |
Collapse
|
4
|
Ramos TI, Villacis-Aguirre CA, López-Aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker's Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022; 14:247. [PMID: 35213980 PMCID: PMC8879439 DOI: 10.3390/pharmaceutics14020247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine plays an essential role in developing new therapies through novel drug delivery systems, diagnostic and imaging systems, vaccine development, antibacterial tools, and high-throughput screening. One of the most promising drug delivery systems are nanoparticles, which can be designed with various compositions, sizes, shapes, and surface modifications. These nanosystems have improved therapeutic profiles, increased bioavailability, and reduced the toxicity of the product they carry. However, the clinical translation of nanomedicines requires a thorough understanding of their properties to avoid problems with the most questioned aspect of nanosystems: safety. The particular physicochemical properties of nano-drugs lead to the need for additional safety, quality, and efficacy testing. Consequently, challenges arise during the physicochemical characterization, the production process, in vitro characterization, in vivo characterization, and the clinical stages of development of these biopharmaceuticals. The lack of a specific regulatory framework for nanoformulations has caused significant gaps in the requirements needed to be successful during their approval, especially with tests that demonstrate their safety and efficacy. Researchers face many difficulties in establishing evidence to extrapolate results from one level of development to another, for example, from an in vitro demonstration phase to an in vivo demonstration phase. Additional guidance is required to cover the particularities of this type of product, as some challenges in the regulatory framework do not allow for an accurate assessment of NPs with sufficient evidence of clinical success. This work aims to identify current regulatory issues during the implementation of nanoparticle assays and describe the major challenges that researchers have faced when exposing a new formulation. We further reflect on the current regulatory standards required for the approval of these biopharmaceuticals and the requirements demanded by the regulatory agencies. Our work will provide helpful information to improve the success of nanomedicines by compiling the challenges described in the literature that support the development of this novel encapsulation system. We propose a step-by-step approach through the different stages of the development of nanoformulations, from their design to the clinical stage, exemplifying the different challenges and the measures taken by the regulatory agencies to respond to these challenges.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Carlos A. Villacis-Aguirre
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Katherine V. López-Aguilar
- Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador;
| | | | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
- Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Placilla, Sector Curauma, Valparaíso 2340000, Chile
| | - Jorge R. Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador
| |
Collapse
|
5
|
Hannon G, Prina-Mello A. Endotoxin contamination of engineered nanomaterials: Overcoming the hurdles associated with endotoxin testing. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1738. [PMID: 34254460 DOI: 10.1002/wnan.1738] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022]
Abstract
Nanomaterials are highly susceptible to endotoxin contamination due their large surface-to-volume ratios and endotoxins propensity to associate readily to hydrophobic and cationic surfaces. Additionally, the stability of endotoxin ensures it cannot be removed efficiently through conventional sterilization techniques such as autoclaving and ionizing radiation. In recent times, the true significance of this hurdle has come to light with multiple reports from the United States Nanotechnology Characterization Laboratory, in particular, along with our own experiences of endotoxin testing from multiple Horizon 2020-funded projects which highlight the importance of this issue for the clinical translation of nanomaterials. Herein, we provide an overview on the topic of endotoxin contamination of nanomaterials intended for biomedical applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Dublin, Ireland.,Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Adriele Prina-Mello
- Nanomedicine and Molecular Imaging Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Dublin, Ireland.,Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Detection of Beta-Glucan Contamination in Nanotechnology-Based Formulations. Molecules 2020; 25:molecules25153367. [PMID: 32722261 PMCID: PMC7436117 DOI: 10.3390/molecules25153367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding the potential contamination of pharmaceutical products with innate immunity modulating impurities (IIMIs) is essential for establishing their safety profiles. IIMIs are a large family of molecules with diverse compositions and structures that contribute to the immune-mediated adverse effects (IMAE) of drug products. Pyrogenicity (the ability to induce fever) and activation of innate immune responses underlying both acute toxicities (e.g., anaphylactoid reactions or pseudoallergy, cytokine storm) and long-term effects (e.g., immunogenicity) are among the IMAE commonly related to IIMI contamination. Endotoxins of gram-negative bacteria are the best-studied IIMIs in that both methodologies for and pitfalls in their detection and quantification are well established. Additionally, regulatory guidance documents and research papers from laboratories worldwide are available on endotoxins. However, less information is currently known about other IIMIs. Herein, we focus on one such IIMI, namely, beta-glucans, and review literature and discuss the experience of the Nanotechnology Characterization Lab (NCL) with the detection of beta-glucans in nanotechnology-based drug products.
Collapse
|
7
|
Himly M, Geppert M, Hofer S, Hofstätter N, Horejs-Höck J, Duschl A. When Would Immunologists Consider a Nanomaterial to be Safe? Recommendations for Planning Studies on Nanosafety. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907483. [PMID: 32239645 DOI: 10.1002/smll.201907483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
The immune system is professional in recognizing and responding to non-self, including nanomaterials. Immune responses by professional and nonprofessional immune cells are thus nearly inevitable upon exposure of cells and organisms to such materials. The state of research into taking the immune system into account in nanosafety studies is reviewed and three aspects in which further improvements are desirable are identified: 1) Due to technical limitations, more stringent testing for endotoxin contamination should be made. 2) Since under overdose conditions immunity shows unphysiological responses, all doses used should be justified by being equivalent to tissue-delivered doses. 3) When markers of acute inflammation or cell stress are observed, functional assays are necessary to distinguish between homeostatic fluctuation and genuine defensive or tolerogenic responses. Since immune activation can also indicate that the immune system considers a stimulus to be harmless and induces tolerance, activation markers by themselves do not necessarily imply a danger to the body. Guidelines such as these are necessary to approach the point where specific nanomaterials are classified as safe based on reliable testing strategies.
Collapse
Affiliation(s)
- Martin Himly
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Mark Geppert
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Sabine Hofer
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Norbert Hofstätter
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Jutta Horejs-Höck
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Albert Duschl
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| |
Collapse
|
8
|
Liang X, Duan J, Li X, Zhu X, Chen Y, Wang X, Sun H, Kong D, Li C, Yang J. Improved vaccine-induced immune responses via a ROS-triggered nanoparticle-based antigen delivery system. NANOSCALE 2018; 10:9489-9503. [PMID: 29675543 DOI: 10.1039/c8nr00355f] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Subunit vaccines that are designed based on recombinant antigens or peptides have shown promising potential as viable substitutes for traditional vaccines due to their better safety and specificity. However, the induction of adequate in vivo immune responses with appropriate effectiveness remains a major challenge for vaccine development. More recently, the implementation of a nanoparticle-based antigen delivery system has been considered a promising approach to improve the in vivo efficacy for subunit vaccine development. Thus, we have designed and prepared a nanoparticle-based antigen delivery system composed of three-armed PLGA, which is conjugated to PEG via the peroxalate ester bond (3s-PLGA-PO-PEG) and PEI as a cationic adjuvant (PPO NPs). It is known that during a foreign pathogen attack, NADPH, an oxidase, of the host organism is activated and generates an elevated level of reactive oxygen species, hydrogen peroxide (H2O2) primarily, as a defensive mechanism. Considering the sensitivity of the peroxalate ester bond to H2O2 and the cationic property of PEI for the induction of immune responses, this 3s-PLGA-PO-PEG/PEI antigen delivery system is expected to be both ROS responsive and facilitative in antigen uptake without severe toxicity that has been reported with cationic adjuvants. Indeed, our results demonstrated excellent loading capacity and in vitro stability of the PPO NPs encapsulated with the model antigen, ovalbumin (OVA). Co-culturing of bone marrow dendritic cells with the PPO NPs also led to enhanced dendritic cell maturation, antigen uptake, enhanced lysosomal escape, antigen cross-presentation and in vitro CD8+ T cell activation. In vivo experiments using mice further revealed that the administration of the PPO nanovaccine induced robust OVA-specific antibody production, upregulation of splenic CD4+ and CD8+ T cell proportions as well as an increase in memory T cell generation. In summary, we report here a ROS-triggered nanoparticle-based antigen delivery system that could be employed to promote the in vivo efficacy of vaccine-induced immune responses.
Collapse
Affiliation(s)
- Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Schubert MS, Cedrone E, Neun B, Behlke MA, Dobrovolskaia MA. Chemical Modification of CRISPR gRNAs Eliminate type I Interferon Responses in Human Peripheral Blood Mononuclear Cells. JOURNAL OF CYTOKINE BIOLOGY 2018; 3:121. [PMID: 30225466 PMCID: PMC6138052 DOI: 10.4172/2576-3881.1000121] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES CRISPR/Cas9 is currently the primary tool used for genome editing in mammalian cells. To cleave and alter genomic DNA, both the Cas9 nuclease and a guide RNA (gRNA) must be present in the nucleus. One preferred method of introducing these reagents is direct transfection of a recombinant Cas9 protein complexed with a synthetic gRNA as a ribonucleoprotein (RNP) complex. It is well established from prior work in RNA interference that synthetic RNAs can induce a type I interferon (IFN) response that can limit the application of such methods both in vitro and in vivo. While the immunological properties of short siRNAs are well understood, little is known about the immune recognition of longer CRISPR gRNAs. The objective of our in vitro study was to investigate how the composition of the gRNA influences its recognition by human immune cells. METHODS The study was performed in vitro in human peripheral blood mononuclear cells (PBMCs). The PBMCs from healthy donor volunteers were treated with gRNA for 24 h, and the levels of type I IFNs in culture supernatants were measured by a multiplex enzyme-linked immunosorbent chemiluminescent assay. Prior to the analysis in PBMCs, the physicochemical parameters and functionality of all nucleic acid constructs were confirmed by electrospray-ionization mass spectrometry and CRISPR/Cas9 gene editing assessment in HEK293-Cas9 cells, respectively. RESULTS We found that unmodified synthetic CRISPR gRNAs triggered a strong IFN response in PBMC cultures in vitro that could be prevented with chemical modification. Likewise, in vitro-transcribed single-guide RNAs (sgRNAs) also triggered a strong IFN response that could only be partially suppressed by phosphatase removal of the 5'-triphosphate group. However, the process by which the gRNA is prepared (i.e., chemically synthesized as a two-part crRNA:tracrRNA complex or in vitro-transcribed as an sgRNA) does not directly influence the immune response to an unmodified gRNA. When experiments were performed in the HEK293 cells, only in vitro-transcribed sgRNA containing 5'-triphosphate induced IFN secretion. CONCLUSION The results of our structure-activity relationship study, therefore, suggest that chemical modifications commonly used to reduce the immunostimulation of traditional RNA therapeutics can also be used as effective tools to eliminate undesirable IFN responses to gRNAs.
Collapse
Affiliation(s)
- Mollie S. Schubert
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA 52241, USA
| | - Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barry Neun
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mark A. Behlke
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA 52241, USA
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
10
|
Cedrone E, Neun BW, Rodriguez J, Vermilya A, Clogston JD, McNeil SE, Barenholz Y, Szebeni J, Dobrovolskaia MA. Anticoagulants Influence the Performance of In Vitro Assays Intended for Characterization of Nanotechnology-Based Formulations. Molecules 2017; 23:E12. [PMID: 29267243 PMCID: PMC5943954 DOI: 10.3390/molecules23010012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/03/2023] Open
Abstract
The preclinical safety assessment of novel nanotechnology-based drug products frequently relies on in vitro assays, especially during the early stages of product development, due to the limited quantities of nanomaterials available for such studies. The majority of immunological tests require donor blood. To enable such tests one has to prevent the blood from coagulating, which is usually achieved by the addition of an anticoagulant into blood collection tubes. Heparin, ethylene diamine tetraacetic acid (EDTA), and citrate are the most commonly used anticoagulants. Novel anticoagulants such as hirudin are also available but are not broadly used. Despite the notion that certain anticoagulants may influence assay performance, a systematic comparison between traditional and novel anticoagulants in the in vitro assays intended for immunological characterization of nanotechnology-based formulations is currently not available. We compared hirudin-anticoagulated blood with its traditional counterparts in the standardized immunological assay cascade, and found that the type of anticoagulant did not influence the performance of the hemolysis assay. However, hirudin was more optimal for the complement activation and leukocyte proliferation assays, while traditional anticoagulants citrate and heparin were more appropriate for the coagulation and cytokine secretion assays. The results also suggest that traditional immunological controls such as lipopolysaccharide (LPS ) are not reliable for understanding the role of anticoagulant in the assay performance. We observed differences in the test results between hirudin and traditional anticoagulant-prepared blood for nanomaterials at the time when no such effects were seen with traditional controls. It is, therefore, important to recognize the advantages and limitations of each anticoagulant and consider individual nanoparticles on a case-by-case basis.
Collapse
Affiliation(s)
- Edward Cedrone
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Barry W Neun
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Jamie Rodriguez
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Alison Vermilya
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Jeffrey D Clogston
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Scott E McNeil
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Yechezkel Barenholz
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, P.O.B. 12272, Jerusalem 91120, Israel.
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University Nagyvárad tér 4, 1089 Budapest, Hungary.
- SeroScience Ltd., Nagyvárad tér 4, 1089 Budapest, Hungary.
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|