1
|
Skruber K, Sept D, Mullins RD. Membrane-associated polymerases deliver most of the actin subunits to a lamellipodial network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645090. [PMID: 40196521 PMCID: PMC11974892 DOI: 10.1101/2025.03.24.645090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Actin filaments are two-stranded protein polymers that form the basic structural unit of the eukaryotic actin cytoskeleton. While filaments assembled from purified actin in vitro elongate when soluble monomers bind to free filament ends, in cells the mechanism of filament elongation is less clear. Most monomeric actin in the cytoplasm is bound to the accessory protein profilin, and many regulators of filament assembly recruit actin-profilin complexes to membrane surfaces where they locally accelerate filament elongation. Employing quantitative live-cell imaging of actin-profilin fusion proteins and biochemically defined mutants of the branched actin regulator, WAVE1, we find that only ~25% of the actin in leading-edge lamellipodial networks enters directly from solution, while the majority enters via membrane-associated polymerases.
Collapse
Affiliation(s)
- Kristen Skruber
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, UCSF School of Medicine, San Francisco, CA 94143
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - R. Dyche Mullins
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, UCSF School of Medicine, San Francisco, CA 94143
| |
Collapse
|
2
|
He Y, Faulkner BM, Hyun E, Stains CI. Split-Small GTPase Reassembly as a Method to Control Cellular Signaling with User-Defined Inputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635345. [PMID: 39975372 PMCID: PMC11838316 DOI: 10.1101/2025.01.28.635345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Small GTPases are critical signaling enzymes that control diverse cellular functions such as cell migration and proliferation. However, dissecting the roles of these enzymes in cellular signaling is hindered by the lack of a plug-and-play methodology for the direct, temporal control of small GTPase activity using user-defined inputs. Herein, we present a method that pairs split-GTPases with user-defined chemical inducer of dimerization (CID) systems in a plug-and-play manner to directly control small GTPase signaling in living cells. The modularity of split-small GTPase systems allows for the selection of CIDs with minimal off-target effects on the pathway being studied. Our results highlight the ability to obtain consistent pathway activation with varying CID systems for direct control of MAPK signaling, filopodia formation, and cell retraction. Thus, split-small GTPase systems provide a customizable platform for development of temporally gated systems for directly controlling cellular signaling with user-defined inputs.
Collapse
Affiliation(s)
- Yuchen He
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Emily Hyun
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Cliff I. Stains
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
- Virginia Drug Discovery Consortium, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
Hiepen C, Benamar M, Barrasa-Fano J, Condor M, Ilhan M, Münch J, Hastar N, Kerkhoff Y, Harms GS, Mielke T, Koenig B, Block S, Rocks O, Abdelilah-Seyfried S, Van Oosterwyck H, Knaus P. Endothelial tip-cell position, filopodia formation and biomechanics require BMPR2 expression and signaling. Commun Biol 2025; 8:21. [PMID: 39779836 PMCID: PMC11711618 DOI: 10.1038/s42003-024-07431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs). Targeting of Bmpr2 reduced sprouting angiogenesis in zebrafish and BMPR2-deficient human ECs formed fewer filopodia, affecting cell migration and actomyosin localization. Spheroid assays revealed a reduced sprouting of BMPR2-deficient ECs in fibrin gels. Even more strikingly, in mosaic spheroids, BMPR2-deficient ECs failed to acquire tip-cell positions. Yet, 3D traction force microscopy revealed that these distinct cell behaviors of BMPR2-deficient tip cells cannot be explained by differences in force-induced matrix deformations, even though these cells adopted distinct cone-shaped morphologies. Notably, BMPR2 positively regulates local CDC42 activity at the plasma membrane to promote filopodia formation. Our findings reveal that BMPR2 functions as a nexus integrating biochemical and biomechanical processes crucial for TCs during angiogenesis.
Collapse
Affiliation(s)
- Christian Hiepen
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
- Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665, Recklinghausen, Germany.
| | - Mounir Benamar
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Jorge Barrasa-Fano
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
| | - Mar Condor
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
| | - Mustafa Ilhan
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
- Berlin School of Integrative Oncology, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Juliane Münch
- Universität Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Nurcan Hastar
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Yannic Kerkhoff
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Gregory S Harms
- Universitätsmedizin, Johannes Gutenberg-Universität Mainz, Cell Biology Unit, Imaging Core Facility and the Research Center for Immune Intervention, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Thorsten Mielke
- Max-Planck-Institute for Molecular Genetics, Microscopy & Cryo-Electron Microscopy, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Benjamin Koenig
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Stephan Block
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Oliver Rocks
- Charité - Universitätsmedizin Berlin, Systemic Cell Dynamics, Charitéplatz 1, 10117, Berlin, Germany
| | - Salim Abdelilah-Seyfried
- Universität Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Hans Van Oosterwyck
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
- KU Leuven, Prometheus Division of Skeletal Tissue Engineering, Leuven, Belgium
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
| |
Collapse
|
4
|
Budi HS, Anitasari S, Shen YK, Yamada S. Cytoskeletal regulation on polycaprolactone/graphene porous scaffolds for bone tissue engineering. Sci Rep 2024; 14:29062. [PMID: 39580502 PMCID: PMC11585562 DOI: 10.1038/s41598-024-80467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024] Open
Abstract
Understanding cellular mechanics requires evaluating the mechanical and chemical cues that regulate the actin cytoskeleton, particularly filopodia and lamellipodia. Therefore, this study aims to investigate the effect of scaffolds properties on cell migration. The results showed that scaffolds toughness, strain, and strength played a key role in promoting cell movement by stimulating the dynamic formation of filopodia and lamellipodia. The test sample containing 3 wt% G significantly enhanced toughness, yield strength, and strain, leading to increase cell motility as well as enhanced development of longer filopodia and larger lamellipodia in MG-63 cells. These results provide valuable insights for optimizing scaffolds to promote bone tissue regeneration.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Silvia Anitasari
- Department of Dental Material and Devices, Dentistry Program, Faculty of Medicine, Universitas Mulawarman, Samarinda, 75119, Indonesia.
- Department Medical Microbiology, Medical Program, Faculty of Medicine, Universitas Mulawarman, Samarinda, 75119, Indonesia.
| | - Yung-Kang Shen
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Shuntaro Yamada
- Center of Translational Oral Research, University of Bergen, Bergen, 5262, Norway
| |
Collapse
|
5
|
Fitz GN, Tyska MJ. Molecular counting of myosin force generators in growing filopodia. J Biol Chem 2024:107934. [PMID: 39476958 DOI: 10.1016/j.jbc.2024.107934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/07/2024] [Accepted: 10/19/2024] [Indexed: 11/06/2024] Open
Abstract
Animal cells build actin-based surface protrusions to enable diverse biological activities, ranging from cell motility to mechanosensation to solute uptake. Long-standing models of protrusion growth suggest that actin filament polymerization provides the primary mechanical force for "pushing" the plasma membrane outward at the distal tip. Expanding on these actin-centric models, our recent studies used a chemically inducible system to establish that plasma membrane-bound myosin motors, which are abundant in protrusions and accumulate at the distal tips, can also power robust filopodial growth. How protrusion resident myosins coordinate with actin polymerization to drive elongation remains unclear, in part because the number of force generators and thus, the scale of their mechanical contributions remain undefined. To address this gap, we leveraged the SunTag system to count membrane-bound myosin motors in actively growing filopodia. Using this approach, we found that the number of myosins is log-normally distributed with a mean of 12.0 ± 2.5 motors [GeoMean ± GeoSD] per filopodium. Together with unitary force values and duty ratio estimates derived from biophysical studies for the motor used in these experiments, we calculate that a distal tip population of myosins could generate a time averaged force of ∼tens of pN to elongate filopodia. This range is comparable to the expected force production of actin polymerization in this system, a point that necessitates revision of popular physical models for protrusion growth.
Collapse
Affiliation(s)
- Gillian N Fitz
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 528 Engineering and Science Building, 2414 Highland Ave, Nashville, TN 37232
| |
Collapse
|
6
|
He Y, Faulkner BM, Roberti MA, Bassford DK, Stains CI. Standardized Parts for Activation of Small GTPase Signaling in Living Cells. Angew Chem Int Ed Engl 2024; 63:e202403499. [PMID: 39058298 DOI: 10.1002/anie.202403499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/22/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Small GTPases comprise a superfamily of over 167 proteins in the human genome and are critical regulators of a variety of pathways including cell migration and proliferation. Despite the importance of these proteins in cell signaling, a standardized approach for controlling small GTPase activation within living cells is lacking. Herein, we report a split-protein-based approach to directly activate small GTPase signaling in living cells. Importantly, our fragmentation site can be applied across the small GTPase superfamily. We highlight the utility of these standardized parts by demonstrating the ability to directly modulate the activity of four different small GTPases with user-defined inputs, providing the first plug and play system for direct activation of small GTPases in living cells.
Collapse
Affiliation(s)
- Yuchen He
- Department of Chemistry, University of Virginia, Charlottsville, VA, 22904, USA
| | - Benjamin M Faulkner
- Department of Chemistry, University of Virginia, Charlottsville, VA, 22904, USA
| | - Meaghan A Roberti
- Department of Chemistry, University of Virginia, Charlottsville, VA, 22904, USA
| | - Dana K Bassford
- Department of Chemistry, University of Virginia, Charlottsville, VA, 22904, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, Charlottsville, VA, 22904, USA
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 22908, USA
- Virginia Drug Discovery Consortium, Blacksburg, VA, 24061, USA
| |
Collapse
|
7
|
Fitz GN, Tyska MJ. Molecular counting of myosin force generators in growing filopodia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.593924. [PMID: 38798618 PMCID: PMC11118519 DOI: 10.1101/2024.05.14.593924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Animal cells build actin-based surface protrusions to enable biological activities ranging from cell motility to mechanosensation to solute uptake. Long-standing models of protrusion growth suggest that actin filament polymerization provides the primary mechanical force for "pushing" the plasma membrane outward at the distal tip. Expanding on these actin-centric models, our recent studies used a chemically inducible system to establish that plasma membrane-bound myosin motors, which are abundant in protrusions and accumulate at the distal tips, can also power robust filopodial growth. How protrusion resident myosins coordinate with actin polymerization to drive elongation remains unclear, in part because the number of force generators and thus, the scale of their mechanical contributions remain undefined. To address this gap, we leveraged the SunTag system to count membrane-bound myosin motors in actively growing filopodia. Using this approach, we found that the number of myosins is log-normally distributed with a mean of 12.0 ± 2.5 motors [GeoMean ± GeoSD] per filopodium. Together with unitary force values and duty ratio estimates derived from biophysical studies for the motor used in these experiments, we calculate that a distal tip population of myosins could generate a time averaged force of ∼tens of pN to elongate filopodia. This range is comparable to the expected force production of actin polymerization in this system, a point that necessitates revision of popular physical models for protrusion growth. SIGNIFICANCE STATEMENT This study describes the results of in-cell molecular counting experiments to define the number of myosin motors that are mechanically active in growing filopodia. This data should be used to constrain future physical models of the formation of actin-based protrusions.
Collapse
|
8
|
Eddington C, Schwartz JK, Titus MA. filoVision - using deep learning and tip markers to automate filopodia analysis. J Cell Sci 2024; 137:jcs261274. [PMID: 38264939 PMCID: PMC10941656 DOI: 10.1242/jcs.261274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Filopodia are slender, actin-filled membrane projections used by various cell types for environment exploration. Analyzing filopodia often involves visualizing them using actin, filopodia tip or membrane markers. Due to the diversity of cell types that extend filopodia, from amoeboid to mammalian, it can be challenging for some to find a reliable filopodia analysis workflow suited for their cell type and preferred visualization method. The lack of an automated workflow capable of analyzing amoeboid filopodia with only a filopodia tip label prompted the development of filoVision. filoVision is an adaptable deep learning platform featuring the tools filoTips and filoSkeleton. filoTips labels filopodia tips and the cytosol using a single tip marker, allowing information extraction without actin or membrane markers. In contrast, filoSkeleton combines tip marker signals with actin labeling for a more comprehensive analysis of filopodia shafts in addition to tip protein analysis. The ZeroCostDL4Mic deep learning framework facilitates accessibility and customization for different datasets and cell types, making filoVision a flexible tool for automated analysis of tip-marked filopodia across various cell types and user data.
Collapse
Affiliation(s)
- Casey Eddington
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jessica K. Schwartz
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Margaret A. Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
He Y, Faulkner BM, Roberti MA, Bassford DK, Stains CI. Standardized Parts for Activation of Small GTPase Signaling in Living Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574079. [PMID: 38260610 PMCID: PMC10802329 DOI: 10.1101/2024.01.03.574079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Small GTPases comprise a superfamily of over 167 proteins in the human genome and are critical regulators of a variety of pathways including cell migration and proliferation. Despite the importance of these proteins in cell signaling, a standardized approach for controlling small GTPase activation within living cells is lacking. Herein, we report a split-protein-based approach to directly activate small GTPase signaling in living cells. Importantly, our fragmentation site can be applied across the small GTPase superfamily. We highlight the utility of these standardized parts by demonstrating the ability to directly modulate the activity of four different small GTPases with user-defined inputs, providing a plug and play system for direct activation of small GTPases in living cells.
Collapse
Affiliation(s)
- Yuchen He
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Meaghan A. Roberti
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Dana K. Bassford
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Cliff I. Stains
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
- Virginia Drug Discovery Consortium, Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Clements R, Smith T, Cowart L, Zhumi J, Sherrod A, Cahill A, Hunter GL. Myosin XV is a negative regulator of signaling filopodia during long-range lateral inhibition. Dev Biol 2024; 505:110-121. [PMID: 37956923 PMCID: PMC10767839 DOI: 10.1016/j.ydbio.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
The self-organization of cells during development is essential for the formation of healthy tissues and requires the coordination of cell activities at local scales. Cytonemes, or signaling filopodia, are dynamic actin-based cellular protrusions that allow cells to engage in contact mediated signaling at a distance. While signaling filopodia have been shown to support several signaling paradigms during development, less is understood about how these protrusions are regulated. We investigated the role of the plus-end directed, unconventional MyTH4-FERM myosins in regulating signaling filopodia during sensory bristle patterning on the dorsal thorax of the fruit fly Drosophila melanogaster. We found that Myosin XV is required for regulating signaling filopodia dynamics and, as a consequence, lateral inhibition more broadly throughout the patterning epithelium. We found that Myosin XV is required for limiting the length and number of signaling filopodia generated by bristle precursor cells. Cells with additional and longer signaling filopodia due to loss of Myosin XV are not signaling competent, due to altered levels of Delta ligand and Notch receptor along their lengths. We conclude that Myosin XV acts to negatively regulate signaling filopodia, as well as promote the ability of signaling filopodia to engage in long-range Notch signaling. Since Myosin XV isoforms are present across several vertebrate and invertebrate systems, this may have significance for other long-range signaling mechanisms.
Collapse
Affiliation(s)
- Rhiannon Clements
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Tyler Smith
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Luke Cowart
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Jennifer Zhumi
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Alan Sherrod
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Aidan Cahill
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Ginger L Hunter
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States.
| |
Collapse
|
11
|
Wu M, Ge Y, Wang E, Liao Q, Ren Z, Yu Y, Zhu G, Liu C, Zhang M, Su H, Shen H, Chen Y, Wang L, Wang Y, Li M, Bian Z, Chai J, Ye RD, Lu J. Enhancement of efferocytosis through biased FPR2 signaling attenuates intestinal inflammation. EMBO Mol Med 2023; 15:e17815. [PMID: 37994307 PMCID: PMC10701612 DOI: 10.15252/emmm.202317815] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023] Open
Abstract
Efficient clearance of dying cells (efferocytosis) is an evolutionarily conserved process for tissue homeostasis. Genetic enhancement of efferocytosis exhibits therapeutic potential for inflammation resolution and tissue repair. However, pharmacological approaches to enhance efferocytosis remain sparse due to a lack of targets for modulation. Here, we report the identification of columbamine (COL) which enhances macrophage-mediated efferocytosis and attenuates intestinal inflammation in a murine colitis model. COL enhances efferocytosis by promoting LC3-associated phagocytosis (LAP), a non-canonical form of autophagy. Transcriptome analysis and pharmacological characterization revealed that COL is a biased agonist that occupies a part of the ligand binding pocket of formyl peptide receptor 2 (FPR2), a G-protein coupled receptor involved in inflammation regulation. Genetic ablation of the Fpr2 gene or treatment with an FPR2 antagonist abolishes COL-induced efferocytosis, anti-colitis activity and LAP. Taken together, our study identifies FPR2 as a potential target for modulating LC3-associated efferocytosis to alleviate intestinal inflammation and highlights the therapeutic value of COL, a natural and biased agonist of FPR2, in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Ming‐Yue Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital)Third Military Medical University (Army Medical University)ChongqingChina
| | - Yun‐Jun Ge
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
- Department of Basic Medical Science, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Er‐Jin Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
| | - Qi‐Wen Liao
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Zheng‐Yu Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
| | - Yang Yu
- Engineering Research Center of Cell and Therapeutic Antibody Medicine, Ministry of Education, School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Guoyuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyMacau SARChina
| | - Chun‐Ping Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchUniversity of MacauMacau SARChina
| | - Meng‐Ni Zhang
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital)Third Military Medical University (Army Medical University)ChongqingChina
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacau SARChina
| | - Ye Chen
- Integrative Microecology Center, Department of Gastroenterology, Shenzhen HospitalSouthern Medical UniversityShenzhen, GuangzhouChina
| | - Lei Wang
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Yi‐Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
| | - Min Li
- School of Chinese MedicineHong Kong Baptist UniversityHongkong SARChina
| | - Zhaoxiang Bian
- School of Chinese MedicineHong Kong Baptist UniversityHongkong SARChina
| | - Jin Chai
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital)Third Military Medical University (Army Medical University)ChongqingChina
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
- The Second Affiliated Hospital, School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Jia‐Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchUniversity of MacauMacau SARChina
| |
Collapse
|
12
|
Wang Y, Troughton LD, Xu F, Chatterjee A, Ding C, Zhao H, Cifuentes LP, Wagner RB, Wang T, Tan S, Chen J, Li L, Umulis D, Kuang S, Suter DM, Yuan C, Chan D, Huang F, Oakes PW, Deng Q. Atypical peripheral actin band formation via overactivation of RhoA and nonmuscle myosin II in mitofusin 2-deficient cells. eLife 2023; 12:e88828. [PMID: 37724949 PMCID: PMC10550287 DOI: 10.7554/elife.88828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023] Open
Abstract
Cell spreading and migration play central roles in many physiological and pathophysiological processes. We have previously shown that MFN2 regulates the migration of human neutrophil-like cells via suppressing Rac activation. Here, we show that in mouse embryonic fibroblasts, MFN2 suppresses RhoA activation and supports cell polarization. After initial spreading, the wild-type cells polarize and migrate, whereas the Mfn2-/- cells maintain a circular shape. Increased cytosolic Ca2+ resulting from the loss of Mfn2 is directly responsible for this phenotype, which can be rescued by expressing an artificial tether to bring mitochondria and endoplasmic reticulum to close vicinity. Elevated cytosolic Ca2+ activates Ca2+/calmodulin-dependent protein kinase II, RhoA, and myosin light-chain kinase, causing an overactivation of nonmuscle myosin II, leading to a formation of a prominent F-actin ring at the cell periphery and increased cell contractility. The peripheral actin band alters cell physics and is dependent on substrate rigidity. Our results provide a novel molecular basis to understand how MFN2 regulates distinct signaling pathways in different cells and tissue environments, which is instrumental in understanding and treating MFN2-related diseases.
Collapse
Affiliation(s)
- Yueyang Wang
- Department of Biological Sciences, Purdue University West LafayetteWest LafayetteUnited States
| | - Lee D Troughton
- Cell and Molecular Physiology, Loyola University ChicagoChicagoUnited States
| | - Fan Xu
- Weldon School of Biomedical Engineering, Purdue University West LafayetteWest LafayetteUnited States
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of TechnologyBeijingChina
| | - Aritra Chatterjee
- Weldon School of Biomedical Engineering, Purdue University West LafayetteWest LafayetteUnited States
| | - Chang Ding
- Department of Biological Sciences, Purdue University West LafayetteWest LafayetteUnited States
| | - Han Zhao
- Davidson School of Chemical Engineering, Purdue University West LafayetteWest LafayetteUnited States
| | - Laura P Cifuentes
- Department of Biological Sciences, Purdue University West LafayetteWest LafayetteUnited States
| | - Ryan B Wagner
- School of Mechanical Engineering, Purdue University West LafayetteWest LafayetteUnited States
| | - Tianqi Wang
- Department of Biological Sciences, Purdue University West LafayetteWest LafayetteUnited States
| | - Shelly Tan
- Department of Biological Sciences, Purdue University West LafayetteWest LafayetteUnited States
| | - Jingjuan Chen
- Department of Animal Sciences, Purdue University West LafayetteWest LafayetteUnited States
| | - Linlin Li
- Weldon School of Biomedical Engineering, Purdue University West LafayetteWest LafayetteUnited States
| | - David Umulis
- Weldon School of Biomedical Engineering, Purdue University West LafayetteWest LafayetteUnited States
- Department of Agricultural and Biological Engineering, Purdue University West LafayetteWest LafayetteUnited States
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University West LafayetteWest LafayetteUnited States
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University West LafayetteWest LafayetteUnited States
- Purdue Institute for Integrative Neuroscience, Purdue University West LafayetteWest LafayetteUnited States
- Purdue Institute for Inflammation, Immunology & Infectious Disease, Purdue University West LafayetteWest LafayetteUnited States
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University West LafayetteWest LafayetteUnited States
| | - Deva Chan
- Weldon School of Biomedical Engineering, Purdue University West LafayetteWest LafayetteUnited States
| | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University West LafayetteWest LafayetteUnited States
| | - Patrick W Oakes
- Cell and Molecular Physiology, Loyola University ChicagoChicagoUnited States
| | - Qing Deng
- Department of Biological Sciences, Purdue University West LafayetteWest LafayetteUnited States
- Purdue Institute for Inflammation, Immunology & Infectious Disease, Purdue University West LafayetteWest LafayetteUnited States
- Purdue University Center for Cancer Research, Purdue University West LafayetteWest LafayetteUnited States
| |
Collapse
|
13
|
Lazzarini R, Eléxpuru-Zabaleta M, Piva F, Giulietti M, Fulgenzi G, Tartaglione MF, Zingaretti L, Tagliabracci A, Valentino M, Santarelli L, Bracci M. Effects of extremely low-frequency magnetic fields on human MDA-MB-231 breast cancer cells: proteomic characterization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114650. [PMID: 36805133 DOI: 10.1016/j.ecoenv.2023.114650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Extremely low-frequency electromagnetic fields (ELF-MF) can modify the cell viability and regulatory processes of some cell types, including breast cancer cells. Breast cancer is a multifactorial disease where a role for ELF-MF cannot be excluded. ELF-MF may influence the biological properties of breast cells through molecular mechanisms and signaling pathways that are still unclear. This study analyzed the changes in the cell viability, cellular morphology, oxidative stress response and alteration of proteomic profile in breast cancer cells (MDA-MB-231) exposed to ELF-MF (50 Hz, 1 mT for 4 h). Non-tumorigenic human breast cells (MCF-10A) were used as control cells. Exposed MDA-MB-231 breast cancer cells increased their viability and live cell number and showed a higher density and length of filopodia compared with the unexposed cells. In addition, ELF-MF induced an increase of the mitochondrial ROS levels and an alteration of mitochondrial morphology. Proteomic data analysis showed that ELF-MF altered the expression of 328 proteins in MDA-MB-231 cells and of 242 proteins in MCF-10A cells. Gene Ontology term enrichment analysis demonstrated that in both cell lines ELF-MF exposure up-regulated the genes enriched in "focal adhesion" and "mitochondrion". The ELF-MF exposure decreased the adhesive properties of MDA-MB-231 cells and increased the migration and invasion cell abilities. At the same time, proteomic analysis, confirmed by Real Time PCR, revealed that transcription factors associated with cellular reprogramming were upregulated in MDA-MB-231 cells and downregulated in MCF-10A cells after ELF-MF exposure. MDA-MB-231 breast cancer cells exposed to 1 mT 50 Hz ELF-MF showed modifications in proteomic profile together with changes in cell viability, cellular morphology, oxidative stress response, adhesion, migration and invasion cell abilities. The main signaling pathways involved were relative to focal adhesion, mitochondrion and cellular reprogramming.
Collapse
Affiliation(s)
- Raffaella Lazzarini
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Maria Eléxpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain.
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Gianluca Fulgenzi
- Experimental Pathology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Maria Fiorella Tartaglione
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Laura Zingaretti
- Occupational Medicine Unit, Marche University Hospital, 60126 Ancona, Italy.
| | - Adriano Tagliabracci
- Department of Excellence of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy.
| | - Matteo Valentino
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Lory Santarelli
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| | - Massimo Bracci
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy.
| |
Collapse
|
14
|
de Oliveira TD, vom Stein A, Rebollido-Rios R, Lobastova L, Lettau M, Janssen O, Wagle P, Nguyen PH, Hallek M, Hansen HP. Stromal cells support the survival of human primary chronic lymphocytic leukemia (CLL) cells through Lyn-driven extracellular vesicles. Front Med (Lausanne) 2023; 9:1059028. [PMID: 36714146 PMCID: PMC9880074 DOI: 10.3389/fmed.2022.1059028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction In chronic lymphocytic leukemia (CLL), the tumor cells receive survival support from stromal cells through direct cell contact, soluble factors and extracellular vesicles (EVs). The protein tyrosine kinase Lyn is aberrantly expressed in the malignant and stromal cells in CLL tissue. We studied the role of Lyn in the EV-based communication and tumor support. Methods We compared the Lyn-dependent EV release, uptake and functionality using Lyn-proficient (wild-type) and -deficient stromal cells and primary CLL cells. Results Lyn-proficient cells caused a significantly higher EV release and EV uptake as compared to Lyn-deficient cells and also conferred stronger support of primary CLL cells. Proteomic comparison of the EVs from Lyn-proficient and -deficient stromal cells revealed 70 significantly differentially expressed proteins. Gene ontology studies categorized many of which to organization of the extracellular matrix, such as collagen, fibronectin, fibrillin, Lysyl oxidase like 2, integrins and endosialin (CD248). In terms of function, a knockdown of CD248 in Lyn+ HS-5 cells resulted in a diminished B-CLL cell feeding capacity compared to wildtype or scrambled control cells. CD248 is a marker of certain tumors and cancer-associated fibroblast (CAF) and crosslinks fibronectin and collagen in a membrane-associated context. Conclusion Our data provide preclinical evidence that the tyrosine kinase Lyn crucially influences the EV-based communication between stromal and primary B-CLL cells by raising EV release and altering the concentration of functional molecules of the extracellular matrix.
Collapse
Affiliation(s)
- Thaís Dolzany de Oliveira
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Alexander vom Stein
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Rocio Rebollido-Rios
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Liudmila Lobastova
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrecht University of Kiel, Kiel, Germany,Department of Hematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ottmar Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Prerana Wagle
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Proteomics Facility, University of Cologne, Cologne, Germany
| | - Phuong-Hien Nguyen
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Hinrich P. Hansen
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany,*Correspondence: Hinrich P. Hansen,
| |
Collapse
|
15
|
Visweshwaran SP, Nayab H, Hoffmann L, Gil M, Liu F, Kühne R, Maritzen T. Ena/VASP proteins at the crossroads of actin nucleation pathways in dendritic cell migration. Front Cell Dev Biol 2022; 10:1008898. [PMID: 36274843 PMCID: PMC9581539 DOI: 10.3389/fcell.2022.1008898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
As sentinels of our immune system dendritic cells (DCs) rely on efficient cell migration for patrolling peripheral tissues and delivering sampled antigens to secondary lymphoid organs for the activation of T-cells. Dynamic actin polymerization is key to their macropinocytic and migratory properties. Both major actin nucleation machineries, formins and the Arp2/3 complex, are critical for different aspects of DC functionality, by driving the generation of linear and branched actin filaments, respectively. However, the importance of a third group of actin nucleators, the Ena/VASP family, has not been addressed yet. Here, we show that the two family members Evl and VASP are expressed in murine DCs and that their loss negatively affects DC macropinocytosis, spreading, and migration. Our interactome analysis reveals Ena/VASP proteins to be ideally positioned for orchestrating the different actin nucleation pathways by binding to the formin mDia1 as well as to the WAVE regulatory complex, a stimulator of Arp2/3. In fact, Evl/VASP deficient murine DCs are more vulnerable to inhibition of Arp2/3 demonstrating that Ena/VASP proteins contribute to the robustness and efficiency of DC migration.
Collapse
Affiliation(s)
| | - Hafiza Nayab
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Lennart Hoffmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Marine Gil
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Ronald Kühne
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Department of Nanophysiology, Technische Universität Kaiserslautern, Kaiserslautern, Germany
- *Correspondence: Tanja Maritzen,
| |
Collapse
|
16
|
Ferreira JMC, Huhle R, Müller S, Schnabel C, Mehner M, Koch T, Gama de Abreu M. Static Stretch Increases the Pro-Inflammatory Response of Rat Type 2 Alveolar Epithelial Cells to Dynamic Stretch. Front Physiol 2022; 13:838834. [PMID: 35480037 PMCID: PMC9035495 DOI: 10.3389/fphys.2022.838834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Mechanical ventilation (MV) inflicts stress on the lungs, initiating or increasing lung inflammation, so-called ventilator-induced lung injury (VILI). Besides overdistention, cyclic opening-and-closing of alveoli (atelectrauma) is recognized as a potential mechanism of VILI. The dynamic stretch may be reduced by positive end-expiratory pressure (PEEP), which in turn increases the static stretch. We investigated whether static stretch modulates the inflammatory response of rat type 2 alveolar epithelial cells (AECs) at different levels of dynamic stretch and hypothesized that static stretch increases pro-inflammatory response of AECs at given dynamic stretch. Methods: AECs, stimulated and not stimulated with lipopolysaccharide (LPS), were subjected to combinations of static (10, 20, and 30%) and dynamic stretch (15, 20, and 30%), for 1 and 4 h. Non-stretched AECs served as control. The gene expression and secreted protein levels of interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein 2 (MIP-2) were studied by real-time polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The effects of static and dynamic stretch were assessed by two-factorial ANOVA with planned effects post-hoc comparison according to Šidák. Statistical significance was considered for p < 0.05. Results: In LPS-stimulated, but not in non-stimulated rat type 2 AECs, compared to non-stretched cells: 1) dynamic stretch increased the expression of amphiregulin (AREG) (p < 0.05), MCP-1 (p < 0.001), and MIP-2 (<0.05), respectively, as well as the protein secretion of IL-6 (p < 0.001) and MCP-1 (p < 0.05); 2) static stretch increased the gene expression of MCP-1 (p < 0.001) and MIP-2, but not AREG, and resulted in higher secretion of IL-6 (p < 0.001), but not MCP-1, while MIP-2 was not detectable in the medium. Conclusion: In rat type 2 AECs stimulated with LPS, static stretch increased the pro-inflammatory response to dynamic stretch, suggesting a potential pro-inflammatory effect of PEEP during mechanical ventilation at the cellular level.
Collapse
Affiliation(s)
- Jorge M. C. Ferreira
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
- *Correspondence: Jorge M. C. Ferreira,
| | - Robert Huhle
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Sabine Müller
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Christian Schnabel
- Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Mirko Mehner
- Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden at Technische Universität Dresden, Dresden, Germany
- Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
17
|
Reciprocal Regulation of Shh Trafficking and H2O2 Levels via a Noncanonical BOC-Rac1 Pathway. Antioxidants (Basel) 2022; 11:antiox11040718. [PMID: 35453403 PMCID: PMC9025708 DOI: 10.3390/antiox11040718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022] Open
Abstract
Among molecules that bridge environment, cell metabolism, and cell signaling, hydrogen peroxide (H2O2) recently appeared as an emerging but central player. Its level depends on cell metabolism and environment and was recently shown to play key roles during embryogenesis, contrasting with its long-established role in disease progression. We decided to explore whether the secreted morphogen Sonic hedgehog (Shh), known to be essential in a variety of biological processes ranging from embryonic development to adult tissue homeostasis and cancers, was part of these interactions. Here, we report that H2O2 levels control key steps of Shh delivery in cell culture: increased levels reduce primary secretion, stimulate endocytosis and accelerate delivery to recipient cells; in addition, physiological in vivo modulation of H2O2 levels changes Shh distribution and tissue patterning. Moreover, a feedback loop exists in which Shh trafficking controls H2O2 synthesis via a non-canonical BOC-Rac1 pathway, leading to cytoneme growth. Our findings reveal that Shh directly impacts its own distribution, thus providing a molecular explanation for the robustness of morphogenesis to both environmental insults and individual variability.
Collapse
|
18
|
Ketebo AA, Shin TH, Jun M, Lee G, Park S. Effect of silica-coated magnetic nanoparticles on rigidity sensing of human embryonic kidney cells. J Nanobiotechnology 2020; 18:170. [PMID: 33208165 PMCID: PMC7672867 DOI: 10.1186/s12951-020-00730-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/07/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Nanoparticles (NPs) can enter cells and cause cellular dysfunction. For example, reactive oxygen species generated by NPs can damage the cytoskeleton and impair cellular adhesion properties. Previously, we reported that cell spreading and protrusion structures such as lamellipodia and filopodia was reduced when cells are treated with silica-coated magnetic nanoparticles incorporating rhodamine B isothiocyanate (MNPs@SiO2(RITC)), even at 0.1 μg/μL. These protruded structures are involved in a cell's rigidity sensing, but how these NPs affect rigidity sensing is unknown. RESULTS Here, we report that the rigidity sensing of human embryonic kidney (HEK293) cells was impaired even at 0.1 μg/μL of MNPs@SiO2(RITC). At this concentration, cells were unable to discern the stiffness difference between soft (5 kPa) and rigid (2 MPa) flat surfaces. The impairment of rigidity sensing was further supported by observing the disappearance of locally contracted elastomeric submicron pillars (900 nm in diameter, 2 μm in height, 24.21 nN/μm in stiffness k) under MNPs@SiO2(RITC) treated cells. A decrease in the phosphorylation of paxillin, which is involved in focal adhesion dynamics, may cause cells to be insensitive to stiffness differences when they are treated with MNPs@SiO2(RITC). CONCLUSIONS Our results suggest that NPs may impair the rigidity sensing of cells even at low concentrations, thereby affecting cell adhesion and spreading.
Collapse
Affiliation(s)
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Myeongjun Jun
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Korea.
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
19
|
Christie SM, Ham TR, Gilmore GT, Toth PD, Leipzig ND, Smith AW. Covalently Immobilizing Interferon-γ Drives Filopodia Production through Specific Receptor-Ligand Interactions Independently of Canonical Downstream Signaling. Bioconjug Chem 2020; 31:1362-1369. [PMID: 32329609 PMCID: PMC10243121 DOI: 10.1021/acs.bioconjchem.0c00105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immobilizing a signaling protein to guide cell behavior has been employed in a wide variety of studies. This approach draws inspiration from biology, where specific, affinity-based interactions between membrane receptors and immobilized proteins in the extracellular matrix guide many developmental and homeostatic processes. Synthetic immobilization approaches, however, do not necessarily recapitulate the in vivo signaling system and potentially lead to artificial receptor-ligand interactions. To investigate the effects of one example of engineered receptor-ligand interactions, we focus on the immobilization of interferon-γ (IFN-γ), which has been used to drive differentiation of neural stem cells (NSCs). To isolate the effect of ligand immobilization, we transfected Cos-7 cells with only interferon-γ receptor 1 (IFNγR1), not IFNγR2, so that the cells could bind IFN-γ but were incapable of canonical signal transduction. We then exposed the cells to surfaces containing covalently immobilized IFN-γ and studied membrane morphology, receptor-ligand dynamics, and receptor activation. We found that exposing cells to immobilized but not soluble IFN-γ drove the formation of filopodia in both NSCs and Cos-7, showing that covalently immobilizing IFN-γ is enough to affect cell behavior, independently of canonical downstream signaling. Overall, this work suggests that synthetic growth factor immobilization can influence cell morphology beyond enhancing canonical cell responses through the prolonged signaling duration or spatial patterning enabled by protein immobilization. This suggests that differentiation of NSCs could be driven by canonical and non-canonical pathways when IFN-γ is covalently immobilized. This finding has broad implications for bioengineering approaches to guide cell behavior, as one ligand has the potential to impact multiple pathways even when cells lack the canonical signal transduction machinery.
Collapse
Affiliation(s)
- Shaun M. Christie
- Department of Chemistry, The University of Akron, 190 Buchtel Common, Akron, Ohio, 44325, United States
| | - Trevor R. Ham
- Department of Biomedical Engineering, The University of Akron, Auburn Science and Engineering Center #275, West Tower, Akron, OH 44325, United States
| | - Grant T. Gilmore
- Department of Chemistry, The University of Akron, 190 Buchtel Common, Akron, Ohio, 44325, United States
| | - Paul D. Toth
- Department of Chemistry, The University of Akron, 190 Buchtel Common, Akron, Ohio, 44325, United States
| | - Nic D. Leipzig
- Department of Biomedical Engineering, The University of Akron, Auburn Science and Engineering Center #275, West Tower, Akron, OH 44325, United States
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 302 Buchtel Common, Akron, Ohio, 44325, United States
| | - Adam W. Smith
- Department of Chemistry, The University of Akron, 190 Buchtel Common, Akron, Ohio, 44325, United States
| |
Collapse
|