1
|
Nunnelly LF, Campbell M, Lee DI, Dummer P, Gu G, Menon V, Au E. St18 specifies globus pallidus projection neuron identity in MGE lineage. Nat Commun 2022; 13:7735. [PMID: 36517477 PMCID: PMC9751150 DOI: 10.1038/s41467-022-35518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The medial ganglionic eminence (MGE) produces both locally-projecting interneurons, which migrate long distances to structures such as the cortex as well as projection neurons that occupy subcortical nuclei. Little is known about what regulates the migratory behavior and axonal projections of these two broad classes of neurons. We find that St18 regulates the migration and morphology of MGE neurons in vitro. Further, genetic loss-of-function of St18 in mice reveals a reduction in projection neurons of the globus pallidus pars externa. St18 functions by influencing cell fate in MGE lineages as we observe a large expansion of nascent cortical interneurons at the expense of putative GPe neurons in St18 null embryos. Downstream of St18, we identified Cbx7, a component of Polycomb repressor complex 1, and find that it is essential for projection neuron-like migration but not morphology. Thus, we identify St18 as a key regulator of projection neuron vs. interneuron identity.
Collapse
Affiliation(s)
- Luke F Nunnelly
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Melissa Campbell
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dylan I Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Patrick Dummer
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Edmund Au
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Columbia Translational Neuroscience Initiative Scholar, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Zhang Y, Charlton J, Karnik R, Beerman I, Smith ZD, Gu H, Boyle P, Mi X, Clement K, Pop R, Gnirke A, Rossi DJ, Meissner A. Targets and genomic constraints of ectopic Dnmt3b expression. eLife 2018; 7:e40757. [PMID: 30468428 PMCID: PMC6251628 DOI: 10.7554/elife.40757] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
DNA methylation plays an essential role in mammalian genomes and expression of the responsible enzymes is tightly controlled. Deregulation of the de novo DNA methyltransferase DNMT3B is frequently observed across cancer types, yet little is known about its ectopic genomic targets. Here, we used an inducible transgenic mouse model to delineate rules for abnormal DNMT3B targeting, as well as the constraints of its activity across different cell types. Our results explain the preferential susceptibility of certain CpG islands to aberrant methylation and point to transcriptional state and the associated chromatin landscape as the strongest predictors. Although DNA methylation and H3K27me3 are usually non-overlapping at CpG islands, H3K27me3 can transiently co-occur with DNMT3B-induced DNA methylation. Our genome-wide data combined with ultra-deep locus-specific bisulfite sequencing suggest a distributive activity of ectopically expressed Dnmt3b that leads to discordant CpG island hypermethylation and provides new insights for interpreting the cancer methylome.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Jocelyn Charlton
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
- Department of Genome RegulationMax Planck Institute for Molecular GeneticsBerlinGermany
| | - Rahul Karnik
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Isabel Beerman
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
- Department of PediatricsHarvard Medical SchoolMassachusettsUnited States
- Program in Cellular and Molecular Medicine, Division of Hematology/OncologyBoston Children's HospitalMassachusettsUnited States
| | - Zachary D Smith
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Hongcang Gu
- Broad Institute of MIT and HarvardMassachusettsUnited States
| | - Patrick Boyle
- Broad Institute of MIT and HarvardMassachusettsUnited States
| | - Xiaoli Mi
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Kendell Clement
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Ramona Pop
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Andreas Gnirke
- Broad Institute of MIT and HarvardMassachusettsUnited States
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
- Department of PediatricsHarvard Medical SchoolMassachusettsUnited States
- Program in Cellular and Molecular Medicine, Division of Hematology/OncologyBoston Children's HospitalMassachusettsUnited States
| | - Alexander Meissner
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
- Department of Genome RegulationMax Planck Institute for Molecular GeneticsBerlinGermany
- Broad Institute of MIT and HarvardMassachusettsUnited States
| |
Collapse
|
3
|
Planutis A, Xue L, Trainor CD, Dangeti M, Gillinder K, Siatecka M, Nebor D, Peters LL, Perkins AC, Bieker JJ. Neomorphic effects of the neonatal anemia (Nan-Eklf) mutation contribute to deficits throughout development. Development 2017; 144:430-440. [PMID: 28143845 DOI: 10.1242/dev.145656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/18/2016] [Indexed: 12/20/2022]
Abstract
Transcription factor control of cell-specific downstream targets can be significantly altered when the controlling factor is mutated. We show that the semi-dominant neonatal anemia (Nan) mutation in the EKLF/KLF1 transcription factor leads to ectopic expression of proteins that are not normally expressed in the red blood cell, leading to systemic effects that exacerbate the intrinsic anemia in the adult and alter correct development in the early embryo. Even when expressed as a heterozygote, the Nan-EKLF protein accomplishes this by direct binding and aberrant activation of genes encoding secreted factors that exert a negative effect on erythropoiesis and iron use. Our data form the basis for a novel mechanism of physiological deficiency that is relevant to human dyserythropoietic anemia and likely other disease states.
Collapse
Affiliation(s)
- Antanas Planutis
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Li Xue
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Cecelia D Trainor
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Mohan Dangeti
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Kevin Gillinder
- Mater Research Institute, University of Queensland, Woolloongabba QLD 4102, Queensland, Australia
| | - Miroslawa Siatecka
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.,Department of Genetics, University of Adam Mickiewicz, Poznan 61-614, Poland
| | | | | | - Andrew C Perkins
- Mater Research Institute, University of Queensland, Woolloongabba QLD 4102, Queensland, Australia.,Princess Alexandra Hospital, Brisbane QLD 4102, Queensland, Australia
| | - James J Bieker
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA .,Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.,Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.,Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
4
|
Abstract
The generation of a new genetically modified mouse strain is a big hurdle to take for many researchers. It is often unclear which steps and decisions have to be made prior to obtaining the desired mouse model. This review aims to help researchers by providing a decision guide that answers the essential questions that need to be asked before generating the most suitable genetically modified mouse line in the most optimal timeframe. The review includes the latest technologies in both the stem cell culture and gene editing tools, particularly CRISPR/Cas9, and provides compatibility guidelines for selecting among the different types of genetic modifications that can be introduced in the mouse genome and the various routes for introducing these modifications into the mouse germline.
Collapse
Affiliation(s)
- Ivo J Huijbers
- Mouse Clinic for Cancer and Aging, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Chen G, Schell JP, Benitez JA, Petropoulos S, Yilmaz M, Reinius B, Alekseenko Z, Shi L, Hedlund E, Lanner F, Sandberg R, Deng Q. Single-cell analyses of X Chromosome inactivation dynamics and pluripotency during differentiation. Genome Res 2016; 26:1342-1354. [PMID: 27486082 PMCID: PMC5052059 DOI: 10.1101/gr.201954.115] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/29/2016] [Indexed: 12/18/2022]
Abstract
Pluripotency, differentiation, and X Chromosome inactivation (XCI) are key aspects of embryonic development. However, the underlying relationship and mechanisms among these processes remain unclear. Here, we systematically dissected these features along developmental progression using mouse embryonic stem cells (mESCs) and single-cell RNA sequencing with allelic resolution. We found that mESCs grown in a ground state 2i condition displayed transcriptomic profiles diffused from preimplantation mouse embryonic cells, whereas EpiStem cells closely resembled the post-implantation epiblast. Sex-related gene expression varied greatly across distinct developmental states. We also identified novel markers that were highly enriched in each developmental state. Moreover, we revealed that several novel pathways, including PluriNetWork and Focal Adhesion, were responsible for the delayed progression of female EpiStem cells. Importantly, we "digitalized" XCI progression using allelic expression of active and inactive X Chromosomes and surprisingly found that XCI states exhibited profound variability in each developmental state, including the 2i condition. XCI progression was not tightly synchronized with loss of pluripotency and increase of differentiation at the single-cell level, although these processes were globally correlated. In addition, highly expressed genes, including core pluripotency factors, were in general biallelically expressed. Taken together, our study sheds light on the dynamics of XCI progression and the asynchronicity between pluripotency, differentiation, and XCI.
Collapse
Affiliation(s)
- Geng Chen
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - John Paul Schell
- Department of Clinical Science, Intervention and Technology and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden
| | - Julio Aguila Benitez
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sophie Petropoulos
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Clinical Science, Intervention and Technology and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden
| | - Marlene Yilmaz
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Björn Reinius
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Zhanna Alekseenko
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Leming Shi
- School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Ludwig Institute for Cancer Research, 171 77 Stockholm, Sweden
| | - Qiaolin Deng
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
6
|
Abstract
Parental origin-dependent expression of the imprinted genes is essential for mammalian development. Zfp57 maintains genomic imprinting in mouse embryos and ES cells. To examine the allelic expression patterns of the imprinted genes in ES cells, we obtained multiple hybrid ES clones that were directly derived from the blastocysts generated from the cross between mice on two different genetic backgrounds. The blastocyst-derived ES clones displayed largely intact DNA methylation imprint at the tested imprinted regions. These hybrid ES clones will be useful for future studies to examine the allelic expression of the imprinted genes in ES cells and their differentiated progeny.
Collapse
|
7
|
Lau HT, Liu L, Li X. Zfp57 mutant ES cell lines directly derived from blastocysts. Stem Cell Res 2016; 16:282-6. [PMID: 27345984 DOI: 10.1016/j.scr.2015.12.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 11/17/2022] Open
Abstract
Zfp57 is a master regulator of genomic imprinting in mouse embryos. To further test its functions, we have derived multiple Zfp57 mutant ES clones directly from mouse blastocysts. Indeed, we found DNA methylation imprint was lost at most examined imprinting control regions in these Zfp57 mutant ES clones, similar to what was observed in Zfp57 mutant embryos in the previous studies. This result indicates that these blastocyst-derived Zfp57 mutant ES clones can be employed for functional analyses of Zfp57 in genomic imprinting.
Collapse
Affiliation(s)
- Ho-Tak Lau
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Lizhi Liu
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Xiajun Li
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Oncological Sciences, Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
8
|
Hoelzl MA, Heby-Henricson K, Bilousova G, Rozell B, Kuiper RV, Kasper M, Toftgård R, Teglund S. Suppressor of Fused Plays an Important Role in Regulating Mesodermal Differentiation of Murine Embryonic Stem Cells In Vivo. Stem Cells Dev 2015; 24:2547-60. [PMID: 26176320 DOI: 10.1089/scd.2015.0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The hedgehog (Hh) signaling pathway plays fundamental roles during embryonic development and tumorigenesis. Previously, we have shown that ablation of the tumor suppressor and negative regulator, Suppressor of fused (Sufu), within this pathway causes embryonic lethality around E9.5 in the mouse. In this study, we examine how lack of Sufu influences early cell fate determination processes. We established embryonic stem cell (ESC) lines from preimplantation Sufu(-/-) and wild-type mouse embryos and show that these ESCs express the typical pluripotency markers, alkaline phosphatase, SSEA-1, Oct4, Sox2, and Nanog. We demonstrate that these ESCs express all core Hh pathway components and that glioma-associated protein (Gli)1 mRNA levels are increased in Sufu(-/-) ESCs. Upon spontaneous differentiation of Sufu(-/-) ESCs into embryoid bodies (EBs) in vitro, the Hh pathway is strongly upregulated as indicated by an increase in both Gli1 and patched1 (Ptch1) gene expression. Interestingly, developing Sufu(-/-) EBs were smaller than their wild-type counterparts and showed decreased expression of the ectodermal markers, Fgf5 and Sox1. In vivo teratoma formation revealed that Sufu(-/-) ESCs have a limited capacity for differentiation as the resulting tumors lacked the mesodermal derivatives, cartilage and bone. However, Sufu(-/-) ESCs were able to develop into chondrocytes and osteocytes in vitro, which suggests a differential response of ESCs compared with in vivo conditions. Our findings suggest a regulatory function of the Hh signaling pathway in early mesodermal cell fate determination and emphasize the role of Sufu as a key molecule in this process.
Collapse
Affiliation(s)
- Maria A Hoelzl
- 1 Department of Biosciences and Nutrition, Karolinska Institutet , Huddinge, Sweden
| | - Karin Heby-Henricson
- 1 Department of Biosciences and Nutrition, Karolinska Institutet , Huddinge, Sweden
| | - Ganna Bilousova
- 2 Department of Dermatology, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado , Aurora, Colorado
| | - Björn Rozell
- 3 Department of Laboratory Medicine, Karolinska Institutet , Huddinge, Sweden .,4 Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Raoul V Kuiper
- 3 Department of Laboratory Medicine, Karolinska Institutet , Huddinge, Sweden
| | - Maria Kasper
- 1 Department of Biosciences and Nutrition, Karolinska Institutet , Huddinge, Sweden
| | - Rune Toftgård
- 1 Department of Biosciences and Nutrition, Karolinska Institutet , Huddinge, Sweden
| | - Stephan Teglund
- 1 Department of Biosciences and Nutrition, Karolinska Institutet , Huddinge, Sweden
| |
Collapse
|
9
|
Ding J, Huang X, Shao N, Zhou H, Lee DF, Faiola F, Fidalgo M, Guallar D, Saunders A, Shliaha PV, Wang H, Waghray A, Papatsenko D, Sánchez-Priego C, Li D, Yuan Y, Lemischka IR, Shen L, Kelley K, Deng H, Shen X, Wang J. Tex10 Coordinates Epigenetic Control of Super-Enhancer Activity in Pluripotency and Reprogramming. Cell Stem Cell 2015; 16:653-68. [PMID: 25936917 PMCID: PMC4458159 DOI: 10.1016/j.stem.2015.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/25/2015] [Accepted: 04/03/2015] [Indexed: 12/12/2022]
Abstract
Super-enhancers (SEs) are large clusters of transcriptional enhancers that are co-occupied by multiple lineage-specific transcription factors driving expression of genes that define cell identity. In embryonic stem cells (ESCs), SEs are highly enriched for the core pluripotency factors Oct4, Sox2, and Nanog. In this study, we sought to dissect the molecular control mechanism of SE activity in pluripotency and reprogramming. Starting from a protein interaction network surrounding Sox2, we identified Tex10 as a key pluripotency factor that plays a functionally significant role in ESC self-renewal, early embryo development, and reprogramming. Tex10 is enriched at SEs in a Sox2-dependent manner and coordinates histone acetylation and DNA demethylation at SEs. Tex10 activity is also important for pluripotency and reprogramming in human cells. Our study therefore highlights Tex10 as a core component of the pluripotency network and sheds light on its role in epigenetic control of SE activity for cell fate determination.
Collapse
Affiliation(s)
- Junjun Ding
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ningyi Shao
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Hongwei Zhou
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dung-Fang Lee
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesco Faiola
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miguel Fidalgo
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Guallar
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arven Saunders
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pavel V Shliaha
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB21QR, UK
| | - Hailong Wang
- Organ Transplantation Institute, Xiamen University, Xiamen City, Fujian Province 361102, China
| | - Avinash Waghray
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dmitri Papatsenko
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Sánchez-Priego
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Li
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ye Yuan
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ihor R Lemischka
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Shen
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kevin Kelley
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haiteng Deng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohua Shen
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
10
|
Barakat TS, Gribnau J. Generation of knockout alleles by RFLP based BAC targeting of polymorphic embryonic stem cells. Methods Mol Biol 2015; 1227:143-80. [PMID: 25239745 DOI: 10.1007/978-1-4939-1652-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The isolation of germ line competent mouse Embryonic Stem (ES) cells and the ability to modify the genome by homologous recombination has revolutionized life science research. Since its initial discovery, several approaches have been introduced to increase the efficiency of homologous recombination, including the use of isogenic DNA for the generation of targeting constructs, and the use of Bacterial Artificial Chromosomes (BACs). BACs have the advantage of combining long stretches of homologous DNA, thereby increasing targeting efficiencies, with the possibilities delivered by BAC recombineering approaches, which provide the researcher with almost unlimited possibilities to efficiently edit the genome in a controlled fashion. Despite these advantages of BAC targeting approaches, a widespread use has been hampered, mainly because of the difficulties in identifying BAC-targeted knockout alleles by conventional methods like Southern Blotting. Recently, we introduced a novel BAC targeting strategy, in which Restriction Fragment Length Polymorphisms (RFLPs) are targeted in polymorphic mouse ES cells, enabling an efficient and easy PCR-based readout to identify properly targeted alleles. Here we provide a detailed protocol for the generation of targeting constructs, targeting of ES cells, and convenient PCR-based analysis of targeted clones, which enable the user to generate knockout ES cells of almost every gene in the mouse genome within a 2-month period.
Collapse
Affiliation(s)
- Tahsin Stefan Barakat
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Room Ee 09-71, PO Box 2040, 3000 CA, Rotterdam, The Netherlands,
| | | |
Collapse
|
11
|
Barakat TS, Gribnau J. Combined DNA-RNA fluorescent in situ hybridization (FISH) to study X chromosome inactivation in differentiated female mouse embryonic stem cells. J Vis Exp 2014. [PMID: 24961515 DOI: 10.3791/51628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fluorescent in situ hybridization (FISH) is a molecular technique which enables the detection of nucleic acids in cells. DNA FISH is often used in cytogenetics and cancer diagnostics, and can detect aberrations of the genome, which often has important clinical implications. RNA FISH can be used to detect RNA molecules in cells and has provided important insights in regulation of gene expression. Combining DNA and RNA FISH within the same cell is technically challenging, as conditions suitable for DNA FISH might be too harsh for fragile, single stranded RNA molecules. We here present an easily applicable protocol which enables the combined, simultaneous detection of Xist RNA and DNA encoded by the X chromosomes. This combined DNA-RNA FISH protocol can likely be applied to other systems where both RNA and DNA need to be detected.
Collapse
Affiliation(s)
| | - Joost Gribnau
- Department of Reproduction and Development, Erasmus MC - University Medical Center
| |
Collapse
|
12
|
Beta-catenin is vital for the integrity of mouse embryonic stem cells. PLoS One 2014; 9:e86691. [PMID: 24466203 PMCID: PMC3897734 DOI: 10.1371/journal.pone.0086691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/09/2013] [Indexed: 01/08/2023] Open
Abstract
β-Catenin mediated Wnt-signaling is assumed to play a major function in embryonic stem cells in maintaining their stem cell character and the exit from this unique trait. The complexity of β-catenin action and conflicting results on the role of β-catenin in maintaining the pluripotent state have made it difficult to understand its precise cellular and molecular functions. To attempt this issue we have generated new genetically modified mouse embryonic stem cell lines allowing for the deletion of β-catenin in a controlled manner by taking advantage of the Cre-ER-T2 system and analyzed the effects in a narrow time window shortly after ablation. By using this approach, rather then taking long term cultured β-catenin null cell lines we demonstrate that β-catenin is dispensable for the maintenance of pluripotency associated genes. In addition we observed that the removal of β-catenin leads to a strong increase of cell death, the appearance of multiple clustered functional centrosomes most likely due to a mis-regulation of the polo-like-kinase 2 and furthermore, alterations in chromosome segregation. Our study demonstrates the importance of β-catenin in maintaining correct cellular functions and helps to understand its role in embryonic stem cells.
Collapse
|
13
|
Livshits G, Lowe SW. Accelerating cancer modeling with RNAi and nongermline genetically engineered mouse models. Cold Spring Harb Protoc 2013; 2013:2013/11/pdb.top069856. [PMID: 24184755 DOI: 10.1101/pdb.top069856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
For more than two decades, genetically engineered mouse models have been key to our mechanistic understanding of tumorigenesis and cancer progression. Recently, the massive quantity of data emerging from cancer genomics studies has demanded a corresponding increase in the efficiency and throughput of in vivo models for functional testing of putative cancer genes. Already a mainstay of cancer research, recent innovations in RNA interference (RNAi) technology have extended its utility for studying gene function and genetic interactions, enabling tissue-specific, inducible and reversible gene silencing in vivo. Concurrent advances in embryonic stem cell (ESC) culture and genome engineering have accelerated several steps of genetically engineered mouse model production and have facilitated the incorporation of RNAi technology into these models. Here, we review the current state of these technologies and examine how their integration has the potential to dramatically enhance the throughput and capabilities of animal models for cancer.
Collapse
Affiliation(s)
- Geulah Livshits
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | | |
Collapse
|
14
|
Baharvand H, Hassani SN. A new chemical approach to the efficient generation of mouse embryonic stem cells. Methods Mol Biol 2013; 997:13-22. [PMID: 23546744 DOI: 10.1007/978-1-62703-348-0_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Here, we present a highly efficient and reproducible method for the establishment of mouse embryonic stem cells (mESCs) from embryonic day 3.5 (E3.5) whole blastocysts. This protocol involves the use of small molecules SB431542 and PD0325901, which inhibit transforming growth factor-β (TGF-β) and extracellular signal-regulated kinases (ERK1/2), respectively. This protocol is universal in the derivation of mESC lines from NMRI, C57BL/6, BALB/c, DBA/2, and FVB/N strains, which have previously been considered refractory or non-permissive for ESC establishment. The efficiency of mESC lines generation is 100%, regardless of genetic background.
Collapse
Affiliation(s)
- Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | |
Collapse
|
15
|
Gareau T, Lara GG, Shepherd RD, Krawetz R, Rancourt DE, Rinker KD, Kallos MS. Shear stress influences the pluripotency of murine embryonic stem cells in stirred suspension bioreactors. J Tissue Eng Regen Med 2012; 8:268-78. [PMID: 22653738 DOI: 10.1002/term.1518] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 12/22/2011] [Accepted: 02/28/2012] [Indexed: 12/13/2022]
Abstract
Pluripotent embryonic stem cells (ESCs) have been used increasingly in research as primary material for various tissue-engineering applications. Pluripotency, or the ability to give rise to all cells of the body, is an important characteristic of ESCs. Traditional methods use leukaemia inhibitory factor (LIF) to maintain murine embryonic stem cell (mESC) pluripotency in static and bioreactor cultures. When LIF is removed from mESCs in static cultures, pluripotency genes are downregulated and the cultures will spontaneously differentiate. Recently we have shown the maintenance of pluripotency gene expression of mESCs in stirred suspension bioreactors during differentiation experiments in the absence of LIF. This is undesired in a differentiation experiment, where the goal is downregulation of pluripotency gene expression and upregulation of gene expression characteristic to the differentiation. Thus, the objective of this study was to examine how effectively different levels of shear stress [100 rpm (6 dyne/cm(2) ), 60 rpm (3 dyne/cm(2) )] maintained and influenced pluripotency in suspension bioreactors. The pluripotency markers Oct-4, Nanog, Sox-2 and Rex-1 were assessed using gene expression profiles and flow-cytometry analysis and showed that shear stress does maintain and influence the gene expression of certain pluripotency markers. Some significant differences between the two levels of shear stress were seen and the combination of shear stress and LIF was observed to synergistically increase the expression of certain pluripotency markers. Overall, this study provides a better understanding of the environmental conditions within suspension bioreactors and how these conditions affect the pluripotency of mESCs.
Collapse
Affiliation(s)
- Tia Gareau
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Hassani SN, Totonchi M, Farrokhi A, Taei A, Larijani MR, Gourabi H, Baharvand H. Simultaneous Suppression of TGF-β and ERK Signaling Contributes to the Highly Efficient and Reproducible Generation of Mouse Embryonic Stem Cells from Previously Considered Refractory and Non-permissive Strains. Stem Cell Rev Rep 2012; 8:472-481. [DOI: 10.1007/s12015-011-9306-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Yin L, Ohanyan V, Pung YF, Delucia A, Bailey E, Enrick M, Stevanov K, Kolz CL, Guarini G, Chilian WM. Induction of vascular progenitor cells from endothelial cells stimulates coronary collateral growth. Circ Res 2011; 110:241-52. [PMID: 22095729 DOI: 10.1161/circresaha.111.250126] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RATIONALE A well-developed coronary collateral circulation improves the morbidity and mortality of patients following an acute coronary occlusion. Although regenerative medicine has great potential in stimulating vascular growth in the heart, to date there have been mixed results, and the ideal cell type for this therapy has not been resolved. OBJECTIVE To generate induced vascular progenitor cells (iVPCs) from endothelial cells, which can differentiate into vascular smooth muscle cells (VSMCs) or endothelial cells (ECs), and test their capability to stimulate coronary collateral growth. METHODS AND RESULTS We reprogrammed rat ECs with the transcription factors Oct4, Klf4, Sox2, and c-Myc. A population of reprogrammed cells was derived that expressed pluripotent markers Oct4, SSEA-1, Rex1, and AP and hemangioblast markers CD133, Flk1, and c-kit. These cells were designated iVPCs because they remained committed to vascular lineage and could differentiate into vascular ECs and VSMCs in vitro. The iVPCs demonstrated better in vitro angiogenic potential (tube network on 2-dimensional culture, tube formation in growth factor reduced Matrigel) than native ECs. The risk of teratoma formation in iVPCs is also reduced in comparison with fully reprogrammed induced pluripotent stem cells (iPSCs). When iVPCs were implanted into myocardium, they engrafted into blood vessels and increased coronary collateral flow (microspheres) and improved cardiac function (echocardiography) better than iPSCs, mesenchymal stem cells, native ECs, and sham treatments. CONCLUSIONS We conclude that iVPCs, generated by partially reprogramming ECs, are an ideal cell type for cell-based therapy designed to stimulate coronary collateral growth.
Collapse
Affiliation(s)
- Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 2011; 477:295-300. [PMID: 21874018 PMCID: PMC3175327 DOI: 10.1038/nature10398] [Citation(s) in RCA: 1569] [Impact Index Per Article: 112.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 07/26/2011] [Indexed: 12/19/2022]
Abstract
Although thousands of large intergenic non-coding RNAs (lincRNAs) have been identified in mammals, few have been functionally characterized, leading to debate about their biological role. To address this, we performed loss-of-function studies on most lincRNAs expressed in mouse embryonic stem (ES) cells and characterized the effects on gene expression. Here we show that knockdown of lincRNAs has major consequences on gene expression patterns, comparable to knockdown of well-known ES cell regulators. Notably, lincRNAs primarily affect gene expression in trans. Knockdown of dozens of lincRNAs causes either exit from the pluripotent state or upregulation of lineage commitment programs. We integrate lincRNAs into the molecular circuitry of ES cells and show that lincRNA genes are regulated by key transcription factors and that lincRNA transcripts bind to multiple chromatin regulatory proteins to affect shared gene expression programs. Together, the results demonstrate that lincRNAs have key roles in the circuitry controlling ES cell state.
Collapse
|
19
|
An G, Miner CA, Nixon JC, Kincade PW, Bryant J, Tucker PW, Webb CF. Loss of Bright/ARID3a function promotes developmental plasticity. Stem Cells 2010; 28:1560-7. [PMID: 20680960 DOI: 10.1002/stem.491] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
B-cell regulator of immunoglobulin heavy chain transcription (Bright)/ARID3a, an A+T-rich interaction domain protein, was originally discovered in B lymphocyte lineage cells. However, expression patterns and high lethality levels in knockout mice suggested that it had additional functions. Three independent lines of evidence show that functional inhibition of Bright results in increased developmental plasticity. Bright-deficient cells from two mouse models expressed a number of pluripotency-associated gene products, expanded indefinitely, and spontaneously differentiated into cells of multiple lineages. Furthermore, direct knockdown of human Bright resulted in colonies capable of expressing multiple lineage markers. These data suggest that repression of this single molecule confers adult somatic cells with new developmental options.
Collapse
Affiliation(s)
- Guangyu An
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Epigenetic regulatory mechanisms during preimplantation development. ACTA ACUST UNITED AC 2009; 87:297-313. [DOI: 10.1002/bdrc.20165] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Jeziorska DM, Jordan KW, Vance KW. A systems biology approach to understanding cis-regulatory module function. Semin Cell Dev Biol 2009; 20:856-62. [PMID: 19660565 DOI: 10.1016/j.semcdb.2009.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/29/2009] [Indexed: 12/27/2022]
Abstract
The genomic instructions used to regulate development are encoded within a set of functional DNA elements called cis-regulatory modules (CRMs). These elements determine the precise patterns of temporal and spatial gene expression. Here we summarize recent progress made towards cataloguing and characterizing the complete repertoire of CRMs. We describe CRMs as genomic information processing devices containing clusters of transcription factor binding sites and we position CRMs as nodes within large gene regulatory networks. We define CRM architecture and describe how these genomic elements process the information they encode to their target genes. Furthermore, we present an overview describing high-throughput techniques to identify CRMs genome wide and experimental methodologies to validate their function on a large scale. This review emphasizes the advantages and power of a systems biology approach which integrates computational and experimental technologies to further our understanding of CRM function.
Collapse
Affiliation(s)
- Danuta M Jeziorska
- Departments of Systems Biology and Biological Sciences, University of Warwick, Biomedical Research Institute, Gibbet Hill, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
22
|
High-throughput bisulfite sequencing in mammalian genomes. Methods 2009; 48:226-32. [PMID: 19442738 DOI: 10.1016/j.ymeth.2009.05.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/04/2009] [Accepted: 05/04/2009] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is a critical epigenetic mark that is essential for mammalian development and aberrant in many diseases including cancer. Over the past decade multiple methods have been developed and applied to characterize its genome-wide distribution. Of these, reduced representation bisulfite sequencing (RRBS) generates nucleotide resolution DNA methylation bisulfite sequencing libraries that enrich for CpG-dense regions by methylation-insensitive restriction digestion. Here we provide an extensive, optimized protocol for generating RRBS libraries and discuss the power of this strategy for methylome profiling. We include information on sequence analysis and the relative coverage over genomic regions of interest for a representative mouse MspI generated RRBS library. Contemporary sequencing and array-based technologies are compared against sample throughput and coverage, highlighting the variety of options available to investigate methylation on the genome-scale.
Collapse
|