1
|
Ma YHE, Putta AR, Chan CHH, Vidman SR, Monje P, Plant GW. Efficacy of Deferoxamine Mesylate in Serum and Serum-Free Media: Adult Ventral Root Schwann Cell Survival Following Hydrogen Peroxide-Induced Cell Death. Cells 2025; 14:461. [PMID: 40136710 PMCID: PMC11940984 DOI: 10.3390/cells14060461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Schwann cell (SC) transplantation shows promise in treating spinal cord injury as a pro-regenerative agent to allow host endogenous neurons to bridge over the lesion. However, SC transplants face significant oxidative stress facilitated by ROS in the lesion, leading to poor survival. deferoxamine mesylate (DFO) is a neuroprotective agent shown to reduce H2O2-induced cell death in serum-containing conditions. Here we show that DFO is not necessary to induce neuroprotection under serum-free conditions by cell survival quantification and phenotypic analysis via immunohistochemistry, Hif1α and collagen IV quantification via whole cell corrected total cell fluorescence, and cell death transcript changes via RT-qPCR. Our results indicate survival of SC regardless of DFO pretreatment in serum-free conditions and an increased survival facilitated by DFO in serum-containing conditions. Furthermore, our results showed strong nuclear expression of Hif1α in serum-free conditions regardless of DFO pre-treatment and a nuclear expression of Hif1α in DFO-treated SCs in serum conditions. Transcriptomic analysis reveals upregulation of autophagy transcripts in SCs grown in serum-free media relative to SCs in serum conditions, with and without DFO and H2O2. Thus, indicating a pro-repair and regenerative state of the SCs in serum-free conditions. Overall, results indicate the protectiveness of CDM in enhancing SC survival against ROS-induced cell death in vitro.
Collapse
Affiliation(s)
- Yee Hang Ethan Ma
- Department of Neuroscience and Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA;
| | - Abhinay R. Putta
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (A.R.P.); (C.H.H.C.)
| | - Cyrus H. H. Chan
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (A.R.P.); (C.H.H.C.)
| | - Stephen R. Vidman
- Department of Neuroscience and Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA;
| | - Paula Monje
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40506, USA;
| | - Giles W. Plant
- Department of Neuroscience and Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
2
|
Czétány P, Balló A, Márk L, Török A, Szántó Á, Máté G. An Alternative Application of Magnetic-Activated Cell Sorting: CD45 and CD235a Based Purification of Semen and Testicular Tissue Samples. Int J Mol Sci 2024; 25:3627. [PMID: 38612438 PMCID: PMC11011735 DOI: 10.3390/ijms25073627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Magnetic activated cell sorting (MACS) is a well-known sperm selection technique, which is able to remove apoptotic spermatozoa from semen samples using the classic annexinV based method. Leukocytes and erythrocytes in semen samples or in testicular tissue processed for in vitro fertilization (IVF) could exert detrimental effects on sperm. In the current study, we rethought the aforementioned technique and used magnetic microbeads conjugated with anti-CD45/CD235a antibodies to eliminate contaminating leukocytes and erythrocytes from leukocytospermic semen samples and testicular tissue samples gained via testicular sperm extraction (TESE). With this technique, a 15.7- and a 30.8-fold reduction could be achieved in the ratio of leukocytes in semen and in the number of erythrocytes in TESE samples, respectively. Our results show that MACS is a method worth to reconsider, with more potential alternative applications. Investigations to find molecules labeling high-quality sperm population and the development of positive selection procedures based on these might be a direction of future research.
Collapse
Affiliation(s)
- Péter Czétány
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (A.B.); (G.M.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - András Balló
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (A.B.); (G.M.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
- Pannon Reproduction Institute, 8300 Tapolca, Hungary;
| | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary;
| | - Árpád Szántó
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (A.B.); (G.M.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Gábor Máté
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (A.B.); (G.M.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
- Pannon Reproduction Institute, 8300 Tapolca, Hungary;
| |
Collapse
|
3
|
Aparicio GI, Monje PV. Human Schwann Cells in vitro I. Nerve Tissue Processing, Pre-degeneration, Isolation, and Culturing of Primary Cells. Bio Protoc 2023; 13:e4748. [PMID: 38023787 PMCID: PMC10665635 DOI: 10.21769/bioprotoc.4748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 12/01/2023] Open
Abstract
This paper presents versatile protocols to prepare primary human Schwann cell (hSC) cultures from mature peripheral nervous system tissues, including fascicles from long spinal nerves, nerve roots, and ganglia. This protocol starts with a description of nerve tissue procurement, handling, and dissection to obtain tissue sections suitable for hSC isolation and culturing. A description follows on how to disintegrate the nerve tissue by delayed enzymatic dissociation, plate the initial cell suspensions on a two-dimensional substrate, and culture the primary hSCs. Each section contains detailed procedures, technical notes, and background information to aid investigators in understanding and managing all steps. Some general recommendations are made to optimize the recovery, growth, and purity of the hSC cultures irrespective of the tissue source. These recommendations include: (1) pre-culturing epineurium- and perineurium-free nerve fascicles under conditions of adherence or suspension depending on the size of the explants to facilitate the release of proliferative, in vitro-activated hSCs; (2) plating the initial cell suspensions as individual droplets on a laminin-coated substrate to expedite cell adhesion and thereby increase the recovery of viable cells; and (3) culturing the fascicles (pre-degeneration step) and the cells derived therefrom in mitogen- and serum-supplemented medium to accelerate hSC dedifferentiation and promote mitogenesis before and after tissue dissociation, respectively. The hSC cultures obtained as suggested in this protocol are suitable for assorted basic and translational research applications. With the appropriate adaptations, donor-relevant hSC cultures can be prepared using fresh or postmortem tissue biospecimens of a wide range of types and sizes.
Collapse
Affiliation(s)
- Gabriela I. Aparicio
- Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Paula V. Monje
- Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Monje PV. Human Schwann Cells in vitro III. Analytical Methods and a Practical Approach for Quality Control. Bio Protoc 2023; 13:e4840. [PMID: 38034849 PMCID: PMC10682955 DOI: 10.21769/bioprotoc.4840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 12/02/2023] Open
Abstract
This paper introduces simple analytical methods and bioassays to promptly assess the identity and function of in vitro cultured human Schwann cells (hSCs). A systematic approach is proposed to unequivocally discriminate hSCs from other glial cells, non-glial cells, and non-human SCs (authentication), identify hSCs at different stages of differentiation, and determine whether individual hSCs are proliferative or senescent. Examples of how to use distinct cell-based approaches for quality control and routine troubleshooting are provided to confirm the constitution (identity, purity, and heterogeneity) and potency (bioactivity) of hSC cultures from multiple sources. The bioassays are valuable for rapidly gauging the responses of hSCs to mitogenic and differentiating factors and ascertaining the cells' basic properties before performing co-culture or cell grafting studies. The assays are image based and use adherent hSCs established in monoculture to simplify the experimental setup and interpretation of results. Finally, all sections contain thorough background information, notes, and references to facilitate decision making, data interpretation, and ad hoc method development for diverse applications.
Collapse
Affiliation(s)
- Paula V. Monje
- Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Monje PV. Human Schwann Cells in vitro II. Passaging, Purification, Banking, and Labeling of Established Cultures. Bio Protoc 2023; 13:e4882. [PMID: 38023793 PMCID: PMC10665714 DOI: 10.21769/bioprotoc.4882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
This manuscript describes step-by-step procedures to establish and manage fresh and cryopreserved cultures of nerve-derived human Schwann cells (hSCs) at the desired scale. Adaptable protocols are provided to propagate hSC cultures through serial passaging and perform routine manipulations such as enzymatic dissociation, purification, cryogenic preservation, live-cell labeling, and gene delivery. Expanded hSCs cultures are metabolically active, proliferative, and phenotypically stable for at least three consecutive passages. Cell yields are expected to be variable as determined by the rate of growth of individual batches and the rounds of subculture. The purity, however, can be maintained high at >95% hSC regardless of passage. The cells obtained in this manner are suitable for various applications, including small drug screens, in vitro modeling of neurodevelopmental processes, and cell transplantation. One caveat of this protocol is that continued expansion of same-batch hSC populations is eventually restricted due to senescence-linked growth arrest.
Collapse
Affiliation(s)
- Paula V. Monje
- Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
6
|
Starzonek C, Mhamdi-Ghodbani M, Henning S, Bender M, Degenhardt S, Chen IP, Said M, Greinert R, Volkmer B. Enrichment of Human Dermal Stem Cells from Primary Cell Cultures through the Elimination of Fibroblasts. Cells 2023; 12:cells12060949. [PMID: 36980290 PMCID: PMC10047019 DOI: 10.3390/cells12060949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Dermal stem cells (DSCs), which are progenitor cells of melanocytes, are isolated from human foreskin and cultivated as mixed cultures containing both DSCs and fibroblasts in varying proportions. These contaminating fibroblasts may have an impact on the results of experimental studies and are a serious limitation for certain applications. The aim of the present study was to purify or enrich DSCs-an indispensable step towards future investigations. Applying different methods, we demonstrated that highly enriched DSCs with a good recovery rate can be obtained through positive selection with MACS® immunomagnetic cell sorting. These DSCs remain vital and proliferate constantly in culture, maintaining a high level of purity after enrichment. Other approaches such as treatment with Geneticin or selective detachment were not suitable to purify DSC-fibroblast co-cultures. Overall, enriched DSCs represent a novel and unique model to study the effects of UV radiation on the differentiation of DSCs into melanocytes and their potential relevance in the genesis of malignant melanoma.
Collapse
Affiliation(s)
- Christin Starzonek
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Kliniken Stade-Buxtehude, 21614 Buxtehude, Germany
| | - Mouna Mhamdi-Ghodbani
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Kliniken Stade-Buxtehude, 21614 Buxtehude, Germany
| | - Stefan Henning
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Kliniken Stade-Buxtehude, 21614 Buxtehude, Germany
| | - Marc Bender
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Kliniken Stade-Buxtehude, 21614 Buxtehude, Germany
| | - Sarah Degenhardt
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Kliniken Stade-Buxtehude, 21614 Buxtehude, Germany
| | - I-Peng Chen
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Kliniken Stade-Buxtehude, 21614 Buxtehude, Germany
| | | | - Rüdiger Greinert
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Kliniken Stade-Buxtehude, 21614 Buxtehude, Germany
| | - Beate Volkmer
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Kliniken Stade-Buxtehude, 21614 Buxtehude, Germany
| |
Collapse
|
7
|
Magnetic bead-based separation of sperm cells from semen-vaginal fluid mixed stains using an anti-ACRBP antibody. Int J Legal Med 2023; 137:511-518. [PMID: 36418581 DOI: 10.1007/s00414-022-02917-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Forensic DNA analysis of semen-vaginal fluid mixed stains is essential and necessary in sexual assault cases. Here, we used a magnetic bead conjugated acrosin binding protein (ACRBP) antibody to separate and enrich sperm cells from mixed stains. Previously, western blotting indicated that ACRBP was specifically expressed in sperm cells, but not in female blood and epithelial cells, while immunofluorescence data showed ACRBP was localized to the acrosome in sperm cells. In our study, sperm were separated from mixed samples at three sperm cell/female buccal epithelial cell ratios (103:103; 103:104; and 103:105) using a magnetic bead conjugated ACRBP antibody. Subsequently, 23 autosomal short tandem repeat (STR) loci were amplified using the Huaxia™ Platinum PCR Amplification System and genotyped using capillary electrophoresis. The genotyping success rate for STR loci was 90% when the sperm to female buccal epithelial cell ratio was > 1:100 in mixed samples. Our results suggest that the magnetic bead conjugated ACRBP antibody is effective for isolating sperm cells in sexual assault cases.
Collapse
|
8
|
Monje PV, Bacallao K, Aparicio GI, Lalwani A. Heregulin Activity Assays for Residual Testing of Cell Therapy Products. Biol Proced Online 2021; 23:22. [PMID: 34772336 PMCID: PMC8590303 DOI: 10.1186/s12575-021-00157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/16/2021] [Indexed: 11/15/2022] Open
Abstract
Background Heregulin is a ligand for the protooncogene product ErbB/HER that acts as a key mitogenic factor for human Schwann cells (hSCs). Heregulin is required for sustained hSC growth in vitro but must be thoroughly removed before cell collection for transplantation due to potential safety concerns. The goal of this study was to develop simple cell-based assays to assess the effectiveness of heregulin addition to and removal from aliquots of hSC culture medium. These bioassays were based on the capacity of a β1-heregulin peptide to elicit ErbB/HER receptor signaling in adherent ErbB2+/ErbB3+ cells. Results Western blotting was used to measure the activity of three different β1-heregulin/ErbB-activated kinases (ErbB3/HER3, ERK/MAPK and Akt/PKB) using phospho-specific antibodies against key activating residues. The duration, dose-dependency and specificity of β1-heregulin-initiated kinase phosphorylation were investigated, and controls were implemented for assay optimization and reproducibility to detect β1-heregulin activity in the nanomolar range. Results from these assays showed that the culture medium from transplantable hSCs elicited no detectable activation of the aforementioned kinases in independent rounds of testing, indicating that the implemented measures can ensure that the final hSC product is devoid of bioactive β1-heregulin molecules prior to transplantation. Conclusions These assays may be valuable to detect impurities such as undefined soluble factors or factors for which other biochemical or biological assays are not yet available. Our workflow can be modified as necessary to determine the presence of ErbB/HER, ERK, and Akt activators other than β1-heregulin using native samples, such as fresh isolates from cell- or tissue extracts in addition to culture medium.
Collapse
Affiliation(s)
- Paula V Monje
- Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Ketty Bacallao
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Gabriela I Aparicio
- Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Instituto de Investigaciones Biotecnológicas "Rodolfo A. Ugalde", Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBio-UNSAM-CONICET), Buenos Aires, Argentina
| | - Anil Lalwani
- Cell and Gene Therapy CMC and Regulatory Advisor, Boulder, CO, USA
| |
Collapse
|
9
|
Peng K, Sant D, Andersen N, Silvera R, Camarena V, Piñero G, Graham R, Khan A, Xu XM, Wang G, Monje PV. Magnetic separation of peripheral nerve-resident cells underscores key molecular features of human Schwann cells and fibroblasts: an immunochemical and transcriptomics approach. Sci Rep 2020; 10:18433. [PMID: 33116158 PMCID: PMC7595160 DOI: 10.1038/s41598-020-74128-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Nerve-derived human Schwann cell (SC) cultures are irreplaceable models for basic and translational research but their use can be limited due to the risk of fibroblast overgrowth. Fibroblasts are an ill-defined population consisting of highly proliferative cells that, contrary to human SCs, do not undergo senescence in culture. We initiated this study by performing an exhaustive immunological and functional characterization of adult nerve-derived human SCs and fibroblasts to reveal their properties and optimize a protocol of magnetic-activated cell sorting (MACS) to separate them effectively both as viable and biologically competent cells. We next used immunofluorescence microscopy imaging, flow cytometry analysis and next generation RNA sequencing (RNA-seq) to unambiguously characterize the post-MACS cell products. High resolution transcriptome profiling revealed the identity of key lineage-specific transcripts and the clearly distinct neural crest and mesenchymal origin of human SCs and fibroblasts, respectively. Our analysis underscored a progenitor- or stem cell-like molecular phenotype in SCs and fibroblasts and the heterogeneity of the fibroblast populations. In addition, pathway analysis of RNA-seq data highlighted putative bidirectional networks of fibroblast-to-SC signaling that predict a complementary, yet seemingly independent contribution of SCs and fibroblasts to nerve regeneration. In sum, combining MACS with immunochemical and transcriptomics approaches provides an ideal workflow to exhaustively assess the identity, the stage of differentiation and functional features of highly purified cells from human peripheral nerve tissues.
Collapse
Affiliation(s)
- Kaiwen Peng
- Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - David Sant
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- University of Utah, Salt Lake City, UT, USA
| | - Natalia Andersen
- The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Risset Silvera
- The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vladimir Camarena
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gonzalo Piñero
- The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Facultad de Farmacia Y Bioquímica, Departamento de Química Biológica, and CONICET, Instituto de Química Y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Regina Graham
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aisha Khan
- The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xiao-Ming Xu
- Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gaofeng Wang
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paula V Monje
- Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
10
|
Rai N, Singh AK, Singh SK, Gaurishankar B, Kamble SC, Mishra P, Kotiya D, Barik S, Atri N, Gautam V. Recent technological advancements in stem cell research for targeted therapeutics. Drug Deliv Transl Res 2020; 10:1147-1169. [DOI: 10.1007/s13346-020-00766-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Monje PV. The properties of human Schwann cells: Lessons from in vitro culture and transplantation studies. Glia 2020; 68:797-810. [PMID: 32027424 DOI: 10.1002/glia.23793] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 11/10/2022]
Abstract
Human Schwann cells (hSCs) can be isolated directly from peripheral nerve and cultured using methods similar to those used for SCs from other species. Yet, important interspecies differences are revealed when the primary or expanded hSCs are compared to their nonhuman counterparts. This review addresses the special properties of nerve-derived hSCs that have resulted to date from both in vitro studies and in vivo research on cell transplantation in animal models and human subjects. A consensus has yet to emerge about the essential attributes of cultured normal hSCs. Thus, an emphasis is placed on the importance of validating hSC cultures by means of purity, identity, and biological activity to reliably use them as in vitro models of the SC phenotype and cell therapy products for injury repair. Combining traditional immunological methods, high-resolution omics approaches, and assorted cell-based assays is so far the best approach to unequivocally identify hSC populations obtained by direct isolation or derivation from stem cells. Special considerations are required to understand and manage the variability and heterogeneity proper of donor batches, as well as to evaluate risk factors. This is particularly important if the intended use of the hSCs is implantation in the human body, diagnosis of disease, or drug testing aimed at targeting any aspect of SC function in human patients. To conclude, in view of their unique properties, new concepts and methods are needed to better understand the biology of hSCs and exploit their full potential in basic science and regenerative medicine.
Collapse
Affiliation(s)
- Paula V Monje
- The Department of Neurological Surgery, Indiana University, Indianapolis, Indiana
| |
Collapse
|
12
|
Monje PV, Sant D, Wang G. Phenotypic and Functional Characteristics of Human Schwann Cells as Revealed by Cell-Based Assays and RNA-SEQ. Mol Neurobiol 2018; 55:6637-6660. [PMID: 29327207 DOI: 10.1007/s12035-017-0837-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
This study comprehensively addresses the phenotype, function, and whole transcriptome of primary human and rodent Schwann cells (SCs) and highlights key species-specific features beyond the expected donor variability that account for the differential ability of human SCs to proliferate, differentiate, and interact with axons in vitro. Contrary to rat SCs, human SCs were insensitive to mitogenic factors other than neuregulin and presented phenotypic variants at various stages of differentiation, along with a mixture of proliferating and senescent cells, under optimal growth-promoting conditions. The responses of human SCs to cAMP-induced differentiation featured morphological changes and cell cycle exit without a concomitant increase in myelin-related proteins and lipids. Human SCs efficiently extended processes along those of other SCs (human or rat) but failed to do so when placed in co-culture with sensory neurons under conditions supportive of myelination. Indeed, axon contact-dependent human SC alignment, proliferation, and differentiation were not observed and could not be overcome by growth factor supplementation. Strikingly, RNA-seq data revealed that ~ 44 of the transcriptome contained differentially expressed genes in human and rat SCs. A bioinformatics approach further highlighted that representative SC-specific transcripts encoding myelin-related and axon growth-promoting proteins were significantly affected and that a deficient expression of key transducers of cAMP and adhesion signaling explained the fairly limited potential of human SCs to differentiate and respond to axonal cues. These results confirmed the significance of combining traditional bioassays and high-resolution genomics methods to characterize human SCs and identify genes predictive of cell function and therapeutic value.
Collapse
Affiliation(s)
- Paula V Monje
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| | - David Sant
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| |
Collapse
|