1
|
Akera T. Tubulin post-translational modifications in meiosis. Semin Cell Dev Biol 2023; 137:38-45. [PMID: 34836784 PMCID: PMC9124733 DOI: 10.1016/j.semcdb.2021.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 11/18/2022]
Abstract
Haploid gametes are produced from diploid parents through meiosis, a process inherent to all sexually reproducing eukaryotes. Faithful chromosome segregation in meiosis is essential for reproductive success, although it is less clear how the meiotic spindle achieves this compared to the mitotic spindle. It is becoming increasingly clear that tubulin post-translational modifications (PTMs) play critical roles in regulating microtubule functions in many biological processes, and meiosis is no exception. Here, I review recent advances in the understanding of tubulin PTMs in meiotic spindles, especially focusing on their roles in spindle integrity, oocyte aging, and non-Mendelian transmission.
Collapse
Affiliation(s)
- Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda 20892, MD, USA.
| |
Collapse
|
2
|
Neil CR, Jeschonek SP, Cabral SE, O'Connell LC, Powrie EA, Otis JP, Wood TR, Mowry KL. L-bodies are RNA-protein condensates driving RNA localization in Xenopus oocytes. Mol Biol Cell 2021; 32:ar37. [PMID: 34613784 PMCID: PMC8694076 DOI: 10.1091/mbc.e21-03-0146-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ribonucleoprotein (RNP) granules are membraneless compartments within cells, formed by phase separation, that function as regulatory hubs for diverse biological processes. However, the mechanisms by which RNAs and proteins interact to promote RNP granule structure and function in vivo remain unclear. In Xenopus laevis oocytes, maternal mRNAs are localized as large RNPs to the vegetal hemisphere of the developing oocyte, where local translation is critical for proper embryonic patterning. Here we demonstrate that RNPs containing vegetally localized RNAs represent a new class of cytoplasmic RNP granule, termed localization-bodies (L-bodies). We show that L-bodies contain a dynamic protein-containing phase surrounding a nondynamic RNA-containing phase. Our results support a role for RNA as a critical component within these RNP granules and suggest that cis-elements within localized mRNAs may drive subcellular RNA localization through control over phase behavior.
Collapse
Affiliation(s)
- Christopher R Neil
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Samantha P Jeschonek
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Sarah E Cabral
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Liam C O'Connell
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Erin A Powrie
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Jessica P Otis
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Timothy R Wood
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| |
Collapse
|
3
|
Krneta-Stankic V, Corkins ME, Paulucci-Holthauzen A, Kloc M, Gladden AB, Miller RK. The Wnt/PCP formin Daam1 drives cell-cell adhesion during nephron development. Cell Rep 2021; 36:109340. [PMID: 34233186 PMCID: PMC8629027 DOI: 10.1016/j.celrep.2021.109340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/31/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
E-cadherin junctions facilitate assembly and disassembly of cell contacts that drive development and homeostasis of epithelial tissues. In this study, using Xenopus embryonic kidney and Madin-Darby canine kidney (MDCK) cells, we investigate the role of the Wnt/planar cell polarity (PCP) formin Daam1 (Dishevelled-associated activator of morphogenesis 1) in regulating E-cadherin-based intercellular adhesion. Using live imaging, we show that Daam1 localizes to newly formed cell contacts in the developing nephron. Furthermore, analyses of junctional filamentous actin (F-actin) upon Daam1 depletion indicate decreased microfilament localization and slowed turnover. We also show that Daam1 is necessary for efficient and timely localization of junctional E-cadherin, mediated by Daam1’s formin homology domain 2 (FH2). Finally, we establish that Daam1 signaling promotes organized movement of renal cells. This study demonstrates that Daam1 formin junctional activity is critical for epithelial tissue organization. How cells remodel their adhesions through cell-surface proteins such as E-cadherin is a central question in epithelial tissue biology. Krneta-Stankic et al. show that the Wnt/PCP formin Daam1 regulates cytoskeletal membrane dynamics and E-cadherin localization within developing nephrons. These findings provide a new framework for studying cell-cell adhesion and nephron morphogenesis.
Collapse
Affiliation(s)
- Vanja Krneta-Stankic
- Program in Genes and Development, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Mark E Corkins
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | | | - Malgorzata Kloc
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Andrew B Gladden
- Program in Genes and Development, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel K Miller
- Program in Genes and Development, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA; Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Biochemistry and Cell Biology, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Abstract
Amphibian oocytes and embryos are classical models to study cellular and developmental processes. For these studies, it is often advantageous to visualize protein organization. However, the large size and yolk distribution make imaging of deep structures in amphibian zygotes challenging. Here we describe in detail immunofluorescence (IF) protocols for imaging microtubule assemblies in early amphibian development. We developed these protocols to elucidate how the cell division machinery adapts to drastic changes in embryonic cell sizes. We describe how to image mitotic spindles, microtubule asters, chromosomes, and nuclei in whole-mount embryos, even when they are hundreds of micrometers removed from the embryo's surface. Though the described methods were optimized for microtubule assemblies, they have also proven useful for the visualization of other proteins.
Collapse
|
5
|
Yamagishi Y, Abe H. Actin assembly mediated by a nucleation promoting factor WASH is involved in MTOC–TMA formation during
Xenopus
oocyte maturation. Cytoskeleton (Hoboken) 2018; 75:131-143. [DOI: 10.1002/cm.21428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/16/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Yuka Yamagishi
- Department of Nanobiology, Graduate School of Advanced Integration ScienceChiba University Chiba263‐8522 Japan
| | - Hiroshi Abe
- Department of Nanobiology, Graduate School of Advanced Integration ScienceChiba University Chiba263‐8522 Japan
- Department of Biology, Graduate School of ScienceChiba UniversityChiba, 263‐8522 Japan
| |
Collapse
|
6
|
Wang DT, Chu WH, Sun HM, Ba HX, Li CY. Expression and Functional Analysis of Tumor-Related Factor S100A4 in Antler Stem Cells. J Histochem Cytochem 2017; 65:579-591. [PMID: 28832242 PMCID: PMC5624364 DOI: 10.1369/0022155417727263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023] Open
Abstract
Annual antler renewal is a stem cell-based epimorphic process driven by antler stem cells (ASCs) resident in antlerogenic periosteum (AP). Antlerogenic periosteal cells express a high level of S100A4, a metastasis-associated protein, which intrigued us to explore what role S100A4 could play in antler regeneration. The present study set out to investigate expression and effects of S100A4 in the ASCs and their progeny. The results showed that not only did cells from the AP express a high level of S100A4, but also the pedicle periosteum and the antler growth center. In the antler growth center, we found S100A4-positive cells were specifically located in blood vessel walls and in vascularized areas. In vitro, recombinant deer S100A4 protein stimulated the proliferation of the AP cells, promoted proliferation, migration and tube formation of human vascular endothelial cells, and enhanced migration of Hela cells, but not AP cells. These findings demonstrated that S100A4 in the ASCs may play a significant role in stimulating angiogenesis, proliferation, but not motility, of ASCs. Deer antlers offer a unique model to explore how rapid cell proliferation with a high level of S100A4 expression is elegantly regulated without becoming cancerous.
Collapse
Affiliation(s)
- Da-tao Wang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- State Kay Laboratory for Molecular Biology of Special Economic Animals, Changchun, People’s Republic of China
| | - Wen-hui Chu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- State Kay Laboratory for Molecular Biology of Special Economic Animals, Changchun, People’s Republic of China
| | - Hong-mei Sun
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Heng-xing Ba
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- State Kay Laboratory for Molecular Biology of Special Economic Animals, Changchun, People’s Republic of China
| | - Chun-yi Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| |
Collapse
|
7
|
Manojlovic Z, Earwood R, Kato A, Perez D, Cabrera OA, Didier R, Megraw TL, Stefanovic B, Kato Y. La-related protein 6 controls ciliated cell differentiation. Cilia 2017; 6:4. [PMID: 28344782 PMCID: PMC5364628 DOI: 10.1186/s13630-017-0047-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/16/2017] [Indexed: 01/07/2023] Open
Abstract
Background La-related protein 6 (LARP6) is an evolutionally conserved RNA-binding protein. Vertebrate LARP6 binds the 5′ stem-loop found in mRNAs encoding type I collagen to regulate their translation, but other target mRNAs and additional functions for LARP6 are unknown. The aim of this study was to elucidate an additional function of LARP6 and to evaluate the importance of its function during development. Methods To uncover the role of LARP6 in development, we utilized Morpholino Oligos to deplete LARP6 protein in Xenopus embryos. Then, embryonic phenotypes and ciliary structures of LAPR6 morphants were examined. To identify the molecular mechanism underlying ciliogenesis regulated by LARP6, we tested the expression level of cilia-related genes, which play important roles in ciliogenesis, by RT-PCR or whole mount in situ hybridization (WISH). Results We knocked down LARP6 in Xenopus embryos and found neural tube closure defects. LARP6 mutant, which compromises the collagen synthesis, could rescue these defects. Neural tube closure defects are coincident with lack of cilia, antenna-like cellular organelles with motility- or sensory-related functions, in the neural tube. The absence of cilia at the epidermis was also observed in LARP6 morphants, and this defect was due to the absence of basal bodies which are formed from centrioles and required for ciliary assembly. In the process of multi-ciliated cell (MCC) differentiation, mcidas, which activates the transcription of genes required for centriole formation during ciliogenesis, could partially restore MCCs in LARP6 morphants. In addition, LARP6 likely controls the expression of mcidas in a Notch-independent manner. Conclusions La-related protein 6 is involved in ciliated cell differentiation during development by controlling the expression of cilia-related genes including mcidas. This LARP6 function involves a mechanism that is distinct from its established role in binding to collagen mRNAs and regulating their translation. Electronic supplementary material The online version of this article (doi:10.1186/s13630-017-0047-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zarko Manojlovic
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA.,Department of Translational Genomics, Keck School of Medicine of University of Southern California, Los Angeles, CA 90089-9601 USA
| | - Ryan Earwood
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Akiko Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Diana Perez
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Oscar A Cabrera
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Ruth Didier
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Yoichi Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| |
Collapse
|
8
|
Pierre A, Sallé J, Wühr M, Minc N. Generic Theoretical Models to Predict Division Patterns of Cleaving Embryos. Dev Cell 2016; 39:667-682. [PMID: 27997824 PMCID: PMC5180451 DOI: 10.1016/j.devcel.2016.11.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 10/06/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022]
Abstract
Life for all animals starts with a precise 3D choreography of reductive divisions of the fertilized egg, known as cleavage patterns. These patterns exhibit conserved geometrical features and striking interspecies invariance within certain animal classes. To identify the generic rules that may govern these morphogenetic events, we developed a 3D-modeling framework that iteratively infers blastomere division positions and orientations, and consequent multicellular arrangements. From a minimal set of parameters, our model predicts detailed features of cleavage patterns in the embryos of fishes, amphibians, echinoderms, and ascidians, as well as the genetic and physical perturbations that alter these patterns. This framework demonstrates that a geometrical system based on length-dependent microtubule forces that probe blastomere shape and yolk gradients, biased by cortical polarity domains, may dictate division patterns and overall embryo morphogenesis. These studies thus unravel the default self-organization rules governing early embryogenesis and how they are altered by deterministic regulatory layers.
Collapse
Affiliation(s)
- Anaëlle Pierre
- CNRS UMR 7592, Institut Jacques Monod, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Jérémy Sallé
- CNRS UMR 7592, Institut Jacques Monod, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Martin Wühr
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Nicolas Minc
- CNRS UMR 7592, Institut Jacques Monod, 15 rue Hélène Brion, 75205 Paris Cedex 13, France.
| |
Collapse
|
9
|
Pfister K, Shook DR, Chang C, Keller R, Skoglund P. Molecular model for force production and transmission during vertebrate gastrulation. Development 2016; 143:715-27. [PMID: 26884399 DOI: 10.1242/dev.128090] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Vertebrate embryos undergo dramatic shape changes at gastrulation that require locally produced and anisotropically applied forces, yet how these forces are produced and transmitted across tissues remains unclear. We show that depletion of myosin regulatory light chain (RLC) levels in the embryo blocks force generation at gastrulation through two distinct mechanisms: destabilizing the myosin II (MII) hexameric complex and inhibiting MII contractility. Molecular dissection of these two mechanisms demonstrates that normal convergence force generation requires MII contractility and we identify a set of molecular phenotypes correlated with both this failure of convergence force generation in explants and of blastopore closure in whole embryos. These include reduced rates of actin movement, alterations in C-cadherin dynamics and a reduction in the number of polarized lamellipodia on intercalating cells. By examining the spatial relationship between C-cadherin and actomyosin we also find evidence for formation of transcellular linear arrays incorporating these proteins that could transmit mediolaterally oriented tensional forces. These data combine to suggest a multistep model to explain how cell intercalation can occur against a force gradient to generate axial extension forces. First, polarized lamellipodia extend mediolaterally and make new C-cadherin-based contacts with neighboring mesodermal cell bodies. Second, lamellipodial flow of actin coalesces into a tension-bearing, MII-contractility-dependent node-and-cable actin network in the cell body cortex. And third, this actomyosin network contracts to generate mediolateral convergence forces in the context of these transcellular arrays.
Collapse
Affiliation(s)
- Katherine Pfister
- Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - David R Shook
- Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - Chenbei Chang
- Department of Cell Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Ray Keller
- Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - Paul Skoglund
- Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
10
|
Willoughby NA, Bock H, Hoeve MA, Pells S, Williams C, McPhee G, Freile P, Choudhury D, De Sousa PA. A scalable label-free approach to separate human pluripotent cells from differentiated derivatives. BIOMICROFLUIDICS 2016; 10:014107. [PMID: 26858819 PMCID: PMC4714989 DOI: 10.1063/1.4939946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/01/2016] [Indexed: 05/24/2023]
Abstract
The broad capacity of pluripotent human embryonic stem cells (hESC) to grow and differentiate demands the development of rapid, scalable, and label-free methods to separate living cell populations for clinical and industrial applications. Here, we identify differences in cell stiffness, expressed as cell elastic modulus (CEM), for hESC versus mesenchymal progenitors, osteoblast-like derivatives, and fibroblasts using atomic force microscopy and data processing algorithms to characterize the stiffness of cell populations. Undifferentiated hESC exhibited a range of CEMs whose median was nearly three-fold lower than those of differentiated cells, information we exploited to develop a label-free separation device based on the principles of tangential flow filtration. To test the device's utility, we segregated hESC mixed with fibroblasts and hESC-mesenchymal progenitors induced to undergo osteogenic differentiation. The device permitted a throughput of 10(6)-10(7) cells per min and up to 50% removal of specific cell types per single pass. The level of enrichment and depletion of soft, pluripotent hESC in the respective channels was found to rise with increasing stiffness of the differentiating cells, suggesting CEM can serve as a major discriminator. Our results demonstrate the principle of a scalable, label-free, solution for separation of heterogeneous cell populations deriving from human pluripotent stem cells.
Collapse
Affiliation(s)
- N A Willoughby
- Institute for Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - H Bock
- Institute for Chemical Sciences, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh, United Kingdom
| | - M A Hoeve
- Centers for Clinical Brain Sciences and Regenerative Medicine, University of Edinburgh , Edinburgh EH16 4SB, United Kingdom
| | - S Pells
- Centers for Clinical Brain Sciences and Regenerative Medicine, University of Edinburgh , Edinburgh EH16 4SB, United Kingdom
| | - C Williams
- Institute for Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - G McPhee
- Institute for Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - P Freile
- Centers for Clinical Brain Sciences and Regenerative Medicine, University of Edinburgh , Edinburgh EH16 4SB, United Kingdom
| | - D Choudhury
- Institute for Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - P A De Sousa
- Centers for Clinical Brain Sciences and Regenerative Medicine, University of Edinburgh , Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
11
|
Tözser J, Earwood R, Kato A, Brown J, Tanaka K, Didier R, Megraw TL, Blum M, Kato Y. TGF-β Signaling Regulates the Differentiation of Motile Cilia. Cell Rep 2015; 11:1000-7. [PMID: 25959824 DOI: 10.1016/j.celrep.2015.04.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/15/2015] [Accepted: 04/11/2015] [Indexed: 11/24/2022] Open
Abstract
The cilium is a small cellular organelle with motility- and/or sensory-related functions that plays a crucial role during developmental and homeostatic processes. Although many molecules or signal transduction pathways that control cilia assembly have been reported, the mechanisms of ciliary length control have remained enigmatic. Here, we report that Smad2-dependent transforming growth factor β (TGF-β) signaling impacts the length of motile cilia at the Xenopus left-right (LR) organizer, the gastrocoel roof plate (GRP), as well as at the neural tube and the epidermis. Blocking TGF-β signaling resulted in the absence of the transition zone protein B9D1/MSKR-1 from cilia in multi-ciliated cells (MCCs) of the epidermis. Interestingly, this TGF-β activity is not mediated by Mcidas, Foxj1, and RFX2, the known major regulators of ciliogenesis. These data indicate that TGF-β signaling is crucial for the function of the transition zone, which in turn may affect the regulation of cilia length.
Collapse
Affiliation(s)
- Janos Tözser
- Institute of Zoology, University of Hohenheim, Garbenstrtraβe 30, 70593 Stuttgart, Germany
| | - Ryan Earwood
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Akiko Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Jacob Brown
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Koichi Tanaka
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Ruth Didier
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Garbenstrtraβe 30, 70593 Stuttgart, Germany.
| | - Yoichi Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA.
| |
Collapse
|
12
|
Volkov IA, Frigo NV, Znamenskaya LF, Katunina OR. Application of Confocal Laser Scanning Microscopy in Biology and Medicine. VESTNIK DERMATOLOGII I VENEROLOGII 2014. [DOI: 10.25208/0042-4609-2014-90-1-17-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Fluorescence confocal laser scanning microscopy and reflectance confocal laser scanning microscopy are up-to-date highend study methods. Confocal microscopy is used in cell biology and medicine. By using confocal microscopy, it is possible to study bioplasts and localization of protein molecules and other compounds relative to cell or tissue structures, and to monitor dynamic cell processes. Confocal microscopes enable layer-by-layer scanning of test items to create demonstrable 3D models. As compared to usual fluorescent microscopes, confocal microscopes are characterized by a higher contrast ratio and image definition.
Collapse
|
13
|
Lou CH, Shao A, Shum EY, Espinoza JL, Huang L, Karam R, Wilkinson MF. Posttranscriptional control of the stem cell and neurogenic programs by the nonsense-mediated RNA decay pathway. Cell Rep 2014; 6:748-64. [PMID: 24529710 DOI: 10.1016/j.celrep.2014.01.028] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 12/11/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
The mechanisms dictating whether a cell proliferates or differentiates have undergone intense scrutiny, but they remain poorly understood. Here, we report that UPF1, a central component in the nonsense-mediated RNA decay (NMD) pathway, plays a key role in this decision by promoting the proliferative, undifferentiated cell state. UPF1 acts, in part, by destabilizing the NMD substrate encoding the TGF-β inhibitor SMAD7 and stimulating TGF-β signaling. UPF1 also promotes the decay of mRNAs encoding many other proteins that oppose the proliferative, undifferentiated cell state. Neural differentiation is triggered when NMD is downregulated by neurally expressed microRNAs (miRNAs). This UPF1-miRNA circuitry is highly conserved and harbors negative feedback loops that act as a molecular switch. Our results suggest that the NMD pathway collaborates with the TGF-β signaling pathway to lock in the stem-like state, a cellular state that is stably reversed when neural differentiation signals that induce NMD-repressive miRNAs are received.
Collapse
Affiliation(s)
- Chih H Lou
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Ada Shao
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Eleen Y Shum
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Josh L Espinoza
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Lulu Huang
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Rachid Karam
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA.
| |
Collapse
|
14
|
Manojlovic Z, Earwood R, Kato A, Stefanovic B, Kato Y. RFX7 is required for the formation of cilia in the neural tube. Mech Dev 2014; 132:28-37. [PMID: 24530844 DOI: 10.1016/j.mod.2014.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/04/2014] [Indexed: 12/22/2022]
Abstract
Regulatory Factor X (RFX) transcription factors are important for development and are likely involved in the pathogenesis of serious human diseases including ciliopathies. While seven RFX genes have been identified in vertebrates and several RFX transcription factors have been reported to be regulators of ciliogenesis, the role of RFX7 in development including ciliogenesis is not known. Here we show that RFX7 in Xenopus laevis is expressed in the neural tube, eye, otic vesicles, and somites. Knockdown of RFX7 in Xenopus embryos resulted in a defect of ciliogenesis in the neural tube and failure of neural tube closure. RFX7 controlled the formation of cilia by regulating the expression of RFX4 gene, which has been reported to be required for ciliogenesis in the neural tube. Moreover, ectopic expression of Foxj1, which is a master regulator of motile cilia formation, suppressed the expression of RFX4 but not RFX7. Taken together, RFX7 plays an important role in the process of neural tube closure at the top of the molecular cascade which controls ciliogenesis in the neural tube.
Collapse
Affiliation(s)
- Zarko Manojlovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Ryan Earwood
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Akiko Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| | - Yoichi Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
15
|
Good MC, Vahey MD, Skandarajah A, Fletcher DA, Heald R. Cytoplasmic volume modulates spindle size during embryogenesis. Science 2013; 342:856-60. [PMID: 24233724 DOI: 10.1126/science.1243147] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rapid and reductive cell divisions during embryogenesis require that intracellular structures adapt to a wide range of cell sizes. The mitotic spindle presents a central example of this flexibility, scaling with the dimensions of the cell to mediate accurate chromosome segregation. To determine whether spindle size regulation is achieved through a developmental program or is intrinsically specified by cell size or shape, we developed a system to encapsulate cytoplasm from Xenopus eggs and embryos inside cell-like compartments of defined sizes. Spindle size was observed to shrink with decreasing compartment size, similar to what occurs during early embryogenesis, and this scaling trend depended on compartment volume rather than shape. Thus, the amount of cytoplasmic material provides a mechanism for regulating the size of intracellular structures.
Collapse
Affiliation(s)
- Matthew C Good
- Department of Molecular and Cellular Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
16
|
The nuclear F-actin interactome of Xenopus oocytes reveals an actin-bundling kinesin that is essential for meiotic cytokinesis. EMBO J 2013; 32:1886-902. [PMID: 23727888 PMCID: PMC3981176 DOI: 10.1038/emboj.2013.108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 04/23/2013] [Indexed: 11/09/2022] Open
Abstract
Nuclei of Xenopus laevis oocytes grow 100 000-fold larger in volume than a typical somatic nucleus and require an unusual intranuclear F-actin scaffold for mechanical stability. We now developed a method for mapping F-actin interactomes and identified a comprehensive set of F-actin binders from the oocyte nuclei. Unexpectedly, the most prominent interactor was a novel kinesin termed NabKin (Nuclear and meiotic actin-bundling Kinesin). NabKin not only binds microtubules but also F-actin structures, such as the intranuclear actin bundles in prophase and the contractile actomyosin ring during cytokinesis. The interaction between NabKin and F-actin is negatively regulated by Importin-β and is responsive to spatial information provided by RanGTP. Disconnecting NabKin from F-actin during meiosis caused cytokinesis failure and egg polyploidy. We also found actin-bundling activity in Nabkin's somatic paralogue KIF14, which was previously shown to be essential for somatic cell division. Our data are consistent with the notion that NabKin/KIF14 directly link microtubules with F-actin and that such link is essential for cytokinesis. The presence and role of actin filaments in cell nuclei remains incompletely understood. A proteomics approach now reveals a highly distinct set of F-actin-binding proteins in the nucleus, including a novel kinesin family member.
Collapse
|
17
|
Mitchison T, Wühr M, Nguyen P, Ishihara K, Groen A, Field C. Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells. Cytoskeleton (Hoboken) 2012; 69:738-50. [PMID: 22786885 PMCID: PMC3690567 DOI: 10.1002/cm.21050] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 01/03/2023]
Abstract
Ray Rappaport spent many years studying microtubule asters, and how they induce cleavage furrows. Here, we review recent progress on aster structure and dynamics in zygotes and early blastomeres of Xenopus laevis and Zebrafish, where cells are extremely large. Mitotic and interphase asters differ markedly in size, and only interphase asters span the cell. Growth of interphase asters occurs by a mechanism that allows microtubule density at the aster periphery to remain approximately constant as radius increases. We discuss models for aster growth, and favor a branching nucleation process. Neighboring asters that grow into each other interact to block further growth at the shared boundary. We compare the morphology of interaction zones formed between pairs of asters that grow out from the poles of the same mitotic spindle (sister asters) and between pairs not related by mitosis (non-sister asters) that meet following polyspermic fertilization. We argue growing asters recognize each other by interaction between antiparallel microtubules at the mutual boundary, and discuss models for molecular organization of interaction zones. Finally, we discuss models for how asters, and the centrosomes within them, are positioned by dynein-mediated pulling forces so as to generate stereotyped cleavage patterns. Studying these problems in extremely large cells is starting to reveal how general principles of cell organization scale with cell size.
Collapse
Affiliation(s)
- T.J. Mitchison
- Dept Systems Biology, Harvard Medical School and Marine Biological Laboratory, Woods Hole
| | - M. Wühr
- Dept Systems Biology, Harvard Medical School and Marine Biological Laboratory, Woods Hole
| | - P Nguyen
- Dept Systems Biology, Harvard Medical School and Marine Biological Laboratory, Woods Hole
| | - K. Ishihara
- Dept Systems Biology, Harvard Medical School and Marine Biological Laboratory, Woods Hole
| | - A. Groen
- Dept Systems Biology, Harvard Medical School and Marine Biological Laboratory, Woods Hole
| | - C.M. Field
- Dept Systems Biology, Harvard Medical School and Marine Biological Laboratory, Woods Hole
| |
Collapse
|
18
|
Narasimhachar Y, Webster DR, Gard DL, Coué M. Cdc6 is required for meiotic spindle assembly in Xenopus oocytes. Cell Cycle 2012; 11:524-31. [PMID: 22262174 DOI: 10.4161/cc.11.3.19033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During the maturation of Xenopus oocytes, Cdc6 expression is necessary to establish replication competence to support early embryonic DNA replication. However, Cdc6 is expressed before the completion of MI, at a time when its function as a replication factor is not required, suggesting additional roles for Cdc6 in meiosis. Confocal immunofluorescence microscopy revealed that Cdc6 protein was distributed around the spindle precursor at the time of germinal vesicle breakdown (GVBD), and localized to the margin of the nascent spindle early in prometaphase. Cdc6 subsequently localized to spindle poles in late prometaphase, where it remained until metaphase arrest. Microinjection of antisense oligonucleotides specific for Cdc6 mRNA disrupted spindle assembly, resulting in defects including delayed spindle assembly, misoriented and unattached anaphase spindles, monasters, multiple spindles, microtubule aggregates associated with condensed chromosomes, or the absence of recognizable spindle-like structures, depending on the level of residual Cdc6 expression. Furthermore, Cdc6 co-localized with γ-tubulin in centrosomes during interphase in all somatic cells analyzed, and associated with spindle poles in mitotic COS cells. Our data suggest a role for Cdc6 in spindle formation in addition to its role as a DNA replication factor.
Collapse
Affiliation(s)
- Yadushyla Narasimhachar
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | | | | | | |
Collapse
|
19
|
Kiss R, Bock H, Pells S, Canetta E, Adya AK, Moore AJ, De Sousa P, Willoughby NA. Elasticity of Human Embryonic Stem Cells as Determined by Atomic Force Microscopy. J Biomech Eng 2011; 133:101009. [DOI: 10.1115/1.4005286] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expansive growth and differentiation potential of human embryonic stem cells (hESCs) make them a promising source of cells for regenerative medicine. However, this promise is off set by the propensity for spontaneous or uncontrolled differentiation to result in heterogeneous cell populations. Cell elasticity has recently been shown to characterize particular cell phenotypes, with undifferentiated and differentiated cells sometimes showing significant differences in their elasticities. In this study, we determined the Young’s modulus of hESCs by atomic force microscopy using a pyramidal tip. Using this method we are able to take point measurements of elasticity at multiple locations on a single cell, allowing local variations due to cell structure to be identified. We found considerable differences in the elasticity of the analyzed hESCs, reflected by a broad range of Young’s modulus (0.05-10 kPa). This surprisingly high variation suggests that elasticity could serve as the basis of a simple and efficient large scale purification/separation technique to discriminate subpopulations of hESCs.
Collapse
Affiliation(s)
- Robert Kiss
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Henry Bock
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Steve Pells
- MRC Centre for Regenerative Medicine, College of Medicine and Veterinary Medicine, Edinburgh University, Edinburgh EH16 4SB, U.K
| | - Elisabetta Canetta
- BIONTHE (Bio- and Nano-Technologies for Health and Environment) Center, Division of Biotechnology and Forensic Sciences, School of Contemporary Sciences, University of Abertay Dundee, Dundee DD1 1HG, U.K
| | - Ashok K. Adya
- BIONTHE (Bio- and Nano-Technologies for Health and Environment) Center, Division of Biotechnology and Forensic Sciences, School of Contemporary Sciences, University of Abertay Dundee, Dundee DD1 1HG, U.K
| | - Andrew J. Moore
- Mechanical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Paul De Sousa
- MRC Centre for Regenerative Medicine, College of Medicine and Veterinary Medicine, Edinburgh University, Edinburgh EH16 4SB, U.K
| | - Nicholas A. Willoughby
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| |
Collapse
|
20
|
Chen Q, Xiao P, Chen JN, Cai JY, Cai XF, Ding H, Pan YL. AFM studies of cellular mechanics during osteogenic differentiation of human amniotic fluid-derived stem cells. ANAL SCI 2011; 26:1033-7. [PMID: 20953044 DOI: 10.2116/analsci.26.1033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Amniotic fluid-derived stem cells (AFSCs) are becoming an important source of cells for regenerative medicine given with apparent advantages of accessibility, renewal capacity and multipotentiality. In this study, the mechanical properties of human amniotic fluid-derived stem cells (hAFSCs), such as the average Young's modulus, were determined by atomic force microscopy (3.97 ± 0.53 kPa for hAFSCs vs. 1.52 ± 0.63 kPa for fully differentiated osteoblasts). These differences in cell elasticity result primarily from differential actin cytoskeleton organization in these two cell types. Furthermore, ultrastructures, nanostructural details on the surface of cell, were visualized by atomic force microscopy (AFM). It was clearly shown that surface of osteoblasts were covered by mineralized particles, and the histogram of particles size showed that most of the particles on the surface of osteoblasts distributed from 200 to 400 nm in diameter, while the diameter of hAFSCs particles ranged from 100 to 200 nm. In contrast, there were some dips on the surface of hAFSCs, and particles were smaller than that of osteoblasts. Additionally, as osteogenic differentiation of hAFSCs progressed, more and more stress fibers were replaced by a thinner actin network which is characteristic of mature osteoblasts. These results can improve our understanding of the mechanical properties of hAFSCs during osteogenic differentiation. AFM can be used as a powerful tool for detecting ultrastructures and mechanical properties.
Collapse
Affiliation(s)
- Qian Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | | | | | | | | | | | | |
Collapse
|
21
|
Effects of thioglycolic acid on parthenogenetic activation of Xenopus oocytes. PLoS One 2011; 6:e16220. [PMID: 21297954 PMCID: PMC3031513 DOI: 10.1371/journal.pone.0016220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/12/2010] [Indexed: 11/22/2022] Open
Abstract
Background Existing in Permanent-wave solutions (PWS), thioglycolic acid (TGA) is widely used in hairdressing industry for its contribution to hair styling. However, the toxicity of TGA, especially its reproductive toxicity, gradually calls the attention of more and more researchers. Method In this work, xenopus oocytes were pretreated with different concentration of TGA, and then activated by calcium ionophore A23187. During culture, the oocytes activation rates were taken note at different time after adding calcium ionophore A23187. At the end of the culture period, the nuclear status was detected under confocal microscope. In addition, some other samples were collected for Western-Blotting analysis. Result TGA significantly inhibited the oocytes activation rate and pronuclear formation. It may be resulted from the inhibition of the degradation of p-ERK1, Mos and CyclinB2. Conclusion TGA inhibits in vitro parthenogenetic activation of xenopus oocytes with inhibited the degradation of proteins involved in mitogenic-activated protein kinase (MAPK) and maturation-promoting factor (MPF) pathways.
Collapse
|
22
|
Smith KR, Kieserman EK, Wang PI, Basten SG, Giles RH, Marcotte EM, Wallingford JB. A role for central spindle proteins in cilia structure and function. Cytoskeleton (Hoboken) 2011; 68:112-24. [PMID: 21246755 DOI: 10.1002/cm.20498] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 11/28/2010] [Indexed: 12/29/2022]
Abstract
Cytokinesis and ciliogenesis are fundamental cellular processes that require strict coordination of microtubule organization and directed membrane trafficking. These processes have been intensely studied, but there has been little indication that regulatory machinery might be extensively shared between them. Here, we show that several central spindle/midbody proteins (PRC1, MKLP-1, INCENP, centriolin) also localize in specific patterns at the basal body complex in vertebrate ciliated epithelial cells. Moreover, bioinformatic comparisons of midbody and cilia proteomes reveal a highly significant degree of overlap. Finally, we used temperature-sensitive alleles of PRC1/spd-1 and MKLP-1/zen-4 in C. elegans to assess ciliary functions while bypassing these proteins' early role in cell division. These mutants displayed defects in both cilia function and cilia morphology. Together, these data suggest the conserved reuse of a surprisingly large number of proteins in the cytokinetic apparatus and in cilia.
Collapse
Affiliation(s)
- Katherine R Smith
- Section of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Over the past half century, the Xenopus laevis embryo has become a popular model system for studying vertebrate early development at molecular, cellular, and multicellular levels. The year-round availability of easily fertilized eggs, the embryo's large size and rapid development, and the hardiness of both adults and offspring against a wide range of laboratory conditions provide unmatched advantages for a variety of approaches, particularly "cutting and pasting" experiments, to explore embryogenesis. There is, however, a common perception that the Xenopus embryo is intractable for microscope work, due to its store of large, refractile yolk platelets and abundant cortical pigmentation. This chapter presents easily adapted protocols to surmount, and in some cases take advantage of, these optical properties to facilitate live-cell microscopic analysis of commonly used experimental manipulations of early Xenopus embryos.
Collapse
Affiliation(s)
- Michael V Danilchik
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
24
|
Wühr M, Tan ES, Parker SK, Detrich HW, Mitchison TJ. A model for cleavage plane determination in early amphibian and fish embryos. Curr Biol 2010; 20:2040-5. [PMID: 21055946 PMCID: PMC3031131 DOI: 10.1016/j.cub.2010.10.024] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/22/2010] [Accepted: 10/11/2010] [Indexed: 01/08/2023]
Abstract
Current models for cleavage plane determination propose that metaphase spindles are positioned and oriented by interactions of their astral microtubules with the cellular cortex, followed by cleavage in the plane of the metaphase plate [1, 2]. We show that in early frog and fish embryos, where cells are unusually large, astral microtubules in metaphase are too short to position and orient the spindle. Rather, the preceding interphase aster centers and orients a pair of centrosomes prior to nuclear envelope breakdown, and the spindle assembles between these prepositioned centrosomes. Interphase asters center and orient centrosomes with dynein-mediated pulling forces. These forces act before astral microtubules contact the cortex; thus, dynein must pull from sites in the cytoplasm, not the cell cortex as is usually proposed for smaller cells. Aster shape is determined by interactions of the expanding periphery with the cell cortex or with an interaction zone that forms between sister-asters in telophase. We propose a model to explain cleavage plane geometry in which the length of astral microtubules is limited by interaction with these boundaries, causing length asymmetries. Dynein anchored in the cytoplasm then generates length-dependent pulling forces, which move and orient centrosomes.
Collapse
Affiliation(s)
- Martin Wühr
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
25
|
Suzuki M, Hara Y, Takagi C, Yamamoto TS, Ueno N. MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization. Development 2010; 137:2329-39. [DOI: 10.1242/dev.048769] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Closure of the neural tube requires both the change and maintenance of cell shape. The change occurs mainly through two coordinated morphogenetic events: cell elongation and apical constriction. How cytoskeletal elements, including microtubules, are regulated in this process in vivo is largely unknown. Here, we show that neural tube closure in Xenopus depends on orthologs of two proteins: MID1, which is responsible for Opitz G/BBB syndrome in humans, and its paralog MID2. Depletion of the Xenopus MIDs (xMIDs) by morpholino-mediated knockdown disrupted epithelial morphology in the neural plate, leading to neural tube defects. In the xMID-depleted neural plate, the normal epithelial organization was perturbed without affecting neural fate. Furthermore, the xMID knockdown destabilized and caused the disorganization of microtubules, which are normally apicobasally polarized, accounting for the abnormal phenotypes. We also found that the xMIDs and their interacting protein Mig12 were coordinately required for microtubule stabilization during remodeling of the neural plate. Finally, we showed that the xMIDs are required for the formation of multiple epithelial organs. We propose that similar MID-governed mechanisms underlie the normal morphogenesis of epithelial tissues and organs, including the tissues affected in patients with Opitz G/BBB syndrome.
Collapse
Affiliation(s)
- Makoto Suzuki
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Yusuke Hara
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Chiyo Takagi
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Takamasa S. Yamamoto
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Naoto Ueno
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| |
Collapse
|
26
|
Git A, Allison R, Perdiguero E, Nebreda AR, Houliston E, Standart N. Vg1RBP phosphorylation by Erk2 MAP kinase correlates with the cortical release of Vg1 mRNA during meiotic maturation of Xenopus oocytes. RNA (NEW YORK, N.Y.) 2009; 15:1121-1133. [PMID: 19376927 PMCID: PMC2685525 DOI: 10.1261/rna.1195709] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 02/23/2009] [Indexed: 05/27/2023]
Abstract
Xenopus Vg1RBP is a member of the highly conserved IMP family of four KH-domain RNA binding proteins, with roles in RNA localization, translational control, RNA stability, and cell motility. Vg1RBP has been implicated in localizing Vg1 mRNAs to the vegetal cortex during oogenesis, in a process mediated by microtubules and microfilaments, and in migration of neural crest cells in embryos. Using c-mos morpholino, kinase inhibitors, and constitutely active recombinant kinases we show that Vg1RBP undergoes regulated phosphorylation by Erk2 MAPK during meiotic maturation, on a single residue, S402, located between the KH2 and KH3 domains. Phosphorylation temporally correlates with the release of Vg1 mRNA from its tight cortical association, assayed in lysates in physiological salt buffers, but does not affect RNA binding, nor self-association of Vg1RBP. U0126, a MAP kinase inhibitor, prevents Vg1RBP cortical release and Vg1 mRNA solubilization in meiotically maturing eggs, while injection of MKK6-DD, a constitutively activated MAP kinase kinase, promotes the release of both Vg1RBP and Vg1 mRNA from insoluble cortical structures. We propose that Erk2 MAP kinase phosphorylation of Vg1RBP regulates the protein:protein-mediated association of Vg1 mRNP with the cytoskeleton and/or ER. Since the MAP kinase site in Vg1RBP is conserved in several IMP homologs, this modification also has important implications for the regulation of IMP proteins in somatic cells.
Collapse
Affiliation(s)
- Anna Git
- Department of Biochemistry, University of Cambridge, Cambridge CB21GA, United Kingdom
| | | | | | | | | | | |
Collapse
|
27
|
Zhang L, Hou SY, Wang D, Wu K, Xia L. Effects of thioglycolic acid on progesterone-induced maturation of Xenopus oocytes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:1123-1131. [PMID: 20077179 DOI: 10.1080/15287390902953519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In order to examine the effects of thioglycolic acid (TGA) on reproduction, Xenopus oocytes were treated with different concentrations of TGA. During culture, frequencies of germinal vesicle breakdown (GVBD) and MI-MII transition were determined. Samples collected at indicated times were subjected to immunoblotting. Data indicated that TGA accelerated the frequency of GVBD, but inhibited polar body extrusion and formation of MII-arrested eggs in a concentration-dependent manner. At 4 h after progesterone addition, phosphorylation of extracellular signal-regulated kinase (ERK) and p90 ribosomal S6 kinase, two members of the mitogen-activated protein kinase (MAPK) pathway, was upregulated in TGA-treated oocytes. The regulatory subunit of M-phase promoting factor (MPF)-cyclin B was also upregulated by TGA, while phospho-Cdc2 was downregulated. At 8 h, Cdc2 dephosphorylation and cyclin B1 were downregulated by TGA treatment. However, TGA exerted no effect on Mos, an MAPKKK (MAPK kinase kinase). In conclusion, TGA has the potential to inhibit in vitro maturation of Xenopus oocyte with increased GVBD frequency accompanied by alterations in protein expression and phosphorylation involved in MPF and MAPK pathways. Since egg formation is essential to maintain appropriate reproductive capacity, our findings may have certain toxicological implications.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Nutrition and Food Hygiene, Harbin Medical University, Heilongjiang, China
| | | | | | | | | |
Collapse
|
28
|
Khismatullin DB. Chapter 3 The Cytoskeleton and Deformability of White Blood Cells. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)64003-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Wühr M, Chen Y, Dumont S, Groen AC, Needleman DJ, Salic A, Mitchison TJ. Evidence for an upper limit to mitotic spindle length. Curr Biol 2008; 18:1256-61. [PMID: 18718761 DOI: 10.1016/j.cub.2008.07.092] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/13/2008] [Accepted: 07/15/2008] [Indexed: 12/18/2022]
Abstract
Size specification of macromolecular assemblies in the cytoplasm is poorly understood [1]. In principle, assemblies could scale with cell size or use intrinsic mechanisms. For the mitotic spindle, scaling with cell size is expected, because the function of this assembly is to physically move sister chromatids into the center of nascent daughter cells. Eggs of Xenopus laevis are among the largest cells known that cleave completely during cell division. Cell length in this organism changes by two orders of magnitude ( approximately 1200 microm to approximately 12 microm) while it develops from a fertilized egg into a tadpole [2]. We wondered whether, and how, mitotic spindle length and morphology adapt to function at these different length scales. Here, we show that spindle length increases with cell length in small cells, but in very large cells spindle length approaches an upper limit of approximately 60 microm. Further evidence for an upper limit to spindle length comes from an embryonic extract system that recapitulates mitotic spindle assembly in a test tube. We conclude that early mitotic spindle length in Xenopus laevis is uncoupled from cell length, reaching an upper bound determined by mechanisms that are intrinsic to the spindle.
Collapse
Affiliation(s)
- Martin Wühr
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Eliscovich C, Peset I, Vernos I, Méndez R. Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nat Cell Biol 2008; 10:858-65. [PMID: 18536713 DOI: 10.1038/ncb1746] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 04/22/2008] [Indexed: 12/31/2022]
|
31
|
Developmental regulation of central spindle assembly and cytokinesis during vertebrate embryogenesis. Curr Biol 2008; 18:116-23. [PMID: 18207743 DOI: 10.1016/j.cub.2007.12.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 11/24/2022]
Abstract
Mitosis and cytokinesis not only ensure the proper segregation of genetic information but also contribute importantly to morphogenesis in embryos. Cytokinesis is controlled by the central spindle, a microtubule-based structure containing numerous microtubule motors and microtubule-binding proteins, including PRC1. We show here that central spindle assembly and function differ dramatically between two related populations of epithelial cells in developing vertebrate embryos examined in vivo. Compared to epidermal cells, early neural epithelial cells undergo exaggerated anaphase chromosome separation, rapid furrowing, and a marked reduction of microtubule density in the spindle midzone. Cytokinesis in normal early neural epithelial cells thus resembles that in cultured vertebrate cells experimentally depleted of PRC1. We find that PRC1 mRNA and protein expression is surprisingly dynamic in early vertebrate embryos and that neural-plate cells contain less PRC1 than do epidermal cells. Expression of excess PRC1 ameliorates both the exaggerated anaphase and reduced midzone microtubule density observed in early neural epithelial cells. These PRC1-mediated modifications to the cytokinetic mechanism may be related to the specialization of the midbody in neural cells. These data suggest that PRC1 is a dose-dependent regulator of the central spindle in vertebrate embryos and demonstrate unexpected plasticity to fundamental mechanisms of cell division.
Collapse
|
32
|
Lee C, Kieserman E, Gray RS, Park TJ, Wallingford J. Whole-mount fluorescence immunocytochemistry on Xenopus embryos. ACTA ACUST UNITED AC 2008; 2008:pdb.prot4957. [PMID: 21356778 DOI: 10.1101/pdb.prot4957] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTIONImmunocytochemistry (ICC) is widely exploited in studying mammalian systems, but is underutilized among Xenopus developmental biologists. This stems, in part, from the relatively small number of Xenopus antibodies available for use in research. Common misconceptions about ICC in Xenopus embryos also prevail, discouraging researchers from trying the procedure. However, ICC with Xenopus is simple and effective. This article describes methods for whole-mount ICC in Xenopus embryos. Also included are simple procedures to quench autofluorescence of Xenopus and to remove surface pigment from embryos which may interfere with fluorescence imaging. The methods described here are useful for detecting tissue-specific probes (e.g., 12/101 to detect somites). They are also effective for imaging the cytoskeleton (e.g., α-tubulin to detect microtubules) or localizing specific proteins at the subcellular level (e.g., ZO-1 to detect tight junctions). In addition, combining ICC with in situ hybridization is simple and highly effective.
Collapse
Affiliation(s)
- Chanjae Lee
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
33
|
Titushkin I, Cho M. Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys J 2007; 93:3693-702. [PMID: 17675345 PMCID: PMC2072058 DOI: 10.1529/biophysj.107.107797] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recognition of the growing role of human mesenchymal stem cells (hMSC) in tissue engineering and regenerative medicine requires a thorough understanding of intracellular biochemical and biophysical processes that may direct the cell's commitment to a particular lineage. In this study, we characterized the distinct biomechanical properties of hMSCs, including the average Young's modulus determined by atomic force microscopy (3.2 +/- 1.4 kPa for hMSC vs. 1.7 +/- 1.0 kPa for fully differentiated osteoblasts), and the average membrane tether length measured with laser optical tweezers (10.6 +/- 1.1 microm for stem cells, and 4.0 +/- 1.1 microm for osteoblasts). These differences in cell elasticity and membrane mechanics result primarily from differential actin cytoskeleton organization in these two cell types, whereas microtubules did not appear to affect the cellular mechanics. The membrane-cytoskeleton linker proteins may contribute to a stronger interaction of the plasma membrane with F-actins and shorter membrane tether length in osteoblasts than in stem cells. Actin depolymerization or ATP depletion caused a two- to threefold increase in the membrane tether length in osteoblasts, but had essentially no effect on the stem-cell membrane tethers. Actin remodeling in the course of a 10-day osteogenic differentiation of hMSC mediates the temporally correlated dynamical changes in cell elasticity and membrane mechanics. For example, after a 10-day culture in osteogenic medium, hMSC mechanical characteristics were comparable to those of mature bone cells. Based on quantitative characterization of the actin cytoskeleton remodeling during osteodifferentiation, we postulate that the actin cytoskeleton plays a pivotal role in determining the hMSC mechanical properties and modulation of cellular mechanics at the early stage of stem-cell osteodifferentiation.
Collapse
Affiliation(s)
- Igor Titushkin
- Department of Bioengineering, University of Illinois, Chicago, Illinois 60607, USA
| | | |
Collapse
|