1
|
İlhan B, Ender Ş, Kılıç B, Üçüncü M, Serilmez M, Tilgen Yasasever C, Oğuz Soydinç H, Kuras S, Erdoğan B, Alsaadoni H, Karanlık H, Bademler S. The Diagnostic Value of circFBXW7, circABCB10, and circ0103552 Levels in Breast Cancer. Curr Issues Mol Biol 2024; 46:14381-14393. [PMID: 39727990 DOI: 10.3390/cimb46120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Despite advances in cancer treatment, breast cancer (BC) remains one of the most common cancers affecting women worldwide. This study aimed to determine serum circFBXW7, circABCB10, and circ0103552 levels and compare BC patients and healthy controls to investigate their roles in the molecular mechanism of BC and the significance of these circRNAs in BC diagnosis. The study group consisted of 92 patients with BC and 31 healthy controls. Total RNA was isolated from serum samples. Following total RNA, complementary DNA was synthesized from this material. Following complementary DNA analysis, the circRNA levels were analyzed by the qRT-PCR method. Expression levels were evaluated in ΔCt values. High ΔCt values of circFBXW7 and circ0103552 and low ΔCt values of circABCB10 were correlated with BC diagnosis (circFBXW7, p = 0.043, r = 0.183, circ0103552, p < 0.001, r = 0.321, circABCB10, p = 0.001, r = -0.291). According to Fold Change (FC) values, circFBXW7 (FC = 0.30) and circ0103552 (FC = 0.26) showed low expression in the patient group compared to the control group, while circABCB10 (FC = 11.09) showed high expression (p < 0.05, for all comparisons). We think that our study is one of the rare studies investigating the relationship between BC and serum circRNA levels. This study concludes that the significant downregulation of circFBXW7 and circ0103552 and the upregulation of circABCB10 are directly related to the diagnosis of BC and can be used for diagnosis, but further studies are needed to elucidate the molecular mechanism of the relationship between circRNAs and BC.
Collapse
Affiliation(s)
- Burak İlhan
- Department of Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Şenol Ender
- Department of Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Berkay Kılıç
- Department of Surgery, Oncology Institute, Istanbul University, Istanbul 34093, Türkiye
| | - Muhammed Üçüncü
- Department of Anesthesia, Vocational School of Health Services, Istanbul Gelişim University, Istanbul 34310, Türkiye
| | - Murat Serilmez
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul 34093, Türkiye
| | - Ceren Tilgen Yasasever
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul 34093, Türkiye
| | - Hilal Oğuz Soydinç
- Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul 34093, Türkiye
| | - Sibel Kuras
- Department of Medical Biochemistry, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34668, Türkiye
| | - Bekir Erdoğan
- Department of Physiology, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34668, Türkiye
| | - Hani Alsaadoni
- Department of Medical Biology, International School of Medicine, University of Health Sciences, Istanbul 34668, Türkiye
| | - Hasan Karanlık
- Department of Surgery, Oncology Institute, Istanbul University, Istanbul 34093, Türkiye
| | - Süleyman Bademler
- Department of Surgery, Oncology Institute, Istanbul University, Istanbul 34093, Türkiye
| |
Collapse
|
2
|
Tong T, Zhai PS, Qin X, Zhang Z, Li CW, Guo HY, Ma HL. Nuclear TOP1MT Confers Cisplatin Resistance via Pseudogene in HNSCC. J Dent Res 2024; 103:1238-1248. [PMID: 39382100 DOI: 10.1177/00220345241272017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Cisplatin resistance is one of the major causes of treatment failure in head and neck squamous cell carcinoma (HNSCC). There is an urgent need to uncover the underlying mechanism for developing effective treatment strategies. A quantitative proteomics assay was used to identify differential proteins in cisplatin-resistant cells. Mitochondrial topoisomerase I (TOP1MT) localization was determined using laser confocal microscopy and nucleocytoplasmic separation assay. Chromatin immunoprecipitation sequencing, dual-luciferase reporter assay, and RNA immunoprecipitation were used to identify the interaction between pseudogenes, miRNAs, and real genes. In vivo experiments verified the interaction between TOP1MT and pseudogenes on cisplatin resistance. TOP1MT was identified as a driving factor of cisplatin resistance in vitro, in vivo, and in HNSCC patients. Moreover, TOP1MT exceptionally translocated to the nucleus in cisplatin-resistant HNSCC cells in a signal peptide-dependent manner. Nuclear TOP1MT (nTOP1MT) transcriptionally regulated the mitochondrial functional pseudogene MTATP6P1, which bound to miR-137 and miR-491-5p as a competing endogenous RNA (ceRNA) and promoted the expression of MTATP6. An increase in MTATP6 enhanced mitochondrial oxidative phosphorylation (OXPHOS), which conferred cisplatin resistance in HNSCC. Our findings revealed that nTOP1MT transcriptionally activated MTAPT6P1 and increased MTATP6 expression via ceRNA, which facilitated OXPHOS and cisplatin resistance. These results provide novel insight for overcoming cisplatin resistance in HNSCC.
Collapse
Affiliation(s)
- T Tong
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, PR China
| | - P S Zhai
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| | - X Qin
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| | - Z Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| | - C W Li
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| | - H Y Guo
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - H L Ma
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine, PR China
- College of Stomatology, Shanghai Jiao Tong University, PR China
- National Center for Stomatology, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai, PR China
| |
Collapse
|
3
|
Weng W, Huang H. LINC01503 promotes the cell proliferation, migration and invasion of triple-negative breast cancer as a ceRNA to elevate SPNS2 expression by sponging miR-335-5p. Heliyon 2024; 10:e36531. [PMID: 39296205 PMCID: PMC11409029 DOI: 10.1016/j.heliyon.2024.e36531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/30/2024] [Accepted: 08/18/2024] [Indexed: 09/21/2024] Open
Abstract
Objective Triple-negative breast cancer (TNBC) is a common cancer with high aggressiveness and high mortality in women. Recently, a plenty of studies have indicated that long non-coding RNAs (lncRNAs) exert the crucial function in human cancers, TNBC is included. The carcinogenicity of lncRNA long intergenic non-protein coding RNA 1503 (LINC01503) has been confirmed in several cancers, nevertheless, its function in TNBC still unclear. Therefore, our study aimed to reveal the underlying mechanism of LINC01503 in TNBC. Methods In our study, RT-qPCR was performed to detect the expression of LINC01503 in TNBC cells. The proliferative, invasive, migratory and apoptotic abilities of TNBC cells were detected by functional assay such as CCK-8, clone formation, EdU staining, transwell, and flow cytometry. RIP, RNA pull down, and luciferase assay revealed interactions between LINC01503, miR-335-5p, and sphingolipid transporter protein 2 (SPNS2). Finally, rescue experiments were performed to validate the previous results. Results LINC01503 expression was singularly high in TNBC cells. LINC01503 knockdown could restrain cell proliferation, invasion and migration, but accelerated cell apoptosis in TNBC. What's more, miR-335-5p could be sponged by LINC01503 in TNBC. We also found that overexpressed miR-335-5p could inhibit cell proliferation, migration and invasion and facilitates cell apoptosis. Moreover, SPNS2 was the target gene of miR-335-5p and it functioned as an oncogene in TNBC cells. Finally, we found that overexpressed SPNS2 or inhibited miR-335-5p could reverse the suppressive function of silencing LINC01503 on TNBC progression. Conclusion LINC01503 could facilitate cell proliferation, migration and invasion of TNBC by sponging miR-335-5p to elevate SPNS2 expression.
Collapse
Affiliation(s)
- Wei Weng
- Department of Laboratory, Wuxi Second People's Hospital, Wuxi, 214000, Jiangsu Province, China
| | - Hongyu Huang
- Department of Laboratory, Wuxi Second People's Hospital, Wuxi, 214000, Jiangsu Province, China
| |
Collapse
|
4
|
Yan X, Hu Z, Li X, Liang J, Zheng J, Gong J, Hu K, Sui X, Li R. Systemic analysis of the prognostic significance and interaction network of miR-26b-3p in cholangiocarcinoma. Appl Biochem Biotechnol 2024; 196:4166-4187. [PMID: 37914963 DOI: 10.1007/s12010-023-04753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
MicroRNAs (miRNAs) reportedly play significant roles in the progression of various cancers and hold huge potential as both diagnostic tools and therapeutic targets. Given the ongoing uncertainty surrounding the precise functions of several miRNAs in cholangiocarcinoma (CCA), this research undertakes a comprehensive analysis of CCA data sourced from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The present study identified a novel miRNA, specifically miR-26b-3p, which exhibited prognostic value for individuals with CCA. Notably, miR-26b-3p was upregulated within CCA samples, with an inverse correlation established with patient prognosis (Hazard Ratio = 8.19, p = 0.018). Through a combination of functional enrichment analysis, analysis of the LncRNA-miR-26b-3p-mRNA interaction network, and validation by qRT PCR and western blotting, this study uncovered the potential of miR-26b-3p in potentiating the malignant progression of CCA via regulation of essential genes (including PSMD14, XAB2, SLC4A4) implicated in processes such as endoplasmic reticulum (ER) stress and responses to misfolded proteins. Our findings introduce novel and valuable insights that position miR-26b-3p-associated genes as promising biomarkers for the diagnosis and treatment of CCA.
Collapse
Affiliation(s)
- Xijing Yan
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Department of Breast and Thyroid Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhongying Hu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jinliang Liang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Kunpeng Hu
- Department of Breast and Thyroid Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Xin Sui
- Surgical ICU, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
5
|
Qi F, Shen W, Wei X, Cheng Y, Xu F, Zheng Y, Li L, Qin C, Li X. CSNK1D-mediated phosphorylation of HNRNPA2B1 induces miR-25-3p/miR-93-5p maturation to promote prostate cancer cell proliferation and migration through m 6A-dependent manner. Cell Mol Life Sci 2023; 80:156. [PMID: 37208565 PMCID: PMC11072693 DOI: 10.1007/s00018-023-04798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
It has been reported that heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) is highly expressed in prostate cancer (PCa) and associated with poor prognosis of patients with PCa. Nevertheless, the specific mechanism underlying HNRNPA2B1 functions in PCa remains not clear. In our study, we proved that HNRNPA2B1 promoted the progression of PCa through in vitro and in vivo experiments. Further, we found that HNRNPA2B1 induced the maturation of miR-25-3p/miR-93-5p by recognizing primary miR-25/93 (pri-miR-25/93) through N6-methyladenosine (m6A)-dependent manner. In addition, both miR-93-5p and miR-25-3p were proven as tumor promoters in PCa. Interestingly, by mass spectrometry analysis and mechanical experiments, we found that casein kinase 1 delta (CSNK1D) could mediate the phosphorylation of HNRNPA2B1 to enhance its stability. Moreover, we further proved that miR-93-5p targeted BMP and activin membrane-bound inhibitor (BAMBI) mRNA to reduce its expression, thereby activating transforming growth factor β (TGF-β) pathway. At the same time, miR-25-3p targeted forkhead box O3 (FOXO3) to inactivate FOXO pathway. These results collectively indicated that CSNK1D stabilized HNRNPA2B1 facilitates the processing of miR-25-3p/miR-93-5p to regulate TGF-β and FOXO pathways, resulting in PCa progression. Our findings supported that HNRNPA2B1 might be a promising target for PCa treatment.
Collapse
Affiliation(s)
- Feng Qi
- Department of Urologic Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Wenyi Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyi Wei
- State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yifei Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Fan Xu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yuxiao Zheng
- Department of Urologic Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Lu Li
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, China
| | - Chao Qin
- State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Xiao Li
- Department of Urologic Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
- Department of Scientific Research, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Tutar Y, Pirim D, Shah AA, Vallinoto ACR. Editorial: MicroRNA-related polymorphisms in infectious and inherited diseases. Front Genet 2023; 14:1192457. [PMID: 37113993 PMCID: PMC10127452 DOI: 10.3389/fgene.2023.1192457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Affiliation(s)
- Yusuf Tutar
- Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy, Istanbul, Turkey
- Division of Molecular Oncology, Health Sciences Institute, Istanbul, Turkey
- Personalized Medicine and Immunotherapy Research Center, Istanbul, Turkey
- Experimental Medicine Application and Research Center, Validebag Research Park, University of Health Sciences, Istanbul, Turkey
| | - Dilek Pirim
- Institute of Health Science, Department of Translational Medicine, Bursa, Turkey
- Department of Molecular Biology and Genetics, Bursa Uludag University, Bursa, Turkey
| | - Aftab Ali Shah
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Antonio C. R. Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
7
|
Yu Z, Xu J, She Q. Harnessing the LdCsm RNA Detection Platform for Efficient microRNA Detection. Int J Mol Sci 2023; 24:ijms24032857. [PMID: 36769177 PMCID: PMC9918065 DOI: 10.3390/ijms24032857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
In cancer diagnosis, diverse microRNAs (miRNAs) are used as biomarkers for carcinogenesis of distinctive human cancers. Thus, the detection of these miRNAs and their quantification are very important in prevention of cancer diseases in human beings. However, efficient RNA detection often requires RT-PCR, which is very complex for miRNAs. Recently, the development of CRISPR-based nucleic acid detection tools has brought new promises to efficient miRNA detection. Three CRISPR systems can be explored for miRNA detection, including type III, V, and VI, among which type III (CRISPR-Cas10) systems have a unique property as they recognize RNA directly and cleave DNA collaterally. In particular, a unique type III-A Csm system encoded by Lactobacillus delbrueckii subsp. bulgaricus (LdCsm) exhibits robust target RNA-activated DNase activity, which makes it a promising candidate for developing efficient miRNA diagnostic tools. Herein, LdCsm was tested for RNA detection using fluorescence-quenched DNA reporters. We found that the system is capable of specific detection of miR-155, a microRNA implicated in the carcinogenesis of human breast cancer. The RNA detection system was then improved by various approaches including assay conditions and modification of the 5'-repeat tag of LdCsm crRNAs. Due to its robustness, the resulting LdCsm detection platform has the potential to be further developed as a better point-of-care miRNA diagnostics relative to other CRISPR-based RNA detection tools.
Collapse
Affiliation(s)
| | | | - Qunxin She
- Correspondence: ; Tel.: +86-532-58631522
| |
Collapse
|
8
|
Tutar Y. Noncoding RNAs in Cancer Theranostics: From Molecular Basis to Therapeutic Implications. Curr Pharm Biotechnol 2023; 24:iii. [PMID: 37203230 DOI: 10.2174/138920102407230313162256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Yusuf Tutar
- University of Health Sciences, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, Faculty of Pharmacy, Division of Molecular Oncology, Health Sciences Institutes, Personalized Medicine and Immunotherapy Research Center, Istanbul, Turkey
| |
Collapse
|
9
|
Coskun KA, Kıyak BY, Cifci KU, Kadioglu E, Yurekli N, Tutar Y. Involvement of Metabolites and Non-coding RNAs in Diseases. Curr Pharm Biotechnol 2023; 24:889-912. [PMID: 36154590 DOI: 10.2174/1389201023666220921091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/24/2022] [Accepted: 08/14/2022] [Indexed: 11/22/2022]
Abstract
Non-coding RNAs have a role in gene regulation and cellular metabolism control. Metabolism produces metabolites which are small molecules formed during the metabolic process. So far, a direct relationship between metabolites and genes is not fully established; however, pseudogenes and their progenitor genes regulate health and disease states. Other non-coding RNAs also contribute to this regulation at different cellular processes. Accumulation and depletion of metabolites accompany the dynamic equilibrium of health and disease state. In this study, metabolites, their roles in the cell, and the link between metabolites and non-coding RNAs are discussed.
Collapse
Affiliation(s)
- Kubra A Coskun
- Division of Medicinal Biology, Department of Basic Sciences, Faculty of Medicine, Istanbul Aydın University, Istanbul, Turkey
| | - Bercem Yeman Kıyak
- Division of Molecular Medicine, Hamidiye Health Sciences Institutes, University of Health Sciences, Istanbul, Turkey
| | - Kezban Ucar Cifci
- Division of Molecular Medicine, Hamidiye Health Sciences Institutes, University of Health Sciences, Istanbul, Turkey
- Division of Basic Sciences and Health, Hemp Research Institute, Yozgat Bozok University, Yozgat, Turkey
| | - Elif Kadioglu
- Division of Molecular Medicine, Hamidiye Health Sciences Institutes, University of Health Sciences, Istanbul, Turkey
| | - Nazlican Yurekli
- Division of Medicinal Biology, Department of Basic Sciences, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Yusuf Tutar
- Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy, Istanbul, Turkey
- Division of Molecular Oncology, Hamidiye Health Sciences Institutes, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
10
|
Wang Z, Aili Y, Wang Y, Maimaitiming N, Qin H, Ji W, Fan G, Li B. The RPL4P4 Pseudogene Is a Prognostic Biomarker and Is Associated with Immune Infiltration in Glioma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7967722. [PMID: 35993018 PMCID: PMC9381859 DOI: 10.1155/2022/7967722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
Objective Research over the past decade has suggested important roles for pseudogenes in gliomas. Our previous study found that the RPL4P4 pseudogene is highly expressed in gliomas. However, its biological function in gliomas remains unclear. Methods In this study, we analyzed clinical data on patients with glioma obtained from The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), the Genotype-Tissue Expression (GTEx), and the GEPIA2 databases. We used the R language for the main analysis. Correlations among RPL4P4 expression, pathological characteristics, clinical outcome, and biological function were evaluated. In addition, the correlations of RPL4P4 expression with immune cell infiltration and glioma progression were analyzed. Finally, wound healing, Transwell, and CCK-8 assays were performed to analyze the function of RPL4P4 in glioma cells. Result We found that RPL4P4 is highly expressed in glioma tissues and is associated with poor prognosis, IDH1 wild type, codeletion of 1p19q, and age. Multivariate analysis and the nomogram model showed that high RPL4P4 expression was an independent risk factor for glioma prognosis and had better prognostic prediction power. Moreover, high RPL4P4 expression correlated with immune cell infiltration, which showed a significant positive association with M2-type macrophages. Finally, RPL4P4 knockdown in glioma cell lines caused decreased glioma cell proliferation, invasion, and migration capacity. Conclusion Our data suggest that RPL4P4 can function as an independent prognostic predictor of glioma. It also shows that RPL4P4 expression correlates with immune cell infiltration and that targeting RPL4P4 may be a new strategy for the treatment of glioma patients.
Collapse
Affiliation(s)
- Zengliang Wang
- Department of Neurosurgery, Xinjiang Bazhou People's Hospital, Xinjiang, China
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yirizhati Aili
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yongxin Wang
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Nuersimanguli Maimaitiming
- Department of Oncology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hu Qin
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wenyu Ji
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Guofeng Fan
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bo Li
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
11
|
Kan B, Yan G, Shao Y, Zhang Z, Xue H. CircRNA RNF10 inhibits tumorigenicity by targeting miR-942-5p/GOLIM4 axis in breast cancer. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:362-372. [PMID: 36054164 DOI: 10.1002/em.22506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/04/2022] [Accepted: 08/28/2022] [Indexed: 05/12/2023]
Abstract
We aimed to explore the action of a circRNA produced by ring finger protein 10 (circ_RNF10; hsa_circ_0028899) in the malignant behaviors of breast cancer (BC) and to explore its potential action-of-mechanism. The levels of circ_RNF10, miR-942-5p and Golgi integral membrane protein 4 (GOLIM4) were measured through quantitative real-time polymerase chain reaction, western blot, or immunohistochemistry, and the competing endogenous RNA (ceRNA) relationship among them was verified by dual-luciferase reporter assay. Cell counting kit-8, 5-ethynyl-2'-deoxyuridine, and colony formation assays, transwell assays, and flow cytometry were used to examine cell proliferation, migration and invasion, and apoptosis, respectively. Levels of proliferation and invasion-related markers were determined by western blot. Xenograft assay was performed to assess tumor growth. Circ_RNF10 level was significantly reduced in BC tissues and cells. Elevation of circ_RNF10 blocked BC cell proliferation, migration and invasion while promoted the apoptosis in vitro, companied with decreased PCNA and Twist1 and increased E-cadherin. Furthermore, upregulating circ_RNF10 delayed tumor growth of BC cells in nude mice. Mechanistically, circ_RNF10 acted as a ceRNA for miR-942-5p, and miR-942-5p could target GOLIM4. In addition, miR-942-5p overexpression reversed the influence of circ_RNF10 overexpression on BC progression. Furthermore, GOLIM4 silencing attenuated the inhibitory effect of miR-942-5p knockdown on BC progression. We found that circ_RNF10 suppressed BC malignant behavior by targeting miR-942-5p/GOLIM4 axis.
Collapse
Affiliation(s)
- Binghua Kan
- Surgical Oncology, Hanzhong Central Hospital, Hanzhong, China
| | - Guiru Yan
- Surgical Oncology, Hanzhong Central Hospital, Hanzhong, China
| | - Yuan Shao
- Surgical Oncology, Hanzhong Central Hospital, Hanzhong, China
| | - Ziliang Zhang
- Surgical Oncology, Hanzhong Central Hospital, Hanzhong, China
| | - Hui Xue
- Oncology Department, Hanzhong Central Hospital, Hanzhong, China
| |
Collapse
|
12
|
Cristiano L. The pseudogenes of eukaryotic translation elongation factors (EEFs): Role in cancer and other human diseases. Genes Dis 2022; 9:941-958. [PMID: 35685457 PMCID: PMC9170609 DOI: 10.1016/j.gendis.2021.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
The eukaryotic translation elongation factors (EEFs), i.e. EEF1A1, EEF1A2, EEF1B2, EEF1D, EEF1G, EEF1E1 and EEF2, are coding-genes that play a central role in the elongation step of translation but are often altered in cancer. Less investigated are their pseudogenes. Recently, it was demonstrated that pseudogenes have a key regulatory role in the cell, especially via non-coding RNAs, and that the aberrant expression of ncRNAs has an important role in cancer development and progression. The present review paper, for the first time, collects all that published about the EEFs pseudogenes to create a base for future investigations. For most of them, the studies are in their infancy, while for others the studies suggest their involvement in normal cell physiology but also in various human diseases. However, more investigations are needed to understand their functions in both normal and cancer cells and to define which can be useful biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Luigi Cristiano
- R&D Division, Prestige, 18 via Vecchia, Terranuova Bracciolini, AR 52028, Italy
| |
Collapse
|
13
|
Li L, Qu WH, Ma HP, Wang LL, Zhang YB, Ma Y. LRP8, modulated by miR-1262, promotes tumour progression and forecasts the prognosis of patients in breast cancer. Arch Physiol Biochem 2022; 128:657-665. [PMID: 31994910 DOI: 10.1080/13813455.2020.1716019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This research was designed to detect the function of low-density lipoprotein receptor (LDLR)-related protein 8 (LRP8) in breast cancer (BC). Our results revealed that LRP8 was highly expressed in BC tissues and cell lines compared with human normal breast tissues. The poor prognosis of patients with BC was associated with the up-regulation of LRP8 while inversely connected with overexpression of miR-1262. Functionally, LRP8 depletion in BC cells impaired the proliferative, clonogenic, invasive, and migratory capabilities, which was consistent with the effects of upregulated miR-1262. Bioinformatics prediction and luciferase reporter assay confirmed that miR-1262 was an upstream factor for LRP8 and negatively regulated the expression of LRP8. Further experiments illustrated that the co-transfection of miR-1262 antamir and si-LRP8 could significantly suppress the promoting impacts caused by the transfection of miR-1262 antamir alone. These findings highlighted that LRP8 accelerated the BC development by contributing cellular aggressiveness, which was modulated by miR-1262.
Collapse
Affiliation(s)
- Ling Li
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Jining Medical University, Tengzhou, Shandong Province, China
| | - Wen-Hui Qu
- Department of Anesthesiology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Jining Medical University, Tengzhou, Shandong Province, China
| | - Hui-Ping Ma
- Department of Laboratory, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Jining Medical University, Tengzhou, Shandong Province, China
| | - Li-Li Wang
- Department of Internal Medicine, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Jining Medical University, Tengzhou, Shandong Province, China
| | - Yan-Bo Zhang
- Department of Pharmacy, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Jining Medical University, Tengzhou, Shandong Province, China
| | - Yuan Ma
- Department of Pharmacy, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Jining Medical University, Tengzhou, Shandong Province, China
| |
Collapse
|
14
|
Liu Z, Huang J, Jiang Q, Li X, Tang X, Chen S, Jiang L, Fu G, Liu S. miR-125a attenuates the malignant biological behaviors of cervical squamous cell carcinoma cells through Rad51. Bioengineered 2022; 13:8503-8514. [PMID: 35332852 PMCID: PMC9161904 DOI: 10.1080/21655979.2022.2051827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/02/2022] Open
Abstract
Cervical squamous cell carcinoma (CSCC), the most common cervical malignancy, is more likely to invade and metastasize than other cervical cancers. miR-125a, a tumor suppressor gene, has been confirmed to be associated with cancer metastasis. However, the role of miR-125a in CSCC and the underlying mechanism are unknown. miR-125a expression was confirmed by real-time quantitative PCR (RT-qPCR), and the Rad51 expression level was measured by western blotting analysis. CSCC cell proliferation, migration and invasion were assessed with functional assays, including CCK-8, colony formation, wound healing and Transwell assays. Our data confirmed that miR-125a is expressed at low levels in CSCC tissues and cells. Functionally, the overexpression of miR-125a greatly prevented the proliferation, migration and invasion of CSCC cells, and the inhibition of miR-125a expression strongly enhanced these behaviors in CSCC cells. Moreover, the expression of Rad51, a miR-125a target gene, greatly reversed the miR-125-mediated inhibition of CSCC cell proliferation, migration and invasion. In addition, we discovered that miR-125a downregulated the levels of phosphorylated PI3K, AKT and mTOR through Rad51 in CSCC cells. miR-125a, a tumor suppressor, can attenuate the malignant behaviors of CSCC cells by targeting Rad51. Therefore, the miR-125a/Rad51 axis might be a target for CSCC therapy.
Collapse
Affiliation(s)
- Zeping Liu
- Department of Pathology, The Second Hospital of Longyan, Longyan, China
| | - Jinchang Huang
- Department of Pathology, Ganzhou People’s Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Qiuju Jiang
- Department of Pathology, The Second Hospital of Longyan, Longyan, China
| | - Xiaoling Li
- Department of Pathology, The Second Hospital of Longyan, Longyan, China
| | - Xiaohui Tang
- Department of Pathology, The Second Hospital of Longyan, Longyan, China
| | - Shasha Chen
- Department of Pathology, The Second Hospital of Longyan, Longyan, China
| | - Liling Jiang
- Department of Gynaecology and Obstetrics, The Second Hospital of Longyan, Longyan, China
| | - Genghua Fu
- Department of Gynaecology and Obstetrics, The Second Hospital of Longyan, Longyan, China
| | - Sijun Liu
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Gannan, China
| |
Collapse
|
15
|
Dai T, Liang J, Liu W, Zou Y, Niu F, Li M, Zhang H, Li C, Fan M, Cui G. The miRNA mir-582-3p suppresses ovarian cancer progression by targeting AKT/MTOR signaling via lncRNA TUG1. Bioengineered 2021; 12:10771-10781. [PMID: 34793263 PMCID: PMC8810093 DOI: 10.1080/21655979.2021.2003662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common malignancies of the female reproductive system. The miRNA miR-582-3p is associated with a variety of tumors, and the aim of this study was to investigate the role and mechanisms of miR-582-3p specifically in ovarian carcinogenesis and progression. Low expression of miR-582-3p was noted in OC tissue and cell lines, and lower expression of miR-582-3p correlated with lower overall survival in OC patients. Knockdown of miR-582-3p promoted the proliferation and migration of OC cells, while overexpression inhibited them. TUG1, a long non-coding RNA, was found to bind to miR-582-3p, and inhibition of lncRNA TUG1 decreased viability and migration and weakened the effect of miR-582-3p knockdown in OC cells. Implantation of OC cells with reduced miR-582-3p caused increased tumor growth, while lncRNA TUG1 knockdown suppressed tumor growth and relieved the impact of reduced miR-582-3p in vivo. Phosphorylation of AKT and mTOR were significantly enhanced with decreased miR-582-3p expression, but lncRNA TUG1 knockdown attenuated this trend in vitro and in vivo. The novel miR-582-3p represses the malignant properties of OC via the AKT/mTOR signaling pathway by targeting lncRNA TUG1. This axis may represent valuable prognostic biomarkers and therapeutic targets for OC.
Collapse
Affiliation(s)
- Tianyu Dai
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junhui Liang
- Department of Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Liu
- Department of Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yonghui Zou
- Department of Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feifei Niu
- Department of Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengqing Li
- Department of Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haomeng Zhang
- Department of Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changzhong Li
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mingjun Fan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guoying Cui
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
16
|
Li J, Liu W, Dong X, Dai Y, Chen S, Zhao E, Liu Y, Bao H. The construction and analysis of ceRNA network and patterns of immune infiltration in lung adenocarcinoma. BMC Cancer 2021; 21:1228. [PMID: 34781924 PMCID: PMC8594182 DOI: 10.1186/s12885-021-08932-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Competitive Endogenous RNA (ceRNA) may be closely associated with tumor progression. However, studies on ceRNAs and immune cells in LUAD are scarce. METHOD The profiles of gene expression and clinical data of LUAD patients were extracted from the TCGA database. Bioinformatics methods were used to evaluate differentially-expressed genes (DEGs) and to form a ceRNA network. Preliminary verification of clinical specimens was utilized to detect the expressions of key biomarkers at the tissues. Cox and Lasso regressions were used to identify key genes, and prognosis prediction nomograms were formed. The mRNA levels of 9 genes in the risk score model in independent clinical LUAD samples were detected by qRT-PCR. The interconnection between the risk of cancer and immune cells was evaluated using the CIBERSORT algorithm, while the conformation of notable tumor-infiltrating immune cells (TIICs) in the LUAD tissues of the high and low risk groups was assessed using the RNA transcript subgroup in order to identify tissue types. Finally, co-expression study was used to examine the interconnection between the key genes in the ceRNA networks and the immune cells. RESULT A ceRNA network of 115 RNAs was established, and nine key genes were identified to construct a Cox proportional-hazard model and create a prognostic nomogram. This risk-assessment model might serve as an independent factor to forecast the prognosis of LUAD, and it was consistent with the preliminary verification of clinical specimens. Survival analysis of clinical samples further validated the potential value of high risk groups in predicting LUAD prognosis. Five immune cells were identified with significant differences in the LUAD tissues of the high and low risk groups. Besides, two pairs of biomarkers associated with the growth of LUAD were found, i.e., E2F7 and macrophage M1 (R = 0.419, p = 1.4e- 08) and DBF4 and macrophage M1 (R = 0.282, p < 2.2 e- 16). CONCLUSION This study identified several important ceRNAs, i.e. (E2F7 and BNF4) and TIICs (macrophage M1), which might be related to the development and prognosis of LUAD. The established risk-assessment model might be a potential tool in predicting LUAD of prognosis.
Collapse
Affiliation(s)
- Jinglong Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Qiqihar Medical College, No.37, West Zhonghua Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Wenyao Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Qiqihar Medical College, No.37, West Zhonghua Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Xiaocheng Dong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Qiqihar Medical College, No.37, West Zhonghua Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Yunfeng Dai
- Laboratory Department of the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang Province, China
| | - Shaosen Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Qiqihar Medical College, No.37, West Zhonghua Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Enliang Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Qiqihar Medical College, No.37, West Zhonghua Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Yunlong Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Qiqihar Medical College, No.37, West Zhonghua Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Hongguang Bao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Qiqihar Medical College, No.37, West Zhonghua Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China.
| |
Collapse
|
17
|
Yang S, Chen K, Cao K, Xu S, Ma C, Cai Y, Hu Y, Zhou Y. miR-182-5p Inhibits NKAPL Expression and Promotes the Proliferation of Osteosarcoma. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Abstract
Background Gastric cell carcinoma (GCC) is a common and high-incidence malignant gastrointestinal cancer that seriously threatens human life and safety. Evidences suggest that microRNAs (miRNAs) exhibit an essential role in regulating the occurrence and development of GCC, while the effects and possible mechanisms remain to be further explored. Objective This study was designed to explore whether miR-200c-3p exerted its functional role in the growth and metastasis of GCC, and investigate the possible mechanisms. Methods The expression levels of miR-200c-3p in GCC tissues and cell lines were detected by qRT-PCR analysis. The functional role of miR-200c-3p in the viability, proliferation, migration and invasion of GCC cells were evaluated by CCK-8, EdU, wound healing and Transwell assays. In addition, the candidate targets of miR-200c-3p was predicted and confirmed by dual-luciferase reporter assay. Moreover, the relationship between miR-200c-3p and target (Krüppel like factor 6, KLF6) was assessed by qRT-PCR and western blot assays. Besides, the expression levels of KLF6 in GCC cells were determined by qRT-PCR and western blot assays. Furthermore, the role of KLF6 in the viability, proliferation, migration and invasion of GCC cells mediated with miR-200c-3p mimics was evaluated by CCK-8, EdU, wound healing and Transwell assays. Results In the present study, a new tumor promoting function of miR-200c-3p was disclosed in GCC. We found that the expression of miR-200c-3p was obviously increased in clinic GCC tissues and cell lines. In addition, down-regulation of miR-200c-3p suppressed cell viability, proliferation, migration, and invasion in GCC cells. Moreover, KLF6 was verified as a direct target of miR-200c-3p by binding its 3’-UTR. Additionally, KLF6 was remarkably decreased and was negatively associated with the miR-200c-3p expression in GCC cell lines. Furthermore, over-expression of KLF6 retarded the effects of miR-200c-3p on the growth and metastasis of GCC cell lines. Conclusions MiR-200c-3p potentially played a tumor-promoting role in the occurrence and development of GCC, which may be achieved by targeting KLF6. Graphic abstract ![]()
Collapse
|
19
|
Zhang M, Bai X, Zeng X, Liu J, Liu F, Zhang Z. circRNA-miRNA-mRNA in breast cancer. Clin Chim Acta 2021; 523:120-130. [PMID: 34537217 DOI: 10.1016/j.cca.2021.09.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Among cancers, breast cancer has the highest incidence rate among women and poses a tremendous threat to women's health. Messenger RNA (mRNA), microRNA (miRNA) and circular RNA (circRNA) play vital roles in the progression of breast cancer through a variety of biological effects and mechanisms. Recently, the regulatory network formed by circRNAs, miRNAs and mRNAs has piqued attention and garnered interest. CircRNAs bind to miRNAs through a regulatory mechanism in which endogenous RNAs compete to indirectly regulate the expression of mRNA corresponding to downstream target genes of miRNAs, contributing to the progression of breast cancer. The circRNA-miRNA-mRNA axis may be a marker for the early diagnosis and prognosis of breast cancer and a potential breast cancer treatment target, providing unlimited possibilities for the development of breast cancer biomarkers and therapeutic strategies. This article reviews recent research progress on the circRNA-miRNA-mRNA axis as a regulatory network of competing endogenous RNAs in breast cancer. Herein, we focus on the mechanism and function of the circRNA-miRNA-mRNA axis in the occurrence and metastasis of breast cancer, and resistance to chemotherapy.
Collapse
Affiliation(s)
- Meilan Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Xue Bai
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Xuemei Zeng
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Jiangrong Liu
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Feng Liu
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang 421001, China
| |
Collapse
|
20
|
Ai L, Luo X, Yan X, Jiang S. MicroRNA-506-3p inhibits colorectal cancer cell proliferation through targeting enhancer of zeste homologue 2. Bioengineered 2021; 12:4044-4053. [PMID: 34288823 PMCID: PMC8806550 DOI: 10.1080/21655979.2021.1951930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A large number of studies have shown that microRNA (miRNA) has an important relationship with the occurrence and development of colorectal cancer (CRC), but its specific molecular mechanism has not been fully elucidated. This study is to explore the influence of miR-506-3p on the malignant behavior of CRC and its underlying molecular mechanism. Our results show that miR-506-3p was lowly expressed and enhancer of zeste homologue 2 (EZH2) was highly expressed in CRC. Overexpressing miR-506-3p or silencing EZH2 inhibited CRC cell proliferation, migration and invasion and promoted apoptosis. Inhibiting miR-506-3p promoted CRC cell proliferation, migration and invasion but inhibited apoptosis. These impacts were reversed after co-transfecting si-EZH2. Further mechanism studies have shown that miR-506-3p can reduce EZH2 expression in CRC cells by binding to the 3ʹUTR end of EZH2. In summary, the results of this study show that miR-506-3p inhibited CRC progression through targeting EZH2 expression. This provides a new molecular target for the clinical treatment of CRC in the future.
Collapse
Affiliation(s)
- Liang Ai
- Department of Oncology, Chongqing Hospital of Traditional Chinese Medicine Chongqing City, China
| | - Xiaojun Luo
- Department of Hepatobiliary and Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing City, China
| | - Xiong Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing City, China
| | - Shan Jiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing City, China
| |
Collapse
|
21
|
Feltes BC, Poloni JDF, Dorn M. Benchmarking and Testing Machine Learning Approaches with BARRA:CuRDa, a Curated RNA-Seq Database for Cancer Research. J Comput Biol 2021; 28:931-944. [PMID: 34264745 DOI: 10.1089/cmb.2020.0463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA-seq is gradually becoming the dominating technique employed to access the global gene expression in biological samples, allowing more flexible protocols and robust analysis. However, the nature of RNA-seq results imposes new data-handling challenges when it comes to computational analysis. With the increasing employment of machine learning (ML) techniques in biomedical sciences, databases that could provide curated data sets treated with state-of-the-art approaches already adapted to ML protocols, become essential for testing new algorithms. In this study, we present the Benchmarking of ARtificial intelligence Research: Curated RNA-seq Database (BARRA:CuRDa). BARRA:CuRDa was built exclusively for cancer research and is composed of 17 handpicked RNA-seq data sets for Homo sapiens that were gathered from the Gene Expression Omnibus, using rigorous filtering criteria. All data sets were individually submitted to sample quality analysis, removal of low-quality bases and artifacts from the experimental process, removal of ribosomal RNA, and estimation of transcript-level abundance. Moreover, all data sets were tested using standard approaches in the field, which allows them to be used as benchmark to new ML approaches. A feature selection analysis was also performed on each data set to investigate the biological accuracy of basic techniques. Results include genes already related to their specific tumoral tissue a large amount of long noncoding RNA and pseudogenes. BARRA:CuRDa is available at http://sbcb.inf.ufrgs.br/barracurda.
Collapse
Affiliation(s)
- Bruno César Feltes
- Institute of Informatics, Department of Theoretical Computer Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Institute of Biosciences, Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Joice De Faria Poloni
- Institute of Informatics, Department of Theoretical Computer Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,EMBRAPA Agroenergy, Distrito Federal, Brasília, Brazil
| | - Márcio Dorn
- Institute of Informatics, Department of Theoretical Computer Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Science and Technology, Forensic Science, Porto Alegre, Brazil
| |
Collapse
|
22
|
Zhu J, Zhang F. Circular RNA VANGL1 knockdown suppressed viability, promoted apoptosis, and increased doxorubicin sensitivity through targeting miR-145-5p to regulate SOX4 in bladder cancer cells. Open Med (Wars) 2021; 16:1010-1021. [PMID: 34258391 PMCID: PMC8262520 DOI: 10.1515/med-2021-0299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/13/2021] [Accepted: 04/24/2021] [Indexed: 01/04/2023] Open
Abstract
Background Bladder cancer is a common malignancy in the world. It is reported that circular RNA VANGL1 (circ_VANGL1) was involved in bladder cancer progression. However, the functional role and molecular mechanism of circ_VANGL1 in bladder cancer were still unclear. Methods The levels of circ_VANGL1, microRNA-145-5p (miR-145-5p), and Sex-determining region Y-related high-mobility group box 4 (SOX4) in bladder cancer tissues and cells were determined by quantitative real-time polymerase chain (RT-qPCR). The relative protein expression was detected by western blot. Cell counting kit-8 (CCK8) and flow cytometry analysis were used to measure cell viability, IC50 value, and apoptosis rate. The interaction between miR-145-5p and circ_VANGL1 or SOX4 was predicted by online software starBase v2.0 or Targetscan and verified by the dual-luciferase reporter assay. Besides, xenograft mice model was used to detect the effects of circ_VANGL1 in vivo. Results The level of circ_VANGL1 and SOX4 was increased, while miR-145-5p was decreased in bladder cancer tissues and cells. Knockdown of circ_VANGL1 suppressed viability, while promoted apoptosis and increased doxorubicin sensitivity in bladder cancer cells. Moreover, circ_VANGL1 acted as a sponge for miR-145-5p. In addition, miR-145-5p partially reversed the effects of miR-145-5p knockdown in T24 and J82 cells. SOX4 was a target of miR-145-5p and negatively regulated by miR-145-5p. Furthermore, miR-145-5p regulated SOX4 to affect cell progression in bladder cancer cells, including viability, apoptosis, and doxorubicin sensitivity. Besides, circ_VANGL1 suppressed tumor growth and enhanced the doxorubicin sensitivity in bladder cancer in vivo. Conclusion circ_VANGL1 mediated cell viability, apoptosis, and doxorubicin sensitivity by regulating miR-145-5p/SOX4 axis in bladder cancer, providing a potential therapeutic target for bladder cancer therapy.
Collapse
Affiliation(s)
- Jiangbo Zhu
- Department of Urology, Taizhou First People's Hospital, Huangyan District, 318020, Taizhou, China
| | - Fei Zhang
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), No. 41, Northwest Street, Haishu District, 315000, NingBo, China
| |
Collapse
|
23
|
Kang X, Kong B, Chen Q, Zhao S. Low expression of miR-138 inhibit the proliferation, migration and invasion of colorectal cancer and affect patient survival by targeting SIRT1. Transl Cancer Res 2021; 10:3548-3559. [PMID: 35116658 PMCID: PMC8799301 DOI: 10.21037/tcr-21-559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers in the world, resulting in about 600,000 deaths every year. It is urgent to explore the molecular mechanism and find new effective therapy. Abnormal molecular expression in cancer is considered as a screening biomarker and therapeutic target for tumors, MicroRNA (miRNA) as one of the important molecules, plays an important role in the regulation of tumorigenesis. METHODS In this study, we aimed to elucidate the molecular mechanism by which mir-138 regulates the development and progression of CRC, and to find new molecular targets for the diagnosis and therapy of CRC. We have used qRT-PCR to study the expression of miR-138 and SIRT1 in CRC cells and tissues, CCK8 assay was used to test the proliferation ability of CRC cells, and invasion and migration ability of CRC cells in vitro were studied by Transwell assay. RESULTS We found that miR-138 was significantly decreased in CRC tissues and cell lines by qRT-PCR, the level of miR-138 was significantly correlated with lymph node metastasis and distant metastasis, the CRC patients with high miR-138 level whose overall survival and disease-free survival were significantly longer. We also found that the level of SIRT1 in CRC tissues and cell lines is higher, and through Dual-luciferase reporter assay, we found that SIRT1 is a new target of miR-138 in CRC, and SIRT1 knockdown could inhibit CRC proliferation, migration and invasion in vitro. CONCLUSIONS Thus, we found that miR-138 could inhibit CRC cell proliferation, migration and invasion by targeting SIRT1 firstly, and that will provide a new idea for the therapy of CRC.
Collapse
Affiliation(s)
- Xianwu Kang
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Kong
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qiang Chen
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shipeng Zhao
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
24
|
Wang L, Gao J, Zhang Y, Kang S. Silencing miRNA-1297 suppresses the invasion and migration of prostate cancer cells via targeting modulation of PTEN and blocking of the AKT/ERK pathway. Exp Ther Med 2021; 22:768. [PMID: 34055067 PMCID: PMC8145438 DOI: 10.3892/etm.2021.10200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN) loss is a major contributing factor of prostate cancer (PC). miRNA-1297 was reported to serve role in various cancer types; however, the potential roles of miRNA-1297 in PC had not been investigated. In the present study, tumor and adjacent tissues were collected from patients with PC. The gene expression level of miRNA-1297 was measured via polymerase chain reaction. Results indicated that the miRNA-1297 was overexpressed in tumor tissues from PC patients and in PC cell lines. miRNA-1297 also contributed toward the progression of PC. PTEN was confirmed as the direct target of miRNA-1297 and bound with miRNA-1297 via four binding sites. The miRNA-1297 level was negatively associated with the PTEN level. Silencing miRNA-1297 or overexpression of PTEN significantly inhibited the cell migration and invasion. In addition, the AKT/ERK pathway was also inhibited following silencing of miRNA-1297 or overexpression of PTEN. Taken together, the results indicated that silencing miRNA-1297 exerted inhibitory effects on the invasion and migration of PC cells via modulating PTEN and blocking of the AKT/ERK pathway. The results of the present study provided a novel strategy for treatment of prostate cancer cells.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jing Gao
- Department of Obstetrics and Gynecology, Tangshan Hongci Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yu Zhang
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, Hebei 063000, P.R. China
| | - Shaosan Kang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
25
|
Luo J, Jin Y, Li M, Dong L. Tumor suppressor miR‑613 induces cisplatin sensitivity in non‑small cell lung cancer cells by targeting GJA1. Mol Med Rep 2021; 23:385. [PMID: 33760215 PMCID: PMC7986010 DOI: 10.3892/mmr.2021.12024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022] Open
Abstract
It has been reported that microRNAs (miRs) contribute to several biological functions and are associated with drug resistance in various types of cancer. However, to the best of our knowledge, whether miR‑613 can affect cisplatin (CDDP) sensitivity in non‑small cell lung cancer (NSCLC) remains unknown. Reverse transcription‑quantitative PCR was performed to detect the expression levels of miR‑613 and gap junction α‑1 protein (GJA1) in patients with NSCLC. Cell Counting Kit‑8, colony formation and Transwell assays were employed to exam the effects of miR‑613 and GJA1 on cell functions. Cell apoptosis was analyzed using flow cytometry. An in vivo experiment was conducted to determine the influence of miR‑613 on tumor formation. In the present study, miR‑613 was revealed to be significantly downregulated in lung cancer tissues compared with in adjacent normal tissues, and low miR‑613 expression indicated a poor prognosis. Furthermore, cell proliferation, colony formation and migration of lung cancer cells were inhibited by overexpression of miR‑613. In vivo experiments also demonstrated that miR‑613 could inhibit tumor growth. Moreover, miR‑613 could enhance the negative effects of CDDP on cell proliferation, apoptosis and migration. GJA1 was revealed to be a target gene of miR‑613 and was upregulated in human lung cancer tissues. Rescue experiments demonstrated that miR‑613 increased the chemosensitivity of lung cancer cells by targeting GJA1. Collectively, the results suggested a tumor suppressor role of miR‑613 in NSCLC and indicated that miR‑613 could strengthen CDDP sensitivity in NSCLC cells by targeting GJA1, which may provide a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jianhua Luo
- Department of Respiratory Medicine, Taizhou Municipal Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Yan Jin
- Department of Respiratory Medicine, Taizhou Municipal Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Mengyuan Li
- Department of Respiratory Medicine, Taizhou Municipal Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Liyang Dong
- Department of Invasive Technology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
26
|
Xue D, Han J, Liu Y, Tuo H, Peng Y. Current perspectives on exosomes in the diagnosis and treatment of hepatocellular carcinoma (review). Cancer Biol Ther 2021; 22:279-290. [PMID: 33847207 PMCID: PMC8183537 DOI: 10.1080/15384047.2021.1898728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The prognosis of hepatocellular carcinoma (HCC), a malignant tumor, is poor. Tumor recurrence and metastasis are the major challenges for the treatment of HCC. Various studies have demonstrated that exosomes, which are loaded with various biomolecules including nucleic acids, lipids, and proteins are involved in the recurrence and metastasis of HCC. Additionally, exosomes mediate various biological processes, such as immune response, cell apoptosis, angiogenesis, thrombosis, autophagy, and intercellular signal transduction. In cancer, exosomes regulate cancer cell differentiation, development, and drug resistance. Circular RNAs, microRNAs, and proteins in the exosomes can serve as early diagnostic and prognostic markers for HCC. As exosomes are characterized by low immunogenicity and high stability in the tissues and circulation, they can be used to deliver the drugs in cancer therapies.
Collapse
Affiliation(s)
- Dongdong Xue
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China
| | - Jingzhao Han
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China.,Department of Graduate School, Hebei Medical University, Shijiazhuang, P. R. China
| | - Yifan Liu
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China.,Department of Graduate School, Hebei Medical University, Shijiazhuang, P. R. China
| | - Hongfang Tuo
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China
| | - Yanhui Peng
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China
| |
Collapse
|
27
|
Ding Y, Tan X, Abasi A, Dai Y, Wu R, Zhang T, Li K, Yan M, Huang X. LncRNA TRPM2-AS promotes ovarian cancer progression and cisplatin resistance by sponging miR-138-5p to release SDC3 mRNA. Aging (Albany NY) 2021; 13:6832-6848. [PMID: 33621194 PMCID: PMC7993682 DOI: 10.18632/aging.202541] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022]
Abstract
The role of TRPM2-AS lncRNA in OvC has not been explored. This study aimed to investigate whether and how TRPM2-AS contributes to the progression of OvC. First, qRT-PCR was employed to measure the expression of TRPM2-AS, miR-138-5p and SDC3 in OvC samples. A xenograft formation assay was subsequently performed to detect the tumor growth in vivo. The cell viability, colony formation, cell migration, cell invasion and cell apoptosis were later evaluated using a series of experiments. The western blot assay was utilized to detect the SDC3 protein expression and cell-apoptosis markers. Luciferase reporter gene assay, RIP, and RNA pull-down assays were performed to identify the association between TRPM2-AS, miR-138-5p and SDC3. Findings indicated that the expression of TRPM2-AS and SDC3 was significantly upregulated in OvC tissues and cells, while miR-138-5p expression was significantly downregulated in OvC samples. Unlike miR-138-5p, TRPM2-AS and SDC3 were found to promote OvC development. It was also found that TRPM2-AS could sponge miR-138-5p to release SDC3, thus promoting OvC progression. Apart from that, we discovered that both sh-TRPM2-AS and cisplatin could enhance the apoptosis of OvC cells. Overall, our findings suggested that the TRPM2-AS/miR-138-5p/SDC3 axis was closely associated with OvC tumorigenesis and cisplatin resistance.
Collapse
Affiliation(s)
- Yi Ding
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Xiangyu Tan
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Abuduyilimu Abasi
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Ruxing Wu
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Tao Zhang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Kexin Li
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Miao Yan
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Xiaoyuan Huang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| |
Collapse
|
28
|
Qi Y, Wang X, Li W, Chen D, Meng H, An S. Pseudogenes in Cardiovascular Disease. Front Mol Biosci 2021; 7:622540. [PMID: 33644114 PMCID: PMC7902774 DOI: 10.3389/fmolb.2020.622540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular disease is the main disease that affects human life span. In recent years, the disease has been increasingly addressed at the molecular levels, for example, pseudogenes are now known to be involved in the pathogenesis and development of cardiovascular diseases. Pseudogenes are non-coding homologs of protein-coding genes and were once called “junk gene.” Since they are highly homologous to their functional parental genes, it is somewhat difficult to distinguish them. With the development of sequencing technology and bioinformatics, pseudogenes have become readily identifiable. Recent studies indicate that pseudogenes are closely related to cardiovascular diseases. This review provides an overview of pseudogenes and their roles in the pathogenesis of cardiovascular diseases. This new knowledge adds to our understanding of cardiovascular disease at the molecular level and will help develop new biomarkers and therapeutic approaches designed to prevent and treat the disease.
Collapse
Affiliation(s)
- Yanyan Qi
- Department of Cardiology, Anesthesiology and Emergency Medicine, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Wang
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbo Li
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongchang Chen
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua Meng
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Songtao An
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Wang Y, Gao H, Wang H, Lin E, Wang Z, Liu H, Dai Q. Effect of miR-214 on Proliferation, Cell Cycle and Apoptosis of Esophageal Cancer Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Esophageal cancer seriously affects human health. miR-214 involves in esophageal cancer, but its specific mechanism has not been completely elucidated. Our study investigated miR-214’s role in esophageal cancer. Eca109 cells were transfected with miR-214 inhibitor/NC was transfected
into Eca109 cells followed by analysis of miR-214 level by real-time PCR, cell proliferation by CCK8 assay, cell apoptosis and cell cycle and PTEN level by Western blot. miR-214 was significantly upregulated in Eca109 cells (P < 0.01) with downregulated PTEN (P < 0.05).
miR-214 inhibitor significantly upregulated PTEN, decreased cell number, increased apoptosis and cells in G1 phase (P < 0.05). PTEN was a target of miR-214. miR-214 affects esophageal cancer cells by targeting PTEN.
Collapse
Affiliation(s)
- Yanfeng Wang
- Department of Pathology, Heilongjiang University of Traditional Chinese Medicine, Haerbin, Heilongjiang, 150040, China
| | - Hongling Gao
- Department of Pathology, Qinghai Provincial People’s Hospital, Xining, Qinghai, 810006, China
| | - Hao Wang
- Physical Diagnosis Department, Heilongjiang Province Land Reclamation Headquarter General Hospital, Haerbin, Heilongjiang, 150088, China
| | - Enguang Lin
- Department of Pathology, Heilongjiang Province Land Reclamation Headquarter General Hospital, Haerbin, Heilongjiang, 150088, China
| | - Zhao Wang
- Department of Pathology, Heilongjiang Province Land Reclamation Headquarter General Hospital, Haerbin, Heilongjiang, 150088, China
| | - Hongmiao Liu
- Department of Pathology, Heilongjiang Province Land Reclamation Headquarter General Hospital, Haerbin, Heilongjiang, 150088, China
| | - Qiaomei Dai
- Department of Pathology, Heilongjiang University of Traditional Chinese Medicine, Haerbin, Heilongjiang, 150040, China
| |
Collapse
|
30
|
microRNA-27b inhibits cell proliferation and invasion in bladder cancer by targeting engrailed-2. Biosci Rep 2021; 41:227414. [PMID: 33350453 PMCID: PMC7791549 DOI: 10.1042/bsr20201000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/28/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Bladder cancer is considered a malignant tumour characterised by great heterogeneity. Engrailed-2 may be a gene implicated in bladder cancer. Bioinformatics analysis found base pair complementation between microRNA-27b and engrailed-2. The present study aimed to investigate the reciprocal association between microRNA-27b and engrailed-2 in bladder cancer. Methods: The microRNA-27b and the protein of engrailed-2 in the tissues and cells of the bladder were detected. The processes of apoptosis, proliferation, invasion, and migration of tumour cells were evaluated. The co-action between microRNA-27b and engrailed-2 was detected by a luciferase reporter system. Finally, the interaction between microRNA-27b and engrailed-2 was further verified in vivo. Results: The study found that the expression level of microRNA-27b is lower in bladder cancer tissues and cells than that in neighbouring ordinary tissues, whereas the opposite outcome was observed regarding the expression level of engrailed-2. Furthermore, microRNA-27b expression level is not significantly linked to the age of patients with bladder cancer; however, it is significantly associated with the clinicopathological grade of bladder cancer. Notably, engrailed-2 is negatively regulated by microRNA-27b. Transfection with microRNA-27b was associated with a significant reduction in the activity of bladder cancer cells and promoted apoptosis, while engrailed-2 restoration effectively reversed the above effects of microRNA-27b on bladder cancer in vitro and in vivo. Conclusions: In conclusion, engrailed-2 is engaged in the development and process of bladder cancer through the negative mediation of microRNA-27b; additionally, microRNA-27b/engrailed-2 could form a signalling pathway with a significant effect on the process of bladder cancer.
Collapse
|
31
|
Lyu L, Wang M, Zheng Y, Tian T, Deng Y, Xu P, Lin S, Yang S, Zhou L, Hao Q, Wu Y, Dai Z, Kang H. Overexpression of FAM234B Predicts Poor Prognosis in Patients with Luminal Breast Cancer. Cancer Manag Res 2020; 12:12457-12471. [PMID: 33299353 PMCID: PMC7721111 DOI: 10.2147/cmar.s280009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Family with sequence similarity 234 member B (FAM234B), a protein-coding gene, is mainly expressed in brain tissues. Its clinical significance and biological function in tumors, especially in breast cancer (BC), have not been elucidated. METHODS We firstly investigated the expression pattern of FAM234B at the mRNA and protein levels using Oncomine, TCGA portal, GEPIA, TIMER, HPA, and UALCAN databases, then applied bc-GenExMiner to assess the associations between expression level of FAM234B and clinicopathological features of BC. Besides, we also verified the expression of FAM234B expression in clinical BC samples using qRT-PCR. Subsequently, GEPIA, bc-GenExMiner, and TIMER databases were used to analyze the prognostic significance of FAM234B in all BC and different molecular subtypes. Finally, we conducted co-expression analysis and gene set enrichment analysis (GSEA). Additionally, we explored the regulatory mechanism of FAM234B in BC. RESULTS Both bioinformatics analysis and experimental verification confirmed that the FAM234B expression was significantly higher at the mRNA and protein levels in luminal BC tissues than in adjacent normal tissues. High FAM234B expression was significantly correlated with older age, estrogen receptor-positive, progesterone receptor-positive, human epidermal growth factor receptor 2-negative, wild-type p53, low Nottingham prognostic index, low Scarff-Bloom-Richardson grade, lymph node metastasis positivity, and high tumor stage. Moreover, survival analysis indicated that high FAM234B expression was significantly related to a worse prognosis in patients with luminal BC. GSEA indicated that FAM234B was positively related to membrane transport process and negatively associated with immune response function. Besides, mechanism exploration indicated that pseudogene HTR7P1 might act as endogenous RNA to compete with has-miR-1271-5p or has-miR-381-3p for binding to FAM234B, thereby upregulating the expression of FAM234B in luminal BC. CONCLUSION Our results suggest that FAM234B may be a candidate therapeutic target or prognostic marker for luminal breast cancer.
Collapse
Affiliation(s)
- Lijuan Lyu
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an710004, People’s Republic of China
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, People’s Republic of China
| | - Meng Wang
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an710004, People’s Republic of China
| | - Yi Zheng
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an710004, People’s Republic of China
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, People’s Republic of China
| | - Tian Tian
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an710004, People’s Republic of China
| | - Yujiao Deng
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an710004, People’s Republic of China
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, People’s Republic of China
| | - Peng Xu
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an710004, People’s Republic of China
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, People’s Republic of China
| | - Shuai Lin
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an710004, People’s Republic of China
| | - Si Yang
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an710004, People’s Republic of China
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, People’s Republic of China
| | - Linghui Zhou
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an710004, People’s Republic of China
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, People’s Republic of China
| | - Qian Hao
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an710004, People’s Republic of China
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, People’s Republic of China
| | - Ying Wu
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an710004, People’s Republic of China
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, People’s Republic of China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310003, People’s Republic of China
| | - Huafeng Kang
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an710004, People’s Republic of China
| |
Collapse
|
32
|
Pan CT, Lin YS. MicroRNA retrocopies generated via L1-mediated retrotransposition in placental mammals help to reveal how their parental genes were transcribed. Sci Rep 2020; 10:20612. [PMID: 33244051 PMCID: PMC7692494 DOI: 10.1038/s41598-020-77381-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
In mammalian genomes, most retrocopies emerged via the L1 retrotransposition machinery. The hallmarks of an L1-mediated retrocopy, i.e., the intronlessness, the presence of a 3′ poly-A tail, and the TSDs at both ends, were frequently used to identify retrotransposition events. However, most previous studies only focused on protein-coding genes as their possible parental sources and thus only a few retrocopies derived from non-coding genes were reported. Remarkably, none of them was from microRNAs. Here in this study, we found several retrocopies generated from the mir-302–367 cluster gene (MIR302CHG), and identified a novel alternatively spliced exon encoding mir-302a. The other recognized microRNA retrotransposition events are primate-specific with mir-373 and mir-498 as their parental genes. The 3′ poly-A tracts of these two retrocopy groups were directly attached to the end of the microRNA precursor homologous regions, which suggests that their parental transcripts might alternatively terminate at the end of mir-373 and mir-498. All the three parental microRNAs are highly expressed in specific tissues with elevated retrotransposon activity, such as the embryonic stem cells and the placenta. This might be the reason that our first microRNA retrocopy findings were derived from these three microRNA genes.
Collapse
Affiliation(s)
- Cheng-Tsung Pan
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yeong-Shin Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
33
|
Liang S, Hu J, Zhang A, Li F, Li X. miR-155 induces endothelial cell apoptosis and inflammatory response in atherosclerosis by regulating Bmal1. Exp Ther Med 2020; 20:128. [PMID: 33082860 PMCID: PMC7557345 DOI: 10.3892/etm.2020.9259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is the leading cause of death from vascular diseases worldwide, and endothelial cell (EC) dysfunction is the key cause of atherosclerosis. miR-155 was found to induce endothelial injury and to trigger atherosclerosis. In addition, brain and muscle ARNT-like protein-1 (Bmal1) has been found to be closely related to EC function. Therefore, the present study aimed to explore the mechanism underlying the regulation of Bmal1 by miR-155 in the induction of EC apoptosis and inflammatory response in atherosclerosis. The atherosclerosis model in apolipoprotein E (ApoE)- / - mice was established. miR-155 and Bmal1 expression was quantified by RT-qPCR and western blot analysis, respectively. The role of miR-155 and Bmal1 in atherosclerosis was evaluated through changes in cardiac function, plaque area, cardiomyocyte apoptosis, and inflammatory factor levels in mice. Moreover, the regulatory relationship between them was identified by dual-luciferase reporter gene assay to explore the mechanism of action of miR-155. After the modeling, the expression of miR-155 was upregulated and Bmal1 was downregulated in aorta, and there was a significant linear correlation between them. Upregulation of miR-155 increased the atherosclerotic plaque area, cell apoptosis, total cholesterol (TC) and triglyceride (TG), as well as weakened aortic diastolic function. However, opposite changes occurred after downregulation of miR-155 or an increase in Bmal1. In addition, the microRNA.org website predicted that there were targeted binding sites between miR-155 and Bmal1, which was verified with a dual-luciferase reporter gene assay. miR-155 was able to inhibit the expression by targeting Bmal1. Moreover, a rescue experiment showed that Bmal1 hindered the promotion of miR-155 in regards to atherosclerosis. In conclusion, miR-155 induces EC apoptosis and inflammatory response, weakens aortic diastolic function, and promotes the progression of atherosclerosis through targeted inhibition of Bmal1.
Collapse
Affiliation(s)
- Shuangchao Liang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China.,Department of Vascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Jiqiong Hu
- Department of Vascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Andong Zhang
- Department of Vascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Fangkuan Li
- Department of Vascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Xiaoqiang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
34
|
Kapoor R, So JBY, Zhu F, Too HP, Yeoh KG, Yoong JSY. Evaluating the Use of microRNA Blood Tests for Gastric Cancer Screening in a Stratified Population-Level Screening Program: An Early Model-Based Cost-Effectiveness Analysis. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2020; 23:1171-1179. [PMID: 32940235 DOI: 10.1016/j.jval.2020.04.1829] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/03/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES To evaluate cost-effectiveness of a novel screening strategy using a microRNA (miRNA) blood test as a screen, followed by endoscopy for diagnosis confirmation in a 3-yearly population screening program for gastric cancer. METHODS A Markov cohort model has been developed in Microsoft Excel 2016 for the population identified to be at intermediate risk (Singaporean men, aged 50-75 years with Chinese ethnicity). The interventions compared were (1) initial screening using miRNA test followed by endoscopy for test-positive individuals and a 3-yearly follow-up screening for test-negative individuals (proposed strategy), and (2) no screening with gastric cancer being diagnosed clinically (current practice). The model was evaluated for 25 years with a healthcare perspective and accounted for test characteristics, compliance, disease progression, cancer recurrence, costs, utilities, and mortality. The outcomes measured included incremental cost-effectiveness ratios, cancer stage at diagnosis, and thresholds for significant variables. RESULTS The miRNA-based screening was found to be cost-effective with an incremental cost-effectiveness ratio of $40 971/quality-adjusted life-year. Key drivers included test costs, test accuracy, cancer incidence, and recurrence risk. Threshold analysis highlights the need for high accuracy of miRNA tests (threshold sensitivity: 68%; threshold specificity: 77%). A perfect compliance to screening would double the cancer diagnosis in early stages compared to the current practice. Probabilistic sensitivity analysis reported the miRNA-based screening to be cost-effective in >95% of iterations for a willingness to pay of $70 000/quality-adjusted life-year (approximately equivalent to 1 gross domestic product/capita) CONCLUSIONS: The miRNA-based screening intervention was found to be cost-effective and is expected to contribute immensely in early diagnosis of cancer by improving screening compliance.
Collapse
Affiliation(s)
- Ritika Kapoor
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore; Evidera, PPD, Singapore.
| | - Jimmy B Y So
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Surgical Oncology, National University Cancer Institute of Singapore, Singapore; Singapore Gastric Cancer Consortium, Singapore
| | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Heng-Phon Too
- Bioprocessing Technology Institute, A∗STAR, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Khay-Guan Yeoh
- Singapore Gastric Cancer Consortium, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Joanne Su-Yin Yoong
- Center for Economic and Social Research, University of South California, Los Angeles, CA, USA
| |
Collapse
|
35
|
Li G, Gao L, Zhao J, Liu D, Li H, Hu M. LncRNA ANRIL/miR-7-5p/TCF4 axis contributes to the progression of T cell acute lymphoblastic leukemia. Cancer Cell Int 2020; 20:335. [PMID: 32714094 PMCID: PMC7376839 DOI: 10.1186/s12935-020-01376-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background Antisense non-coding RNA in the INK4 locus (ANRIL) is of great importance in cell biological behaviors, and ANRIL functions in many kinds of cancers including leukemia. However, the mechanism of ANRIL in the progression of T-cell acute lymphoblastic leukemia (T-ALL) has not been clarified clearly. Methods qRT-PCR was performed to detect ANRIL expression in T-ALL samples. T-ALL cell lines (MOLT4, CCRF-CEM and KOPT-K1) were used as the cell models. The function of ANRIL on T-ALL cells was investigated by CCK-8 assays, Transwell assays, and apoptosis experiments in vitro. qRT-PCR, Western blot, luciferase reporter assay and RIP assay were used to confirm the interactions between ANRIL and miR-7-5p, miR-7-5p and its target gene transcription factor 4 (TCF4). Results ANRIL was significantly up-regulated in T-ALL samples. Its knockdown markedly inhibited viability, migration and invasion of T-ALL cells, but its overexpression exerted the opposite effects. TCF4 was proved to be a target gene of miR-7-5p. ANRIL down-regulated miR-7-5p via sponging it and in turn up-regulated TCF4. Conclusions LncRNA ANRIL can modulate malignant phenotypes of T-ALL cells, possibly by regulating miR-7-5p/TCF4 axis, and it serves as a potential therapeutic target for T-ALL.
Collapse
Affiliation(s)
- Gang Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Lan Gao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Jing Zhao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Dejun Liu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Hui Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Min Hu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| |
Collapse
|
36
|
Zhang F, Wang B, Qin T, Wang L, Zhang Q, Lu Y, Song B, Yu X, Li L. IL-6 induces tumor suppressor protein tyrosine phosphatase receptor type D by inhibiting miR-34a to prevent IL-6 signaling overactivation. Mol Cell Biochem 2020; 473:1-13. [PMID: 32602014 DOI: 10.1007/s11010-020-03803-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
Abstract
Protein tyrosine phosphatase receptor type D (PTPRD) is a tumor suppressor gene that is epigenetically silenced and mutated in several cancers, including breast cancer. Since IL-6/STAT3 signaling is often hyperactivated in breast cancer and STAT3 is a direct PTPRD substrate, we investigated the role of PTPRD in breast cancer and the association between PTPRD and IL-6/STAT3 signaling. We found that PTPRD acts as a tumor suppressor in breast cancer tissues and that high PTPRD expression is positively associated with tumor size, lymph node metastasis, PCNA expression, and patient survival. Moreover, breast cancers with high PTPRD expression tend to exhibit high IL-6 and low phosphorylated-STAT3 expression. IL-6 was found to inhibit miR-34a transcription and induce PTPRD expression in breast cancer and breast epithelial cells, whereas PTPRD was shown to mediate activated STAT3 dephosphorylation and to be a conserved, direct target of miR-34a. IL-6-induced PTPRD upregulation was blocked by miR-34a mimics, whereas experimental PTPRD overexpression suppressed MDA-MB-231 cell migration, invasion, and epithelial to mesenchymal transition, decreased STAT3 phosphorylation, and increased miR-34a transcription. Our findings suggest that PTPRD mediates activated STAT3 dephosphorylation and is induced by the IL-6/STAT3-mediated transcriptional inhibition of miR-34a, thereby establishing a negative feedback loop that inhibits IL-6/STAT3 signaling overactivation.
Collapse
Affiliation(s)
- Fan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116032, China
| | - Bo Wang
- Department of Pathology and Forensic Medicine, College of Basic Medical Science, Dalian Medical University, Lvshun South Road, Dalian, 116044, China
| | - Tao Qin
- Department of Pathology and Forensic Medicine, College of Basic Medical Science, Dalian Medical University, Lvshun South Road, Dalian, 116044, China
| | - Lu Wang
- Department of Pathology and Forensic Medicine, College of Basic Medical Science, Dalian Medical University, Lvshun South Road, Dalian, 116044, China
| | - Qingqing Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Science, Dalian Medical University, Lvshun South Road, Dalian, 116044, China
| | - Ying Lu
- Department of Pathology and Forensic Medicine, College of Basic Medical Science, Dalian Medical University, Lvshun South Road, Dalian, 116044, China
| | - Bo Song
- Department of Pathology and Forensic Medicine, College of Basic Medical Science, Dalian Medical University, Lvshun South Road, Dalian, 116044, China
| | - Xiaotang Yu
- Department of Pathology and Forensic Medicine, College of Basic Medical Science, Dalian Medical University, Lvshun South Road, Dalian, 116044, China.
| | - Lianhong Li
- Department of Pathology and Forensic Medicine, College of Basic Medical Science, Dalian Medical University, Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
37
|
García-Martínez A, Fuentes-Fayos AC, Fajardo C, Lamas C, Cámara R, López-Muñoz B, Aranda I, Luque RM, Picó A. Differential Expression of MicroRNAs in Silent and Functioning Corticotroph Tumors. J Clin Med 2020; 9:jcm9061838. [PMID: 32545591 DOI: 10.3390/jcm9061838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
The potential role of miRNAs in the silencing mechanisms of pituitary neuroendocrine tumors (PitNETs) has not been addressed. The aim of the present study was to evaluate the expression levels and the potential associated role of some miRNAs, pathways, and transcription factors in the silencing mechanisms of corticotroph tumors (CTs). Accordingly, the expression of miR-375, miR-383, miR-488, miR-200a and miR-103; of PKA, MAP3K8, MEK, MAPK3, NGFIB, NURR1, PITX1, and STAT3 were analyzed via qRT-PCR in 23 silent and 24 functioning CTs. miR-200a and miR-103 showed significantly higher expression in silent than in functioning CTs, even after eliminating the bias of tumor size, therefore enabling the differentiation between the two variants. Additionally, miR-383 correlated negatively with TBX19 in silent CTs, a transcription factor related with the processing of POMC that can participate in the silencing mechanisms of CTs. Finally, the gene expression levels of miR-488, miR-200a, and miR-103 were significantly higher in macroadenomas (functioning and silent) than in microadenomas. The evidence from this study indicates that miRNAs could be involved in the pathophysiology of CTs. The translational implications of these findings suggest that pharmacological treatments specifically targeting these miRNAs could become a promising therapeutic option for these patients.
Collapse
Affiliation(s)
- Araceli García-Martínez
- Research Laboratory, Alicante General University Hospital-Institute for Health and Biomedical Research (ISABIAL), CIBERER, 03010 Alicante, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain
- Department of Cell Biology Physiology and Immunology, University of Cordoba, 14004 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Carmen Fajardo
- Endocrinology Department, Hospital Universitario de La Ribera, 46600 Alzira, Valencia, Spain
| | - Cristina Lamas
- Endocrinology Department, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Rosa Cámara
- Endocrinology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Beatriz López-Muñoz
- Endocrinology Department, Alicante General University Hospital-ISABIAL, 03010 Alicante, Spain
| | - Ignacio Aranda
- Pathology Department, Alicante General University Hospital-ISABIAL, 03010 Alicante, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain
- Department of Cell Biology Physiology and Immunology, University of Cordoba, 14004 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Antonio Picó
- Endocrinology Department, Alicante General University Hospital-ISABIAL, Miguel Hernández University, CIBERER, 03010 Alicante, Spain
| |
Collapse
|
38
|
Xue L, Shen Y, Zhai Z, Zheng S. miR‑539 suppresses the proliferation, migration, invasion and epithelial mesenchymal transition of pancreatic cancer cells through targeting SP1. Int J Mol Med 2020; 45:1771-1782. [PMID: 32236568 PMCID: PMC7169848 DOI: 10.3892/ijmm.2020.4561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miR)‑539 has inhibitory effects on certain types of cancer, but its role in pancreatic cancer (PCa) remains unclear. The present study investigated the effects of miR‑539 on PCa, and aimed to determine possible therapeutic targets for the treatment of PCa. The expression of miR‑539 in PCa tissues, paired normal adjacent tissues and PCa cell lines (CAPAN‑2, BxPC3, CFPAC1, SW1990 and PANC1), and human non‑cancerous pancreatic cells (hTRET‑HPNE) was determined and compared. The effects of upregulation and downregulation of miR‑539 on proliferation, apoptosis, cell cycle, invasion, migration and epithelial‑mesenchymal transition (EMT) of PCa cells were investigated. Additionally, the target gene of miR‑539 was predicted and its effects on PCa cells were further investigated. The results revealed low expression of miR‑539 in PCa tissues and cell lines. Additionally, increasing miR‑539 expression inhibited the proliferation, migration, invasion and EMT of PCa cells and induced apoptosis by blocking G1 phase of the cell cycle, while reducing miR‑539 expression had the opposite results. Furthermore, specificity protein 1 (SP1) was found to be the target gene of miR‑539. SP1 promoted the proliferation, migration, invasion and EMT transformation of PCa cells, but these effects were reversed by high expression of miR‑539. Additionally, miR‑539 suppressed the proliferation, metastasis, invasion and EMT transformation of PCa cells through targeting SP1. Therefore, miR‑539 overexpression may contribute toward development of novel therapeutic strategies for PCa in the future.
Collapse
Affiliation(s)
| | | | - Zhenglong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
39
|
Zhu HZ, Fang CJ, Guo Y, Zhang Q, Huang LM, Qiu D, Chen GP, Pang XF, Hu JJ, Sun JG, Chen ZT. Detection of miR-155-5p and imaging lung cancer for early diagnosis: in vitro and in vivo study. J Cancer Res Clin Oncol 2020; 146:1941-1951. [PMID: 32447486 PMCID: PMC7324423 DOI: 10.1007/s00432-020-03246-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/04/2020] [Indexed: 12/04/2022]
Abstract
Purpose Currently, the routine screening program has insufficient capacity for the early diagnosis of lung cancer. Therefore, a type of chitosan-molecular beacon (CS-MB) probe was developed to recognize the miR-155-5p and image the lung cancer cells for the early diagnosis. Methods Based on the molecular beacon (MB) technology and nanotechnology, the CS-MB probe was synthesized self-assembly. There are four types of cells—three kinds of animal models and one type of histopathological sections of human lung cancer were utilized as models, including A549, SPC-A1, H446 lung cancer cells, tumor-initiating cells (TICs), subcutaneous and lung xenografts mice, and lox-stop-lox(LSL) K-ras G12D transgenic mice. The transgenic mice dynamically displayed the process from normal lung tissues to atypical hyperplasia, adenoma, carcinoma in situ, and adenocarcinoma. The different miR-155-5p expression levels in these cells and models were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The CS-MB probe was used to recognize the miR-155-5p and image the lung cancer cells by confocal microscopy in vitro and by living imaging system in vivo. Results The CS-MB probe could be used to recognize the miR-155-5p and image the lung cancer cells significantly in these cells and models. The fluorescence intensity trends detected by the CS-MB probe were similar to the expression levels trends of miR-155 tested by qRT-PCR. Moreover, the fluorescence intensity showed an increasing trend with the tumor progression in the transgenic mice model, and the occurrence and development of lung cancer were dynamically monitored by the differen fluorescence intensity. In addition, the miR-155-5p in human lung cancer tissues could be detected by the miR-155-5p MB. Conclusion Both in vivo and in vitro experiments demonstrated that the CS-MB probe could be utilized to recognize the miR-155-5p and image the lung cancer cells. It provided a novel experimental and theoretical basis for the early diagnosis of the disease. Also, the histopathological sections of human lung cancer research laid the foundation for subsequent preclinical studies. In addition, different MBs could be designed to detect other miRNAs for the early diagnosis of other tumors.
Collapse
Affiliation(s)
- Hai-Zhen Zhu
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Chun-Ju Fang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Yi Guo
- Department of Basic Knowledge, Guiyang Nursing Vocational College, Guiyang, 400037, China
| | - Qi Zhang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Li-Min Huang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Dong Qiu
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Guang-Peng Chen
- Cancer Institute of PLA, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiu-Feng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jian-Jun Hu
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Jian-Guo Sun
- Cancer Institute of PLA, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Zheng-Tang Chen
- Cancer Institute of PLA, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
40
|
Wei Q, Guo Z, Chen D, Jia X. MiR-542-3p Suppresses Neuroblastoma Cell Proliferation and Invasion by Downregulation of KDM1A and ZNF346. Open Life Sci 2020; 15:173-184. [PMID: 33987474 PMCID: PMC8114778 DOI: 10.1515/biol-2020-0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma is one of the most common malignancies in infants and children. MicroRNAs (miRNAs) have been reported as significant regulators that play important roles in neuroblastoma development. This research aimed to analyze the functional mechanism of miR-542-3p in neuroblastoma. Here, we found that miR-542-3p was downregulated and KDM1A as well as ZNF346 were upregulated in neuroblastoma tissues and cells. Both overexpression of miR-542-3p and the knockdown of KDM1A suppressed cell proliferation and invasion in neuroblastomas. Moreover, miR-542-3p reduced the levels of KDM1A and ZNF346 through interaction. Both KDM1A overexpression and ZNF346 upregulation weakened the effect of miR-542-3p on neuroblastoma cells. Besides, miR-542-3p negatively regulated tumor growth in vivo. Our results suggested that miR-542-3p suppressed cell proliferation and invasion by targeting KDM1A and ZNF346 in neuroblastomas, providing a theoretical basis for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Qiang Wei
- Department II of General Surgery, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Zhao Guo
- Department II of General Surgery, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Dong Chen
- Department II of General Surgery, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Xinjian Jia
- Department II of General Surgery, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
41
|
Wang C, Zhuang X, Xu J, Dai Z, Wu W, Zhang C, Lin S, Chen S, Lin H, Tang W. Variants of MIR137HG Genes are Associated with Liver Cancer Risk in Chinese Li Population. Onco Targets Ther 2020; 13:1809-1818. [PMID: 32184616 PMCID: PMC7053808 DOI: 10.2147/ott.s225669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background Liver cancer (LC) is the sixth most common cancer and the second leading cause of cancer mortality worldwide, and its incidence rate is high in China. Methods In this study, we aimed to investigate the contribution of MIR137HG (MIR137 Host Gene) polymorphisms to LC risk in a case–control study with 432 LC patients and 430 healthy controls. A logistic recession model was used to evaluate the effects of candidate single nucleotide polymorphisms (SNPs) on LC risk. HaploReg v 4.1 database was conducted to predict the potential functionality of SNPs. Results The results revealed that rs17371457 and rs7554283 in the MIR137HG gene were correlated with an enhanced LC risk under the allele (P = 0.001 and P = 0.043, respectively) and genetic models (P < 0.05). When the sample was stratified by gender and age, statistically significant associations were found. Rs9440302, rs17371457 and rs7554283 were associated with an increased the risk of LC among individuals aged >55 years (P < 0.05); rs17371457 was related to higher LC risk in males (P < 0.05). Similarly, the haplotype AG constituted by rs12333983 and rs3735451 significantly increased LC risk in Chinese Li population (P = 0.043). Six SNPs distributed in MIR137HG were successfully predicted as regulatory SNPs with different biological functions. Conclusion Our research firstly showed that MIR137HG gene polymorphisms were implicated in LC susceptibility among Chinese Li population.
Collapse
Affiliation(s)
- Chaoying Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Xiaohong Zhuang
- Department of Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Junnv Xu
- Department of Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China.,Hainan Medical University, Haikou, Hainan 571199, People's Republic of China
| | - Zhisheng Dai
- Department of Medical Oncology, The Second People's Hospital of Hainan Province, Wuzhishan, Hainan 572200, People's Republic of China
| | - Weixiong Wu
- Intensive Care Medicine 1 District, The Second Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570311, People's Republic of China
| | - Chengsheng Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Shu Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Sehong Chen
- Department of Medical Oncology, The Second People's Hospital of Hainan Province, Wuzhishan, Hainan 572200, People's Republic of China
| | - Haifeng Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Wenjun Tang
- Department of Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| |
Collapse
|
42
|
Yang B, Liu Y, Li L, Deng H, Xian L. MicroRNA‑200a promotes esophageal squamous cell carcinoma cell proliferation, migration and invasion through extensive target genes. Mol Med Rep 2020; 21:2073-2084. [PMID: 32323771 PMCID: PMC7115244 DOI: 10.3892/mmr.2020.11002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Despite investigations into microRNA (miRNA) expression in esophageal cancer (EC) tissue, miRNAs that participate in EC pathogenesis and their subsequent mechanisms of action remain to be determined. The present study aimed to identify important miRNAs that contribute to EC development, and to assess miRNA biomarkers that could be used in EC diagnosis, prognosis and therapy. Bioinformatics analysis was performed to reanalyze EC tissue miRNA expression microarray dataset GSE113776, which was followed by in vitro verification of miRNA functions using reverse transcription‑quantitative PCR, western blot analysis and a dual‑luciferase reporter assay. Out of 93 miRNAs extracted, only miR‑200a was significantly increased in EC tissues. Transfection of KYSE150 esophageal squamous cell carcinoma (ESCC) cells with miR‑200a mimics significantly increased their proliferative, migratory and invasive ability, whereas the opposite cell behaviors were observed in ESCC cells transfected with a miR‑200a inhibitor. A total of six miR‑200a target genes [catenin β1 (CTNNB1), cadherin‑1 (CDH1), PTEN, adenomatous polyposis coli (APC), catenin α1 (CTNNA1) and superoxide dismutase 2 (SOD2)] were selected for further analysis based on Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway analysis, protein‑protein interaction network map data and protein expression in esophageal tissue. These target genes were downregulated under miR‑200a expression and upregulated in the presence of the miR‑200a inhibitor. The association between miR‑200a and the 3'‑untranslated region of target genes in ESCC cells was confirmed using a dual‑luciferase reporter assay. In conclusion, the present study demonstrated that miR‑200a may participate in the promotion of ESCC cell proliferation, migration and invasion, and provided novel evidence for the direct interaction between miR‑200a and CTNNB1, CDH1, PTEN, APC, CTNNA1 and SOD2, which may contribute to the observed altered cell behavior.
Collapse
Affiliation(s)
- Bian Yang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Yumeng Liu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Lipeng Li
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Hailong Deng
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Lei Xian
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| |
Collapse
|
43
|
DeVera C, Tosini G. Circadian analysis of the mouse retinal pigment epithelium transcriptome. Exp Eye Res 2020; 193:107988. [PMID: 32105725 DOI: 10.1016/j.exer.2020.107988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/01/2023]
Abstract
The presence of a phagocytic peak of photoreceptor outer segments by the retinal pigment epithelium (RPE) one or 2 h after the onset of light has been reported for several diurnal and nocturnal species. This peak in phagocytic activity also persists under constant lighting conditions (i.e., constant light or dark) thus demonstrating that the timing of this peak is driven by a circadian clock. The aim of this study was to investigate the change in RPE whole transcriptome at two different circadian times (CT; 1 h before (CT23) and 1 h after (CT1) subjective light onset). C57BL/6J male mice were maintained in constant dark conditions for three days and euthanized under red light (<1 lux) at CT23 and CT1. RPE was isolated from whole eyes for RNA library preparation and sequencing on an Illumina HiSeq4000 platform. 14,083 mouse RPE transcripts were detected in common between CT23 and CT1. 12,005 were protein coding transcripts and 2078 were non-protein coding transcripts. 2421 protein coding transcripts were significantly upregulated whereas only 3 transcripts were significantly downregulated and 12 non-protein coding transcripts were significantly upregulated and 31 non-protein coding transcripts were significantly downregulated at CT1 when compared to CT23 (p < 0.05, fold change ≥ ±2.0). Of the protein coding transcripts, most of them were characterized as: enzymes, kinases, and transcriptional regulators with a large majority of activity in the cytoplasm, nucleus, and plasma membrane. Non-protein coding transcripts included biotypes such as long-non coding RNAs and pseudogenes. Gene ontology analysis and ingenuity pathway analysis revealed that differentially expressed transcripts were associated with integrin signaling, oxidative phosphorylation, protein phosphorylation, and actin cytoskeleton remodeling suggesting that these previously identified phagocytic pathways are under circadian control. Our analysis identified new pathways (e.g., increased mitochondrial respiration via increased oxidative phosphorylation) that may be involved in the circadian control of phagocytic activity. In addition, our dataset suggests a possible regulatory role for the identified non-protein coding transcripts in mediating the complex function of RPE phagocytosis. Finally, our results also indicate, as seen in other tissues, about 20% of the whole RPE transcriptome may be under circadian clock regulation.
Collapse
Affiliation(s)
- Christopher DeVera
- Department of Pharmacology and Toxicology, Atlanta, GA, USA, 30310; Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA, 30310
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology, Atlanta, GA, USA, 30310; Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA, 30310.
| |
Collapse
|
44
|
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM, Voinea SC. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020; 9:E276. [PMID: 31979244 PMCID: PMC7072450 DOI: 10.3390/cells9020276] [Citation(s) in RCA: 816] [Impact Index Per Article: 163.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) represent a class of small, non-coding RNAs with the main roles of regulating mRNA through its degradation and adjusting protein levels. In recent years, extraordinary progress has been made in terms of identifying the origin and exact functions of miRNA, focusing on their potential use in both the research and the clinical field. This review aims at improving the current understanding of these molecules and their applicability in the medical field. A thorough analysis of the literature consulting resources available in online databases such as NCBI, PubMed, Medline, ScienceDirect, and UpToDate was performed. There is promising evidence that in spite of the lack of standardized protocols regarding the use of miRNAs in current clinical practice, they constitute a reliable tool for future use. These molecules meet most of the required criteria for being an ideal biomarker, such as accessibility, high specificity, and sensitivity. Despite present limitations, miRNAs as biomarkers for various conditions remain an impressive research field. As current techniques evolve, we anticipate that miRNAs will become a routine approach in the development of personalized patient profiles, thus permitting more specific therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dana Claudia Thompson
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Madalina Gabriela Barbu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Oana Larisa Bugnar
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Andreea Boboc
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dragos Cretoiu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania;
| |
Collapse
|
45
|
Li G, Zheng P, Wang H, Ai Y, Mao X. Long Non-Coding RNA TUG1 Modulates Proliferation, Migration, And Invasion Of Acute Myeloid Leukemia Cells Via Regulating miR-370-3p/MAPK1/ERK. Onco Targets Ther 2019; 12:10375-10388. [PMID: 31819520 PMCID: PMC6890183 DOI: 10.2147/ott.s217795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults. Long non-coding RNA taurine-upregulated gene 1 (lncRNA TUG1) has been discovered to participate in multiple cancers including AML. However, the detailed mechanism of TUG1 in AML remains obscure. Materials and methods AML cell lines HL-60 and Kasumi-1 were taken as cell models. TUG1 knockdown or overexpression cell lines were generated. Then, the biological influence of TUG1 on cancer cells was studied using CCK-8 assay, transwell assay and Western blot in vitro. Interaction between TUG1 and miR-370-3p was determined by bioinformatics analysis, RT-PCR, and luciferase assay. Western blot, RT-PCR, and luciferase assay were carried out to validate the interaction between miR-370-3p and its target gene Mitogen-Activated Protein Kinase 1 (MAPK1). Results Knockdown of TUG1 markedly reduced viability and metastasis of AML cells, while its overexpression had the opposite effect. MAPK1 was verified as a target gene of miR-370-3p. TUG1 could reduce the level of functional miR-370-3p, facilitate MAPK1 expression, and in turn activate ERK1/2 signaling. Conclusion TUG1 could modulate malignant phenotypes of AML cells via miR-370-3p/MAPK1/ERK signaling. Our study would help to clarify the mechanism of AML tumorigenesis and progression.
Collapse
Affiliation(s)
- Gang Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| | - Peiming Zheng
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| | - Huiling Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| | - Yushu Ai
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| | - Xiaohuan Mao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| |
Collapse
|
46
|
Sun JF, Zhang D, Gao CJ, Zhang YW, Dai QS. Exosome-Mediated MiR-155 Transfer Contributes to Hepatocellular Carcinoma Cell Proliferation by Targeting PTEN. Med Sci Monit Basic Res 2019; 25:218-228. [PMID: 31645540 PMCID: PMC6827328 DOI: 10.12659/msmbr.918134] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Most eukaryocytes release nano vesicles (30-120 nm), named exosomes, to various biological fluids such as blood, lymph, and milk. Hepatocellular carcinoma (HCC) is one of the tumors with the highest incidence rate in primary malignant carcinoma of the liver. However, the mechanism of HCC proliferation remains elusive. In this study, we aim to explore whether HCC cell-derived exosomes affect the proliferation of cancer cells. MATERIAL AND METHODS Exosomes were isolated from HCC cells by ultracentrifugation and were visualized the phenotype by transmission electron microscopy. Cell proliferation was detected by Cell Counting Kit-8 assays and EdU (5-ethynyl-2-deoxyuridine) incorporation assays. Dual-luciferase assays were performed to validate the paired correlation of miR-155 and 3'-UTR of PTEN (gene of phosphate and tension homology deleted on chromosome 10). A xenograft mice model was constructed to verify the effect of exosome-mediated miR-155 on cell proliferation in vivo. RESULTS Our finding showed that miR-155 was enriched in exosomes released from HCC cells. The exosome-containing miR-155 transferred into new HCC targeted cells and lead to the elevation of HCC cells' proliferation. Besides, the exosomal miR-155 directly bound to 3'-UTR of PTEN leading to the reduction of relevant targets in recipient liver cells. The knockdown of PTEN attenuated the proliferation of HCC cells treated with the exosomal miR-155. Moreover, nude-mouse experiment results revealed a promotional effect of the exosomal miR-155 on HCC cell-acquired xenografts. CONCLUSIONS Our study indicated that exosomal-specific miR-155 transfers to adjacent and/or more distant cells and stimulates the proliferation of HCC cells.
Collapse
Affiliation(s)
- Jing-Feng Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China (mainland)
| | - Dong Zhang
- Department of General Surgery, GuanYun People's Hospital, Guanyun, Jiangsu, China (mainland)
| | - Cai-Jie Gao
- Pediatric Department, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ye-Wei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China (mainland)
| | - Qing-Song Dai
- Department of General Surgery, The Affiliated Sir RunRun Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
47
|
Zang S, Zhao S, Gao X, Li Y, Zhong C, Gao J. Restoration of miR-26b expression partially reverses the cisplatin resistance of NSCLC by targeting tafazzin. Onco Targets Ther 2019; 12:7551-7560. [PMID: 31686855 PMCID: PMC6751336 DOI: 10.2147/ott.s212649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/08/2019] [Indexed: 02/03/2023] Open
Abstract
Background Dysregulation of microRNAs has been reported to be responsible for drug resistance of cancers. However, the association between aberrant expression of miR-26b and cisplatin resistance in non-small cell lung cancer (NSCLC) remains unclear. Methods PC9 and A549 were used to establish the cisplatin resistance models on NSCLC. Expression of miR-26b in cisplatin-resistant PC9 and A549 cells (PC9/R and A549/R) was detected by quantitative real-time PCR assays. Drug sensitivity and mitochondrial apoptosis were detected by Cell Counting Kit-8 assay and flow cytometry assay, respectively. The target relationship between miR-26b and tafazzin (TAZ) was validated by dual-luciferase reporter assay. Results Obvious downregulation of miR-26b was observed in PC9/R and A549/R cells. Restoration of miR-26b partially reversed the cisplatin resistance of PC9/R and A549/R cells. Expression of TAZ was increased in PC9/R and A549/R cells compared to the parental PC9 and A549 cells. Results of dual-luciferase reporter assays verified that TAZ was targeted by miR-26b. We showed that restoration of miR-26b expression inhibited the TAZ expression and thus expanded the mitochondrial pathway of apoptosis induced by cisplatin in PC9/R and A549/R cells. Conclusion Restoration of miR-26b expression partially reverses the cisplatin resistance of NSCLC by targeting TAZ. miR-26b/TAZ axis may represent a potential strategy to reverse the cisplatin in NSCLC.
Collapse
Affiliation(s)
- Shuzhi Zang
- Respiratory Ward 1, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, People's Republic of China
| | - Shasha Zhao
- Respiratory Intensive Care Unit, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, People's Republic of China
| | - Xinyuan Gao
- Respiratory Ward 1, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, People's Republic of China
| | - Yunxia Li
- Respiratory Ward 2, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, People's Republic of China
| | - Chunlei Zhong
- Respiratory Ward 2, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, People's Republic of China
| | - Jianlian Gao
- Clinical Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, People's Republic of China
| |
Collapse
|
48
|
MiR-16-5p inhibits breast cancer by reducing AKT3 to restrain NF-κB pathway. Biosci Rep 2019; 39:BSR20191611. [PMID: 31383783 PMCID: PMC6706597 DOI: 10.1042/bsr20191611] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Breast cancer endangers the life of women and has become the major cause of deaths among them. MiRNAs are found to exert a regulatory effect on the migration, proliferation and apoptosis of breast cancer cells. This research aims at investigating the miR-16-5p expression and its effect on the pathogenesis of breast cancer. Methods: Their clinical data were analyzed with qRT-PCR. CCK8, EdU and Transwell was performed to explore the function of miR-16-5p in cell migration and proliferation of breast cancer cells. Dual-luciferase reporter assay, immunohistochemistry and Western blotting were carried out to explore the relation between miR-16-5p and AKT3. Results: It was discovered that miR-16-5p was lowly expressed in breast cancer patients. Meanwhile, breast cancer patients with under-expressed miR-16-5p had a lower survival rate than those with highly expressed miR-16-5p. Furthermore, decreased miR-16-5p in cell and animal models enhanced migration and proliferation of breast cancer cells, stimulated cell cycle and reduced cell apoptosis. Finally, we found miR-16-5p restrained the NF-κB pathway and decreased AKT3 gene, thereby suppressing the breast cancer development. Conclusion: It can be seen that miR-16-5p exhibits a low expression in breast cancer tissues, which can inhibit breast cancer by restraining the NF-κB pathway and elevating reducing AKT3.
Collapse
|
49
|
Zhang L, Ding F. Hsa_circ_0008945 promoted breast cancer progression by targeting miR-338-3p. Onco Targets Ther 2019; 12:6577-6589. [PMID: 31496747 PMCID: PMC6701654 DOI: 10.2147/ott.s213994] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To detect the expression and function of circ_0008945 in breast cancer (BC) and to explore its potential molecular mechanisms in BC tumorigenesis. MATERIALS AND METHODS We measured expression levels of circ_0008945, miR-338-3p and homeobox A3 (HOXA3) in BC tissue specimens and cells using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). We examined the effects of all three genes on BC cell proliferation using Cell Counting Kit-8 (CCK-8) and colony formation assays. We also performed a Transwell assay to assess the migratory and invasive ability of treated BC cells. BC cell apoptosis was assessed using flow cytometric (FCM) analysis; interaction between miR-338-3p and circ_0008945 or HOXA3 was verified by dual-luciferase reporter assay as well as by ribonucleic-acid (RNA) pulldown. Finally, we used an in vivo tumor growth assay to assess the role of circ_0008945 overexpression in BC tumor growth. RESULTS We found that circ_0008945 expression was significantly increased in both BC tissue specimens and cells. This increase was correlated with poor prognosis in BC patients. Knockdown of circ_0008945 inhibited BC cell proliferation, migration and invasion while promoting BC cell apoptosis in vitro. Overexpression of circ_0008945 remarkably promoted BC tumor growth in vivo. Mechanistically, circ_0008945 acted as a miRNA sponge for miR-338-3p and inhibited its expression in BC cells. Moreover, miR-338-3p targeted and inhibited HOXA3. CONCLUSION We found that circ_0008945 acted as a BC oncogene by physically binding miR-338-3p, which further targeted and regulated HOXA3.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pathology, People’s Hospital of Xinchang County, Xinchang Affiliated Hospital of Wenzhou Medical University, Xinchang, Zhejiang, People’s Republic of China
| | - Fengping Ding
- Department of Pathology, People’s Hospital of Xinchang County, Xinchang Affiliated Hospital of Wenzhou Medical University, Xinchang, Zhejiang, People’s Republic of China
| |
Collapse
|
50
|
Jiang M, Shi X, Zhu H, Wei W, Li J. Two GEO MicroRNA Expression Profile Based High-Throughput Screen to Identify MicroRNA-31-3p Regulating Growth of Medullary Thyroid Carcinoma Cell by Targeting RASA2. Med Sci Monit 2019; 25:5170-5180. [PMID: 31298226 PMCID: PMC6642674 DOI: 10.12659/msm.916815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Medullary thyroid carcinoma (MTC), a rare type of thyroid cancer, is a big challenge in clinical treatment. However, the pathogenesis of MTC remains poorly understand. MicroRNAs (miRNAs) were previously demonstrated to be involved in the pathogenesis of MTC, however, the roles of majority of miRNAs in MTC are still undetermined. Material/Methods Two GEO miRNA expression profiles (GSE40807, GSE97070) were downloaded, and the differentially expressed miRNAs (DEmiRNAs) of GSE40807 and GSE97070 were analyzed by bioinformatics methods. Expressions of miRNAs were detected by quantitative real-time polymerase chain reaction; cell proliferation was examined through Cell Counting Kit-8, colony formation and in vivo tumor growth assays; the interaction between miRNA and mRNA was verified by dual-luciferase reporter assay; functional analysis of target genes was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID, www.david.ncifcrf.gov) software. Results Ten miRNAs were identified to be dysregulated in both GSE40807 and GSE97070 datasets, and miR-31-3p showed the highest change fold (Log fold change=−3.460625 in GSE40807 and Log fold change=−0.07084374 in GSE97070). MiR-31-3p expression was significantly downregulated in MTC, and low miR-31-3p expression showed a poor prognosis relative to high miR-31-3p expression (P<0.05). Functionally, miR-31-3p inhibited MTC cell proliferation in vitro and in vivo. Functional analysis also showed that the target genes of miR-31-3p were involved in numerous of biochemical processes and pathways, of which Ras signaling pathway was selected for further study. RASA2, overexpressed in MTC, were negatively regulated by miR-31-3p. In addition, we found that knockdown of RASA2 inhibited MTC cell proliferation. Conclusions Reduced expression level of miR-31-3p might play a key role in the tumorigenesis of MTC by targeting critical pathways, especially Ras signaling pathway.
Collapse
Affiliation(s)
- Mei Jiang
- Department of Radiology, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Xin Shi
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjian, China (mainland)
| | - Hua Zhu
- Department of Mental Health, Shenzhen Futian Hospital for Chronic Diseases, Shenzhen, Guangdong, China (mainland)
| | - Wu Wei
- Department of Emergency, Dongying District People's Hospital, Dongying, Shandong, China (mainland)
| | - Jinyan Li
- Department of Radiology, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, China (mainland)
| |
Collapse
|