1
|
Rong B, Jiang H, Zhu W, Yang G, Zhou X, Lyu Z, Li X, Zhang J. Unraveling the role of macrophages in diabetes: Impaired phagocytic function and therapeutic prospects. Medicine (Baltimore) 2025; 104:e41613. [PMID: 39993124 PMCID: PMC11856964 DOI: 10.1097/md.0000000000041613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/28/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
The rising aging population and changing lifestyles have led to a global increase in diabetes and its complications, making it one of the most prevalent diseases worldwide. Chronic inflammation is a key pathogenic feature of diabetes and its complications, yet the precise mechanisms remain unclear, impeding the development of targeted therapies. Recent studies have highlighted the β cell-macrophage crosstalk pathway as a crucial factor in chronic low-grade inflammation and glucose homeostasis imbalance in both type 1 and type 2 diabetes. Furthermore, impaired macrophage phagocytic functions, including pathogen phagocytosis, efferocytosis, and autophagy, play a significant role in diabetes complications. Given their high plasticity, macrophages represent a promising research target. This review summarizes recent findings on macrophage phagocytic dysfunction in diabetes and its complications, and explores emerging therapies targeting macrophage phagocytic function. We also discuss the current challenges in translating basic research to clinical practice, aiming to guide researchers in developing targeted treatments to regulate macrophage status and phagocytic function, thus preventing and treating metabolic inflammatory diseases.
Collapse
Affiliation(s)
- Bing Rong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hailun Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weiming Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH
| | - Xuancheng Zhou
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhongxi Lyu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiangyi Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Xing L, Mondesir R, Glasstetter LM, Zhu XY, Lu B, Al Saeedi M, Sohi GK, Eirin A, Lerman LO. The Impact of Obesity on Autophagy in Human Adipose-Derived Mesenchymal Stromal Cells. Cell Transplant 2025; 34:9636897251323339. [PMID: 40116436 PMCID: PMC11930488 DOI: 10.1177/09636897251323339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/14/2025] [Accepted: 02/06/2025] [Indexed: 03/23/2025] Open
Abstract
Mesenchymal stromal cells (MSCs) possess therapeutic properties, which can be blunted by obesity. Autophagy, a cellular recycling process, is essential for MSC function. We investigated the mechanisms by which obesity affects the properties of MSCs, with a focus on autophagy. Adipose tissue was obtained from kidney donors [body mass index (BMI) <30 kg/m2, non-obese] or individuals undergoing weight loss surgery (BMI ≥30 kg/m2, obese) for MSC harvesting (n = 11 each); samples were randomized to sequencing (seq; n = 5 each) or functional studies (n = 6 each). MSCs were sequenced to determine their epigenetic (5-hydroxymethylcytosine) and transcriptomic profiles across autophagy-related genes using hydroxymethylated DNA immunoprecipitation sequencing and mRNA-seq, respectively. Genes with shared trends in both datasets underwent Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) validation. During functional studies, 2-h starvation was used to induce autophagy in vitro, enabling detection of changes in the protein expression of microtubule-associated protein 1A/1B-light chain-3 and in autophagic flux. Obesity amplified a starvation-induced reduction in autophagic flux in MSCs while promoting earlier generation of new autophagosomes during autophagy initiation. Integrated analysis of the two sequencing datasets revealed 124 differentially hydroxymethylated genes and 30 differentially expressed mRNAs. Among six overlapping autophagy-related genes, three exhibited same-direction trends. Of these, STX12 and SLC25A4 may be implicated in the impact of obesity on autophagic changes in MSCs. Therefore, human obesity may alter autophagy in adipose tissue-derived MSC, and thereby their metabolism and function.
Collapse
Affiliation(s)
- Li Xing
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ronscardy Mondesir
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Bo Lu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mina Al Saeedi
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Teixeira ABDS, Ramalho MCC, de Souza I, de Andrade IAM, Osawa IYA, Guedes CB, de Oliveira BS, de Souza CHD, da Silva TL, Moreno NC, Latancia MT, Rocha CRR. The role of chaperone-mediated autophagy in drug resistance. Genet Mol Biol 2024; 47:e20230317. [PMID: 38829285 PMCID: PMC11145944 DOI: 10.1590/1678-4685-gmb-2023-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/19/2024] [Indexed: 06/05/2024] Open
Abstract
In the search for alternatives to overcome the challenge imposed by drug resistance development in cancer treatment, the modulation of autophagy has emerged as a promising alternative that has achieved good results in clinical trials. Nevertheless, most of these studies have overlooked a novel and selective type of autophagy: chaperone-mediated autophagy (CMA). Following its discovery, research into CMA's contribution to tumor progression has accelerated rapidly. Therefore, we now understand that stress conditions are the primary signal responsible for modulating CMA in cancer cells. In turn, the degradation of proteins by CMA can offer important advantages for tumorigenesis, since tumor suppressor proteins are CMA targets. Such mutual interaction between the tumor microenvironment and CMA also plays a crucial part in establishing therapy resistance, making this discussion the focus of the present review. Thus, we highlight how suppression of LAMP2A can enhance the sensitivity of cancer cells to several drugs, just as downregulation of CMA activity can lead to resistance in certain cases. Given this panorama, it is important to identify selective modulators of CMA to enhance the therapeutic response.
Collapse
Affiliation(s)
- Ana Beatriz da Silva Teixeira
- Universidade Federal de São Paulo (UNIFESP), Departamento de
Oncologia Clínica e Experimental, São Paulo, SP, Brazil
| | - Maria Carolina Clares Ramalho
- Universidade Federal de São Paulo (UNIFESP), Departamento de
Oncologia Clínica e Experimental, São Paulo, SP, Brazil
| | - Izadora de Souza
- Universidade Federal de São Paulo (UNIFESP), Departamento de
Oncologia Clínica e Experimental, São Paulo, SP, Brazil
| | | | - Isabeli Yumi Araújo Osawa
- Universidade Federal de São Paulo (UNIFESP), Departamento de
Oncologia Clínica e Experimental, São Paulo, SP, Brazil
| | - Camila Banca Guedes
- Universidade Federal de São Paulo (UNIFESP), Departamento de
Oncologia Clínica e Experimental, São Paulo, SP, Brazil
| | - Beatriz Silva de Oliveira
- Universidade Federal de São Paulo (UNIFESP), Departamento de
Oncologia Clínica e Experimental, São Paulo, SP, Brazil
| | | | - Tainá Lins da Silva
- Universidade Federal de São Paulo (UNIFESP), Departamento de
Oncologia Clínica e Experimental, São Paulo, SP, Brazil
| | - Natália Cestari Moreno
- National Institutes of Health, National Institute of Child Health
and Human Development, Laboratory of Genomic Integrity, Bethesda, MD, USA
| | - Marcela Teatin Latancia
- National Institutes of Health, National Institute of Child Health
and Human Development, Laboratory of Genomic Integrity, Bethesda, MD, USA
| | - Clarissa Ribeiro Reily Rocha
- Universidade Federal de São Paulo (UNIFESP), Departamento de
Oncologia Clínica e Experimental, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Rajan PK, Udoh UAS, Nakafuku Y, Pierre SV, Sanabria J. Normalization of the ATP1A1 Signalosome Rescinds Epigenetic Modifications and Induces Cell Autophagy in Hepatocellular Carcinoma. Cells 2023; 12:2367. [PMID: 37830582 PMCID: PMC10572209 DOI: 10.3390/cells12192367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. In metabolic dysfunction-associated steatohepatitis (MASH)-related HCC, cellular redox imbalance from metabolic disturbances leads to dysregulation of the α1-subunit of the Na/K-ATPase (ATP1A1) signalosome. We have recently reported that the normalization of this pathway exhibited tumor suppressor activity in MASH-HCC. We hypothesized that dysregulated signaling from the ATP1A1, mediated by cellular metabolic stress, promotes aberrant epigenetic modifications including abnormal post-translational histone modifications and dysfunctional autophagic activity, leading to HCC development and progression. Increased H3K9 acetylation (H3K9ac) and H3K9 tri-methylation (H3K9me3) were observed in human HCC cell lines, HCC-xenograft and MASH-HCC mouse models, and epigenetic changes were associated with decreased cell autophagy in HCC cell lines. Inhibition of the pro-autophagic transcription factor FoxO1 was associated with elevated protein carbonylation and decreased levels of reduced glutathione (GSH). In contrast, normalization of the ATP1A1 signaling significantly decreased H3K9ac and H3K9me3, in vitro and in vivo, with concomitant nuclear localization of FoxO1, heightening cell autophagy and cancer-cell apoptotic activities in treated HCC cell lines. Our results showed the critical role of the ATP1A1 signalosome in HCC development and progression through epigenetic modifications and impaired cell autophagy activity, highlighting the importance of the ATP1A1 pathway as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Pradeep Kumar Rajan
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Utibe-Abasi S. Udoh
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Yuto Nakafuku
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Sandrine V. Pierre
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Juan Sanabria
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
- Department of Nutrition and Metabolomic Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH 44100, USA
| |
Collapse
|
5
|
Autophagic reprogramming of bone marrow–derived macrophages. Immunol Res 2022; 71:229-246. [PMID: 36451006 PMCID: PMC10060350 DOI: 10.1007/s12026-022-09344-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/12/2022] [Indexed: 12/02/2022]
Abstract
Abstract
Macro-autophagy is a highly conserved catabolic process among eukaryotes affecting macrophages. This work studies the genetic regulatory network involving the interplay between autophagy and macrophage polarization (activation). Autophagy-related genes (Atgs) and differentially expressed genes (DEGs) of macrophage polarization (M1–M2) were predicted, and their regulatory networks constructed. Naïve (M0) mouse bone marrow–derived monocytes were differentiated into M1 and M2a. Validation of the targets of Smad1, LC3A and LC3B, Atg16L1, Atg7, IL-6, CD68, Arg-1, and Vamp7 was performed in vitro. Immunophenotyping by flow cytometry revealed three macrophage phenotypes: M0 (IL-6 + /CD68 +), M1 (IL-6 + /CD68 + /Arg-1 +), and M2a (CD68 + /Arg-1). Confocal microscopy revealed increased autophagy in both M1 and M2a and a significant increase in the pre-autophagosomes size and number. Bafilomycin A increased the expression of CD68 and Arg-1 in all cell lineages. In conclusion, our approach predicted the protein targets mediating the interplay between autophagy and macrophage polarization. We suggest that autophagy reprograms macrophage polarization via CD68, arginase 1, Atg16L1-1, and Atg16L1-3. The current findings provide a foundation for the future use of macrophages in immunotherapy of different autoimmune disorders.
Collapse
|
6
|
NLRP3 Inflammasome Simultaneously Involved in Autophagy and Phagocytosis of THP-1 Cells to Clear Aged Erythrocytes. J Immunol Res 2022; 2022:1481154. [PMID: 36213328 PMCID: PMC9546708 DOI: 10.1155/2022/1481154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Autophagy and phagocytosis are two important processes that capture and digest materials found in cellular interiors and exteriors, respectively. Aged red blood cells (RBCs) are cleared by phagocytes in vivo. We focused on determining whether autophagy occurs after phagocytes swallow sunset erythrocytes, and whether the degree of autophagy is related to scavenging ability of phagocytes to erythrocytes. In addition, the ability of NLR family pyrin domain containing protein 3 (NLRP3) inflammasome to regulate erythrocyte clearance by phagocytes and its association with autophagy-related protein 16-like protein 1 (ATG16L1) are confirmed. We constructed a stable and low-NLRP3 expression THP-1 cell line using CRISPR/Cas9 technology. The analysis of erythrocyte clearance and autophagy of THP-1 cells with low NLRP3 expression showed that autophagy changes together when THP-1 engulfs aged RBCs. The occurrence of autophagy was dominated by microtubule-associated protein 1A/1B-light chain 3- (LC3-) associated phagocytosis accompanied by canonical autophagy. A negative correlation exists between the clearance of RBCs by THP-1 cells and the degree of autophagy. Downregulating the expression of NLRP3 in THP-1 cells can simultaneously inhibit the scavenging ability of THP-1 to erythrocytes and the degree of autophagy. In addition, the autophagy inhibitor bafilomycin A1 (BafA1) can enhance the phagocytosis ability of THP-1 to erythrocytes and promote the NLRP3 activation in THP-1 cells, while the autophagy inducer rapamycin inhibits the phagocytosis ability of THP-1 to RBCs and downregulates the NLRP3 activation. Results showed that autophagy and phagocytosis may be dynamic balance processes that can provide sufficient nutrition and energy to cells. Choosing NLRP3 as a target may regulate the phagocytic ability and the degree of autophagy in the meantime. These findings may be a potential strategy for regulating the clearance rate of phagocytes to aged RBCs and the secretion of proinflammatory cytokines to ensure transfusion safety.
Collapse
|
7
|
Wang W, Chen L, Zhu W, Huang X, Lin L, Quan Z, Sun K, Xu Q. miR-4486 reverses cisplatin-resistance of colon cancer cells via targeting ATG7 to inhibiting autophagy. Exp Ther Med 2021; 22:1465. [PMID: 34737805 PMCID: PMC8561764 DOI: 10.3892/etm.2021.10900] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Cisplatin (DDP) resistance is one of the main causes of treatment failure in patients with colon cancer (CC). Autophagy is a key mechanism of resistance to chemotherapy. Since autophagy-related 7 (ATG7) has been reported to be involved in the regulation of autophagy and DDP resistance for lung and esophageal cancer, the present study aimed to explore the functions of microRNA (miR)-4486 in the autophagy-mediated DDP resistance of CC. The expression level of miR-4486 in HCT116, DDP-resistant HCT116 cells (HCT116/DDP), SW480 and DDP-resistant SW480 cells (SW480/DDP) was quantified by reverse transcription-quantitative PCR. Western blotting was utilized to analyze the expression of ATG7, autophagy-related proteins Beclin 1 and LC3-I/II, as well as apoptosis-related proteins Bcl-2, Bax and cleaved-caspase 3 in HCT116/DDP and SW480/DDP cells. The half maximal inhibitory concentration of DDP on all cell lines and the cell viability of HCT116/DDP and SW480/DDP cells were measured using Cell Counting Kit 8 assay. Luciferase assay was used to examine the potential targets of miR-4486 and ATG7. The effects of upregulating mimic miR-4486 expression on the apoptosis and autophagy of HCT116/DDP and SW480/DDP cells were determined by flow cytometry and electron microscopy, respectively. It was found that miR-4486 expression was significantly decreased in HCT116/DDP and SW480/DDP cells compared with that in HCT116 and SW480 cells. Overexpression of miR-4486 could increase the sensitivity of HCT116/DDP and SW480/DDP cells to DDP by reducing cell viability, promoting apoptosis and inhibiting autophagy through downregulating Beclin 1 expression and the LC3-II/LC3-I ratio. Additionally, ATG7 was identified to be a target gene of miR-4486, where ATG7 overexpression could partially reverse the effects of miR-4486 on cell viability and apoptosis by promoting the formation of autophagosomes. In conclusion, the present results demonstrated that miR-4486 could reverse DDP resistance in HCT116/DDP and SW480/DDP cells by targeting ATG7 to inhibit autophagy.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Linxia Chen
- Department of Operating Room, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Wenjin Zhu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Xianjin Huang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Lin Lin
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Zhenhao Quan
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Kaiyu Sun
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Qingwen Xu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
8
|
Tsuchiya M, Ogawa H, Watanabe K, Koujin T, Mori C, Nunomura K, Lin B, Tani A, Hiraoka Y, Haraguchi T. Microtubule inhibitors identified through nonbiased screening enhance DNA transfection efficiency by delaying p62-dependent ubiquitin recruitment. Genes Cells 2021; 26:739-751. [PMID: 34212463 DOI: 10.1111/gtc.12881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 11/26/2022]
Abstract
Ectopic gene expression is an indispensable tool in biology and medicine, but is often limited by the low efficiency of DNA transfection. We previously reported that depletion of the autophagy receptor p62/SQSTM1 enhances DNA transfection efficiency by preventing the degradation of transfected DNA. Therefore, p62 is a potential target for drugs to increase transfection efficiency. To identify such drugs, a nonbiased high-throughput screening was applied to over 4,000 compounds from the Osaka University compound library, and their p62 dependency was evaluated. The top-scoring drugs were mostly microtubule inhibitors, such as colchicine and vinblastine, and all of them showed positive effects only in the presence of p62. To understand the p62-dependent mechanisms, the time required for p62-dependent ubiquitination, which is required for autophagosome formation, was examined using polystyrene beads that were introduced into cells as materials that mimicked transfected DNA. Microtubule inhibitors caused a delay in ubiquitination. Furthermore, the level of phosphorylated p62 at S405 was markedly decreased in the drug-treated cells. These results suggest that microtubule inhibitors inhibit p62-dependent autophagosome formation. Our findings demonstrate for the first time that microtubule inhibitors suppress p62 activation as a mechanism for increasing DNA transfection efficiency and provide solutions to increase efficiency.
Collapse
Affiliation(s)
- Megumi Tsuchiya
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Kento Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Takako Koujin
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Chie Mori
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Kazuto Nunomura
- Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| | - Bangzhong Lin
- Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| | - Akiyoshi Tani
- Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
9
|
Ngowi EE, Afzal A, Sarfraz M, Khattak S, Zaman SU, Khan NH, Li T, Jiang QY, Zhang X, Duan SF, Ji XY, Wu DD. Role of hydrogen sulfide donors in cancer development and progression. Int J Biol Sci 2021; 17:73-88. [PMID: 33390834 PMCID: PMC7757040 DOI: 10.7150/ijbs.47850] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, a vast number of potential cancer therapeutic targets have emerged. However, developing efficient and effective drugs for the targets is of major concern. Hydrogen sulfide (H2S), one of the three known gasotransmitters, is involved in the regulation of various cellular activities such as autophagy, apoptosis, migration, and proliferation. Low production of H2S has been identified in numerous cancer types. Treating cancer cells with H2S donors is the common experimental technique used to improve H2S levels; however, the outcome depends on the concentration/dose, time, cell type, and sometimes the drug used. Both natural and synthesized donors are available for this purpose, although their effects vary independently ranging from strong cancer suppressors to promoters. Nonetheless, numerous signaling pathways have been reported to be altered following the treatments with H2S donors which suggest their potential in cancer treatment. This review will analyze the potential of H2S donors in cancer therapy by summarizing key cellular processes and mechanisms involved.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Attia Afzal
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 56400, Pakistan
| | - Muhammad Sarfraz
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 56400, Pakistan
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shams Uz Zaman
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
10
|
Bortolami M, Comparato A, Benna C, Errico A, Maretto I, Pucciarelli S, Cillo U, Farinati F. Gene and protein expression of mTOR and LC3 in hepatocellular carcinoma, colorectal liver metastasis and "normal" liver tissues. PLoS One 2020; 15:e0244356. [PMID: 33362215 PMCID: PMC7757890 DOI: 10.1371/journal.pone.0244356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The physiological role of autophagy in the progression of liver diseases is still debated. To understand the clinical relevance of autophagy in primary e secondary hepatic tumors, we analyzed the expression of mTOR (mammalian target of rapamycin), a key regulator of autophagy; Raptor (regulatory-associated protein of mTOR); ULK1 (Unc-51 like kinase 1) determinant in the autophagy initiation; LC3 (microtubule-associated protein 1A/1B-light chain 3), a specific marker of autophagosomes; and p62, a selective autophagy receptor. Samples from subjects with chronic hepatitis (n.58), cirrhosis (n.12), hepatocellular carcinoma (HCC, n.56), metastases (n.48) from colorectal cancer and hyperplasia or gallbladder stones (n.7), the latter considered as controls, were examined. Gene expression analysis was carried out in n.213 tissues by absolute q-PCR, while protein expression by Western Blot in n.191 lysates, including tumoral, surrounding tumoral and normal tissues. Nonparametric statistical tests were used for comparing expression levels in the above-mentioned groups. Subgroup analysis was performed considering viral infection and chemotherapy treatment. The mTOR transcriptional level was significantly lower in metastases compared to HCC (P = 0.0001). p-mTOR(Ser2448) and LC3II/LC3I protein levels were significantly higher in metastases compared to HCC (P = 0.008 and P<0.0001, respectively). ULK(Ser757) levels were significantly higher in HCC compared to metastases (P = 0.0002) while the HCV- and HBV- related HCC showed the highest p62 levels. Chemotherapy induced a down-regulation of the p-mTOR(Ser2448) in metastases and in non-tumor surrounding tissues in treated patients compared to untreated (P = 0.001 and P = 0.005, respectively). Conclusions: the different expression of proteins considered, owning their interaction and diverse tissue microenvironment, indicate an impairment of the autophagy flux in primary liver tumors that is critical for the promotion of tumorigenesis process and a coexistence of autophagy inhibition and activation mechanisms in secondary liver tumors. Differences in mTOR and LC3 transcripts emerged in tumor-free tissues, therefore particular attention should be considered in selecting the control group.
Collapse
Affiliation(s)
- Marina Bortolami
- Department of Surgery, Oncology and Gastroenterology, DISCOG, School of Medicine, Gastroenterology Unit, University of Padova, Padova, Italy
| | - Alessandra Comparato
- Department of Surgery, Oncology and Gastroenterology, DISCOG, School of Medicine, Gastroenterology Unit, University of Padova, Padova, Italy
| | - Clara Benna
- Department of Surgery, Oncology and Gastroenterology, DISCOG, School of Medicine, Surgical Unit, University of Padova, Padova, Italy
| | - Andrea Errico
- Department of Surgery, Oncology and Gastroenterology, DISCOG, School of Medicine, Gastroenterology Unit, University of Padova, Padova, Italy
| | - Isacco Maretto
- Department of Surgery, Oncology and Gastroenterology, DISCOG, School of Medicine, Surgical Unit, University of Padova, Padova, Italy
| | - Salvatore Pucciarelli
- Department of Surgery, Oncology and Gastroenterology, DISCOG, School of Medicine, Surgical Unit, University of Padova, Padova, Italy
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology, DISCOG, School of Medicine, Surgical Unit, University of Padova, Padova, Italy
| | - Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology, DISCOG, School of Medicine, Gastroenterology Unit, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Dong W, Luo Y, Zhang G, Zhang H, Liang Y, Zhuo Y, Liang Y, Zou F, Zhong W. Carbon Nanospheres Exert Antitumor Effects Associated with Downregulation of 4E-BP1 Expression on Prostate Cancer. Int J Nanomedicine 2020; 15:5545-5559. [PMID: 32848387 PMCID: PMC7425110 DOI: 10.2147/ijn.s257522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/23/2020] [Indexed: 01/22/2023] Open
Abstract
Introduction Although carbon nanospheres (CNPs) are promising nanomaterials in cancer treatment, how they affect prostate cancer (PCa) remains unclear. Methods In this study, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy were used to confirm the successful synthesis of CNPs. CCK-8, flow cytometry, Transwell, wound healing, Western blot and immunohistochemistry (IHC) assays were performed to evaluate the antitumor effect of CNPs toward the two kinds of prostate cancer cell lines PC3 and DU145. Results Our results showed that CNPs inhibited cell growth, invasion, and migration and induced apoptosis and autophagy in PCa cells. Multifactor detection of a single Akt phosphorylation pathway and Western blot results suggested the suppression of 4E-BP1 in PCa cells after incubation with CNPs. The results from animal experiments also suggested the antitumor effect of CNPs and reduced 4E-BP1 expression in PCa tissue samples from BALB/c nude mice administered a local subcutaneous injection of CNPs.
Collapse
Affiliation(s)
- Weimin Dong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, People's Republic of China
| | - Yong Luo
- Department of Urology, The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, People's Republic of China
| | - Guian Zhang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, People's Republic of China
| | - Hui Zhang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, People's Republic of China
| | - Yuxiang Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, People's Republic of China
| | - Yangjia Zhuo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, People's Republic of China
| | - Yingke Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, People's Republic of China
| | - Fen Zou
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, People's Republic of China
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, People's Republic of China.,Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou 510800, People's Republic of China.,Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, People's Republic of China
| |
Collapse
|
12
|
A promising therapeutic combination for metastatic prostate cancer: Chloroquine as autophagy inhibitor and palladium(II) barbiturate complex. Biochimie 2020; 175:159-172. [PMID: 32497551 DOI: 10.1016/j.biochi.2020.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022]
Abstract
Autophagy is a catabolic process for cells that can provide energy sources and allows cancer cells to evade cell death. Therefore, studies on the combination of autophagy inhibitors with drugs are increasing as a new treatment modality in cancer. Previously, we reported the anti-tumor activity of a Palladium (Pd)(II) complex against different types of cancer in vitro and in vivo. Chloroquine (CQ), the worldwide used anti-malarial drug, has recently been focused as a chemosensitizer in cancer treatment. The aim of this study was to investigate the efficacy of a combined treatment of these agents that work through different mechanisms to provide an effective treatment modality for metastatic prostate cancer that is certainly fatal. Metastatic prostate cancer cell lines (PC-3 and LNCaP) were treated with Pd (II) complex, CQ, and their combination. The combination enhanced apoptosis by increasing phosphatidylserine translocation and pro-apoptotic proteins. Apoptosis was confirmed by the use of apoptosis inhibitor. The formation of acidic vesicular organelles (AVOs) was observed by acridine orange staining in fluorescence microscopy. The Pd (II) complex increased AVOs formation in prostate cancer cells and CQ-pretreatment has potentiated this effect. Importantly, treatment with CQ suppressed the pro-survival function of autophagy, which might have contributed to enhanced cytotoxicity. In addition, PI3K/AKT/mTOR-related protein expressions were altered after the combination of treatments. Our results suggest that combination treatment enhances apoptotic cell death possibly via the inhibition of autophagy, and may therefore be regarded as a novel and better approach for the treatment of metastatic prostate cancer.
Collapse
|
13
|
Li H, Zhang M, Wei Y, Haider F, Lin Y, Guan W, Liu Y, Zhang S, Yuan R, Yang X, Yang S, Wang H. SH3BGRL confers innate drug resistance in breast cancer by stabilizing HER2 activation on cell membrane. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:81. [PMID: 32381043 PMCID: PMC7204297 DOI: 10.1186/s13046-020-01577-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/22/2020] [Indexed: 01/04/2023]
Abstract
Background HER2-positive breast cancer is usually associated to the more aggressive progression and the worse prognosis, but the mechanism underlying the innate resistance to HER2-targeted therapy remains elusive. The scaffold protein SH3-domain-binding glutamic acid-rich protein-like protein (SH3BGRL) is indicated as a tumor suppressor in some cancers, but it is highly expressed in breast cancers. Here we characterized the tumorigenic function of SH3BGRL in HER2-expressing breast cancer cells and the subsequent effect in HER2-targeted therapies. Methods The interaction of SH3BGRL to HER2 were characterized with various truncated SH3BGRL mutants by immunoprecipitation and molecule docking simulation. The physiological roles of SH3BGRL interacting with HER2 in tumor progression and therapy implication were characterized by gain and loss of function approaches in vitro and in vivo. Immunohistochemistry was used for detections of SH3BGRL and p-HER2 (Y1196) expressions in xenografted tumors and human breast cancer tissues. Clinical relevance of SH3BGRL expression with HER2 was validated with both breast patient sample and the public data analyses. Results Our results demonstrated that SH3BGRL directly binds with HER2 on cell membrane via its motifs α1, α2 helixes and β3 sheet, which postpones HER2 internalization upon EGF stimulation. Consequently, the association between SH3BGRL and HER2 contributed to the prolonged HER2 phosphorylation at specific tyrosine sites, especially at Y1196, and their downstream signaling activation. The relevance between SH3BGRL expression and p-HER2 (Y1196) phosphorylation was validated in both xenografted tumors and the breast cancer patient tissues. Mechanistically, SH3BGRL promoted breast tumor cell proliferation and survival, while reduced the cell sensitivity to anti-tumor drugs, especially to the HER2-targeted drugs. In contrast, Silencing SH3BGRL or inhibiting its downstream signals efficiently induced apoptosis of breast tumor cells with HER2 and SH3BGRL doubly positive expression. Database analysis also highlighted that SH3BGRL is a poor prognostic marker, especially for HER2-positive breast cancers. Conclusions Our results disclose SH3BGRL as a novel posttranslational modulator of HER2 hyperactivation, which can lead to the intrinsic resistance to HER2-targeted therapy. SH3BGRL would be a pivotal therapy target and a diagnostic marker to HER2-positve patients. Thus, targeting SH3BGRL or the downstream signaling could relieve the innate resistance to some HER2-tageted therapies for both HER2 and SH3BGRL-postive breast cancers.
Collapse
Affiliation(s)
- Hui Li
- Centre for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China
| | - Mingming Zhang
- Centre for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Yanli Wei
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Farhan Haider
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Yitong Lin
- The Second Hospital of Jilin University, Changchun, 130041, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Yanbin Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.,Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Shaoyang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Ronghua Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Shulan Yang
- Centre for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.
| |
Collapse
|
14
|
Abdel-Karim N, Gaber O, Eldessouki I, Bahassi EM, Morris J. Exosomes as a Surrogate Marker for Autophagy in Peripheral Blood, Correlative Data from Phase I Study of Chloroquine in Combination with Carboplatin/Gemcitabine in Advanced Solid Tumors. Asian Pac J Cancer Prev 2019; 20:3789-3796. [PMID: 31870123 PMCID: PMC7173380 DOI: 10.31557/apjcp.2019.20.12.3789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Autophagy is a catabolic process, utilized constitutionally by body cells to recycle nutrients and to remove unwanted/damaged intracellular constituents. It is enhanced during periods of stress, such as starvation and hypoxia, aiding in cell survival and it is linked to major cellular processes, such as apoptosis and antigen expression. The process has been extensively studied in vitro models or tumor tissue samples with rare application on human subjects. METHODS Plasma samples from 24 advanced solid tumor patients were collected at different time points before and after chemotherapy. Their exosomes were isolate and blotted for microtubule-associated protein-1 light chain-3 (LC-3B) protein as a marker for autophagy. All the subjects received a standard chemotherapy regimen of carboplatin- gemcitabine with chloroquine (CQ)/ hydroxychloroquine (HCQ) in chronic doses throughout their treatment period as an autophagy modulator. CQ/HCQ was given in 50 mg increments as guided by their tolerability to treatment. RESULTS A total of 267 plasma samples were obtained for the 24 patients and processed. Each sample corresponds to a single time point. The first group included 6 patients, all received 50 mg of CQ with chemotherapy. LC-3B I was detected in their isolated exosomes, while LC3-BII was not detected in their samples. The second cohort of patients included 3 subjects who re-ceived 100mg of HCQ. They demonstrated both LC3-BI and II on day 15 after chemotherapy in one patient, and on third cycle after 24 hours in the second patient. The third cohort included 3 subjects who received 150 mg of HCQ. All cases demonstrated LC3-BI and II on first cycle of treatment after less than 24 hours. The last cohort included 8 subjects, who received a fixed dose of 100 mg of HCQ with treatment. In this cohort, we were able to detect both LC3-B isoforms on advanced time points of second and third cycles. CONCLUSION Detection of autophagy protein LC3-B in exosomes serves as a dynamic method to monitor autophagy. It can be utilized to study the effects of anti-neoplastic agents on autophagy and mechanisms of drug resistance, however, to standardize our results a larger specimen of patients should be included.
Collapse
Affiliation(s)
- Nagla Abdel-Karim
- Department of Hematology –Oncology, University of Cincinnati, U S A.
| | | | | | | | | |
Collapse
|
15
|
Wang H, Chen S, Zhang Y, Xu H, Sun H. Electroacupuncture ameliorates neuronal injury by Pink1/Parkin-mediated mitophagy clearance in cerebral ischemia-reperfusion. Nitric Oxide 2019; 91:23-34. [PMID: 31323277 DOI: 10.1016/j.niox.2019.07.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/01/2019] [Accepted: 07/16/2019] [Indexed: 01/01/2023]
Abstract
The accumulation of dysfunctional mitochondria induced by the impairment of the autophagy-lysosome pathway (ALP), especially mitophagy is an important cause of cerebral ischemia-reperfusion (I/R) injury. Electroacupuncture (EA) exerts remarkable effects in treating ischemic stroke; however, the detailed mechanism remains unclear. In this study, rats were treated with mitochondrial permeability transition pore (mPTP) opening inhibitor, peroxynitrite (ONOO-) scavenger, or selective inhibitor of mitophagy activation during 2-h middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion in combination with EA treatment. RNA-Seq analysis showed that EA treatment in cerebral I/R was linked to the autophagosome, the PI3K/Akt signaling pathway and metabolic pathways. We found that I/R resulted in significantly mitochondrial function impairments including decreased mitochondrial membrane potential (MMP) and ATP levels, aggregation of damaged mitochondria, excessive nitro/oxidative stress, PI3K/Akt/mTOR-mediated ALP dysfunction and deficiency of Pink1/Parkin-mediated mitophagy clearance. The treatment with EA, cyclosporine-A (CsA, a potent inhibitor of mPTP opening) or FeTMPyP (a type of ONOO- scavenger) could significantly increase MMP and/or ATP levels, improve mitochondrial function and decrease neuronal injury. At the same time, EA also improved ALP dysfunction and the deficiency of mitophagy clearance; however, mitochondrial division inhibitor-1 (Mdivi-1, a selective inhibitor of mitophagy activation) blocked mitophagy clearance and aggravated neuronal injury. Taken together, EA ameliorates nitro/oxidative stress-induced mitochondrial functional damage and decreases the accumulation of damaged mitochondria via Pink1/Parkin-mediated mitophagy clearance to protect cells against neuronal injury in cerebral I/R.
Collapse
Affiliation(s)
- Huanyuan Wang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Suhui Chen
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yamin Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Xu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hua Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
16
|
Zhang JY, Lee JH, Gu X, Wei ZZ, Harris MJ, Yu SP, Wei L. Intranasally Delivered Wnt3a Improves Functional Recovery after Traumatic Brain Injury by Modulating Autophagic, Apoptotic, and Regenerative Pathways in the Mouse Brain. J Neurotrauma 2019; 35:802-813. [PMID: 29108471 DOI: 10.1089/neu.2016.4871] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury (TBI) is a prevalent disorder, but no effective therapies currently exist. An underlying pathophysiology of TBI includes the pathological elevation of autophagy. β-Catenin, a downstream mediator of the canonical Wnt pathway, is a repressor of autophagy. The Wnt/β-catenin pathway plays a crucial role in cell proliferation and neuronal plasticity/repair in the adult brain. We hypothesized that activation of this pathway could promote neuroprotection and neural regeneration following TBI. In the controlled cortical impact (CCI) model of TBI in C57BL/6 mice (total n = 160), we examined intranasal application of recombinant Wnt3a (2 μg/kg) in a short-term (1 dose/day for 2 days) and long-term (1 dose/day for 7 days) regimen. Immunohistochemistry was performed at 1 to 14 days post-TBI to assess cell death and neurovascular regeneration. Western blotting measured canonical Wnt3a activity, expression of growth factors, and cell death markers. Longitudinal behavior assays evaluated functional recovery. In short-term experiments, Wnt3a treatment with a 60-min delay post-TBI suppressed TBI-induced autophagic activity in neurons (44.3 ± 6.98 and 4.25 ± 2.53 LC3+/NeuN+ double positive cells in TBI+Saline and TBI+Wnt3a mice, respectively; p < 0.0001, n = 5/group), reduced autophagic markers light chain 3 (LC3)-II and Beclin-1, as well as injury markers caspase-3 and matrix metalloproteinase 9 (MMP-9). The Wnt3a treatment reduced cell death and contusion volume (0.72 ± 0.07 mm2 and 0.26 ± 0.04 mm2 in TBI+Saline and TBI+Wnt3a mice, respectively; p < 0.001, n = 5/group). The 7-day Wnt3a treatment increased levels of β-catenin and growth factors glial-derived growth factor (GDNF) and vascular endothelial growth factor (VEGF). This chronic Wnt3a therapy augmented neurogenesis (0.52 ± 0.09 and 1.25 ± 0.13 BrdU+/NeuN+ co-labeled cells in TBI+Saline mice and TBI+Wnt3a mice, respectively; p < 0.01, n = 6/group) and angiogenesis (0.26 ± 0.07 and 0.74 ± 0.13 BrdU+/GLUT1+ co-labeled cells in TBI+Saline and TBI+Wnt3a mice, respectively; p = 0.014, n = 6/group). The treatment improved performance in the rotarod test and adhesive removal test. Targeting the Wnt pathway implements a unique combination of protective and regenerative approaches after TBI.
Collapse
Affiliation(s)
- James Ya Zhang
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | - Jin Hwan Lee
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | - Xiaohuan Gu
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | - Zheng Zachory Wei
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | | | - Shan Ping Yu
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia
| | - Ling Wei
- 1 Department of Anesthesiology, Emory University School of Medicine , Atlanta, Georgia .,2 Department of Neurology, Emory University School of Medicine , Atlanta, Georgia
| |
Collapse
|
17
|
Inhibition of autophagy-attenuated calcium oxalate crystal-induced renal tubular epithelial cell injury in vivo and in vitro. Oncotarget 2017; 9:4571-4582. [PMID: 29435125 PMCID: PMC5796996 DOI: 10.18632/oncotarget.23383] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
Accumulating evidence suggests that autophagy is involved in the pathophysiological processes of kidney diseases. However, the role of autophagy in the formation of calcium oxalate (CaOx) nephrolithiasis remains unclear. In this study, we investigated the effects of autophagy on renal tubular epithelial cell injury induced by CaOx crystals in vivo and in vitro. We first observed that the expression levels of LC3-II and BECN1 and number of autophagic vacuoles were markedly increased in the renal tissue of CaOx stone patients. We subsequently found that exposure of HK-2 cells to CaOx crystals could increase LC3-II and BECN1 expression as well as the number of GFP-LC3 dots and autophagic vacuoles in a dose- and time-dependent manner. In addition, our results suggest that CaOx crystals induced autophagy, at least in part, via activation of the reactive oxygen species (ROS) pathway in HK-2 cells. Furthermore, inhibition of autophagy using 3-methyladenine or siRNA knockdown of BECN1 attenuated CaOx crystal-induced HK-2 cells injury. However, enhancing autophagic activity with rapamycin exerted an opposite effect. Taken together, our results demonstrate that autophagy is essential for CaOx crystal-induced renal tubular epithelial cell injury and that inhibition of autophagy could be a novel therapeutic strategy for CaOx nephrolithiasis.
Collapse
|
18
|
Semini G, Aebischer T. Phagosome proteomics to study Leishmania's intracellular niche in macrophages. Int J Med Microbiol 2017; 308:68-76. [PMID: 28927848 DOI: 10.1016/j.ijmm.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/23/2017] [Accepted: 09/03/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular pathogens invade their host cells and replicate within specialized compartments. In turn, the host cell initiates a defensive response trying to kill the invasive agent. As a consequence, intracellular lifestyle implies morphological and physiological changes in both pathogen and host cell. Leishmania spp. are medically important intracellular protozoan parasites that are internalized by professional phagocytes such as macrophages, and reside within the parasitophorous vacuole inhibiting their microbicidal activity. Whereas the proteome of the extracellular promastigote form and the intracellular amastigote form have been extensively studied, the constituents of Leishmania's intracellular niche, an endolysosomal compartment, are not fully deciphered. In this review we discuss protocols to purify such compartments by means of an illustrating example to highlight generally relevant considerations and innovative aspects that allow purification of not only the intracellular parasites but also the phagosomes that harbor them and analyze the latter by gel free proteomics.
Collapse
Affiliation(s)
- Geo Semini
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.
| | - Toni Aebischer
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
19
|
Bao M, Yi Z, Fu Y. Activation of TLR7 Inhibition of Mycobacterium Tuberculosis Survival by Autophagy in RAW 264.7 Macrophages. J Cell Biochem 2017; 118:4222-4229. [PMID: 28419514 DOI: 10.1002/jcb.26072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/14/2017] [Indexed: 02/02/2023]
Abstract
The aim of the study was to evaluate the effect of regulation of TLR7 on Mycobacterium tuberculosis (Mtb) survival in macrophages. TLR7 expression in macrophages infected by Mtb was detected by RT-PCR and Western blotting. Regulation of TLR7 was achieved by single strand RNA (ssRNA) or siRNA. The effects of TLR7 on Mtb survival and cell viability were detected by acid fast staining and cell counting kit-8, respectively. Cell ultrastructure was observed via transmission electron microscopy (TEM), and autophagy related protein LC3 was analyzed by Western blotting. TLR7 in Mtb infected macrophages was up-regulated and up-regulation of TLR7 could eliminate intracellular Mtb. Up-regulation of TLR7 could increase viability of Mtb infected cells, while down-regulation of TLR7 induced decrease of cell viability compared with the controls. Autophagosome was significantly increased in the Mtb infected macrophages after up-regulation of TLR7 and LC3-II protein showed obvious increase compared with the controls. Autophagosome could not be detected in macrophages after down-regulation of TLR7, rough endoplasmic reticulum was dilated, and nuclear week gap was widened. Moreover, LC3-II protein was reduced in Mtb infected macrophages based upon the down-regulation of TLR7. Up-regulation of TLR7 could eliminate intracellular Mtb through autophagy. J. Cell. Biochem. 118: 4222-4229, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Meng Bao
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Shandong Weifang, 261053, China
| | - Zhengjun Yi
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Shandong Weifang, 261053, China.,Department of Medical Microbiology of Clinical Medicine College, Weifang Medical University, Shandong Weifang, 261053, China
| | - Yurong Fu
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Shandong Weifang, 261053, China
| |
Collapse
|
20
|
Haghani A, Mehrbod P, Safi N, Kadir FAA, Omar AR, Ideris A. Edible bird's nest modulate intracellular molecular pathways of influenza A virus infected cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:22. [PMID: 28056926 PMCID: PMC5216576 DOI: 10.1186/s12906-016-1498-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Edible Bird's Nest (EBN) as a popular traditional Chinese medicine is believed to have health enhancing and antiviral activities against influenza A virus (IAV); however, the molecular mechanism behind therapeutic effects of EBN is not well characterized. METHODS In this study, EBNs that underwent different enzymatic preparation were tested against IAV infected cells. 50% cytotoxic concentration (CC50) and 50% inhibitory concentration (IC50) of the EBNs against IAV strain A/Puerto Rico/8/1934(H1N1) were determined by HA and MTT assays. Subsequently, the sialic acid content of the used EBNs were analyzed by fluorometric HPLC. Western Blotting and immunofluorescent staining were used to investigate the effects of EBNs on early endosomal trafficking and autophagy process of influenza virus. RESULTS This study showed that post inoculations of EBNs after enzymatic preparations have the highest efficacy to inhibit IAV. While CC50 of the tested EBNs ranged from 27.5-32 mg/ml, the IC50 of these compounds ranged between 2.5-4.9 mg/ml. EBNs could inhibit IAV as efficient as commercial antiviral agents, such as amantadine and oseltamivir with different mechanisms of action against IAV. The antiviral activity of these EBNs correlated with the content of N-acetyl neuraminic acid. EBNs could affect early endosomal trafficking of the virus by reducing Rab5 and RhoA GTPase proteins and also reoriented actin cytoskeleton of IAV infected cells. In addition, for the first time this study showed that EBNs can inhibit intracellular autophagy process of IAV life cycle as evidenced by reduction of LC3-II and increasing of lysosomal degradation. CONCLUSIONS The results procured in this study support the potential of EBNs as supplementary medication or alternative to antiviral agents to inhibit influenza infections. Evidently, EBNs can be a promising antiviral agent; however, these natural compounds should be screened for their metabolites prior to usage as therapeutic approach.
Collapse
Affiliation(s)
- Amin Haghani
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Parvaneh Mehrbod
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nikoo Safi
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | | | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Aini Ideris
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
21
|
Research progress of hydroxychloroquine and autophagy inhibitors on cancer. Cancer Chemother Pharmacol 2016; 79:287-294. [PMID: 27889812 DOI: 10.1007/s00280-016-3197-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE Hydroxychloroquine (HCQ), the analog of chloroquine, augments the effect of chemotherapies and radiotherapy on various tumors identified in the current clinical trials. Meanwhile, the toxicity of HCQ retinopathy raises concern worldwide. Thus, the potent autophagy inhibitors are urgently needed. METHODS A systematic review was related to 'hydroxychloroquine' or 'chloroquine' with 'clinical trials,' 'retinopathy' and 'new autophagy inhibitors.' This led to many cross-references involving HCQ, and these data have been incorporated into the following study. RESULTS Many preclinical studies indicate that the combination of HCQ with chemotherapies or radiotherapies may enhance the effect of anticancer, providing base for launching cancer clinical trials involving HCQ. The new and more sensitive diagnostic techniques report a prevalence of HCQ retinopathy up to 7.5%. Lys05, SAR405, verteporfin, VATG-027, mefloquine and spautin-1 may be potent autophagy inhibitors. CONCLUSION Additional mechanistic studies of HCQ in preclinical models are still required in order to answer these questions whether HCQ actually inhibits autophagy in non-selective tumors and whether the extent of inhibition would be sufficient to alter chemotherapy or radiotherapy sensitivity.
Collapse
|
22
|
Gou WF, Shen DF, Yang XF, Zhao S, Liu YP, Sun HZ, Su RJ, Luo JS, Zheng HC. ING5 suppresses proliferation, apoptosis, migration and invasion, and induces autophagy and differentiation of gastric cancer cells: a good marker for carcinogenesis and subsequent progression. Oncotarget 2016; 6:19552-79. [PMID: 25980581 PMCID: PMC4637305 DOI: 10.18632/oncotarget.3735] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/10/2015] [Indexed: 12/13/2022] Open
Abstract
Here, we found that ING5 overexpression increased autophagy, differentiation, and decreased proliferation, apoptosis, migration, invasion and lamellipodia formation in gastric cancer cells, while ING5 knockdown had the opposite effects. In SGC-7901 transfectants, ING5 overexpression caused G1 arrest, which was positively associated with 14-3-3 overexpression, Cdk4 and c-jun hypoexpression. The induction of Bax hypoexpression, Bcl-2, survivin, 14-3-3, PI3K, p-Akt and p70S6K overexpression by ING5 decreased apoptosis in SGC-7901 cells. The hypoexpression of MMP-9, MAP1B and flotillin 2 contributed to the inhibitory effects of ING5 on migration and invasion of SGC-7901 cells. ING5 overexpression might activate both β-catenin and NF-κB pathways in SGC-7901 cells, and promote the expression of down-stream genes (c-myc, VEGF, Cyclin D1, survivin, and interleukins). Compared with the control, ING5 transfectants displayed drug resistance to triciribine, paclitaxel, cisplatin, SAHA, MG132 and parthenolide, which was positively related to their apoptotic induction and the overexpression of chemoresistance-related genes (MDR1, GRP78, GRP94, IRE, CD147, FBXW7, TOP1, TOP2, MLH1, MRP1, BRCP1 and GST-π). ING5 expression was higher in gastric cancer than matched mucosa. It was inversely associated with tumor size, dedifferentiation, lymph node metastasis and clinicopathological staging of cancer. ING5 overexpression suppressed growth, blood supply and lung metastasis of SGC-7901 cells by inhibiting proliferation, enhancing autophagy and apoptosis in xenograft models. It was suggested that ING5 expression might be employed as a good marker for gastric carcinogenesis and subsequent progression by inhibiting proliferation, growth, migration, invasion and metastasis. ING5 might induce apoptotic and chemotherapeutic resistances of gastric cancer cells by activating β-catenin, NF-κB and Akt pathways.
Collapse
Affiliation(s)
- Wen-feng Gou
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Dao-fu Shen
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Xue-feng Yang
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Shuang Zhao
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Yun-peng Liu
- Department of Oncological Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hong-zhi Sun
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Rong-Jian Su
- Experimental Center, Liaoning Medical University, Jinzhou, China
| | - Jun-sheng Luo
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Hua-chuan Zheng
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| |
Collapse
|
23
|
Bai X, Oberley-Deegan RE, Bai A, Ovrutsky AR, Kinney WH, Weaver M, Zhang G, Honda JR, Chan ED. Curcumin enhances human macrophage control ofMycobacterium tuberculosisinfection. Respirology 2016; 21:951-7. [DOI: 10.1111/resp.12762] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/22/2015] [Accepted: 12/07/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Xiyuan Bai
- Department of Medicine; Denver Veterans Affairs Medical Center; Denver USA
- Departments of Medicine and Academic Affairs; National Jewish Health; Denver Colorado USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine; University of Colorado School of Medicine; Aurora Colorado USA
| | - Rebecca E. Oberley-Deegan
- Departments of Medicine and Academic Affairs; National Jewish Health; Denver Colorado USA
- Department of Biochemistry and Molecular Biology; University of Nebraska Medical Center; Omaha Nebraska USA
| | - An Bai
- Department of Medicine; Denver Veterans Affairs Medical Center; Denver USA
- Departments of Medicine and Academic Affairs; National Jewish Health; Denver Colorado USA
| | - Alida R. Ovrutsky
- Departments of Medicine and Academic Affairs; National Jewish Health; Denver Colorado USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine; University of Colorado School of Medicine; Aurora Colorado USA
| | - William H. Kinney
- Departments of Medicine and Academic Affairs; National Jewish Health; Denver Colorado USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine; University of Colorado School of Medicine; Aurora Colorado USA
| | - Michael Weaver
- Departments of Medicine and Academic Affairs; National Jewish Health; Denver Colorado USA
| | - Gong Zhang
- College of Pharmacy; Shaanxi University of Chinese Medicine; Shaanxi China
| | - Jennifer R. Honda
- Departments of Medicine and Academic Affairs; National Jewish Health; Denver Colorado USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine; University of Colorado School of Medicine; Aurora Colorado USA
| | - Edward D. Chan
- Department of Medicine; Denver Veterans Affairs Medical Center; Denver USA
- Departments of Medicine and Academic Affairs; National Jewish Health; Denver Colorado USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine; University of Colorado School of Medicine; Aurora Colorado USA
| |
Collapse
|
24
|
Zhang W, Shi H, Zhang M, Liu B, Mao S, Li L, Tong F, Liu G, Yang S, Wang H. Poly C binding protein 1 represses autophagy through downregulation of LC3B to promote tumor cell apoptosis in starvation. Int J Biochem Cell Biol 2016; 73:127-136. [PMID: 26880484 DOI: 10.1016/j.biocel.2016.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/18/2016] [Accepted: 02/11/2016] [Indexed: 01/07/2023]
Abstract
Accumulating evidences indicate that poly C binding protein (PCBP1) is downregulated in various carcinomas as a tumor suppressor, but the underlying mechanism in suppression of tumorigenesis still remains elusive. Here, we found that PCBP1 overexpression attenuates tumor cell growth upon serum-free starvation. Notably, the autophagic degradation inhibitor, chloroquine, could mimic this suppressive effect in tumor cell growth. Autophagy analyses demonstrated that PCBP1 overexpression blocked autophagic flux of tumor cells under starvation conditions, while PCBP1 downregulation in turn refueled this autophagic flux, protecting cells from death. Mechanistically, PCBP1 overexpression attenuated microtubule-associated protein Light chain 3 (LC3B) mRNA stability to repress LC3B expression, resulting in the autophagy inhibition. Consequently, PCBP1 overexpression strongly triggered the caspase 3 and 8-mediated apoptosis of tumor cells and downregulated anti-apoptotic Bcl-2 expression upon starvation, which could be further synergized by autophagic inhibitor, indicating that PCBP1 not only inhibits tumor cell autophagy, but also renders them to apoptosis. Taken together, our results uncovered a novel mechanism of PCBP1 in repressing autophagy-mediated cell survival and indicated that inhibition of tumor cell autophagy by PCBP1 upregulation or with autophagic inhibitors could be an effective therapeutical strategy to colon and ovary tumors with low PCBP1 expression.
Collapse
Affiliation(s)
- Wenliang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, CPZN 510080, People's Republic of China; Translational Medicine Centre, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CPZN 510080, People's Republic of China
| | - Hongshun Shi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, CPZN 510080, People's Republic of China
| | - Mingming Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, CPZN 510080, People's Republic of China
| | - Bin Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, CPZN 510080, People's Republic of China
| | - Shuai Mao
- Department of Hepatic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CPZN 510080, People's Republic of China
| | - Li Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, CPZN 510080, People's Republic of China
| | - Fang Tong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, CPZN 510080, People's Republic of China
| | - Guoliang Liu
- Department of Internal Medicine, Jinxian People's Hospital of Nanchang, Nanchang, CPZN 331700, People's Republic of China
| | - Shulan Yang
- Translational Medicine Centre, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, CPZN 510080, People's Republic of China.
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, CPZN 510080, People's Republic of China; Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, CPZN 510080, People's Republic of China.
| |
Collapse
|
25
|
Intragraft transcriptional profiling of renal transplant patients with tubular dysfunction reveals mechanisms underlying graft injury and recovery. Hum Genomics 2016; 10:2. [PMID: 26742487 PMCID: PMC4705764 DOI: 10.1186/s40246-015-0059-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/30/2015] [Indexed: 12/13/2022] Open
Abstract
Background Proximal tubular dysfunction (PTD) is associated with a decreased long-term graft survival in renal transplant patients and can be detected by the elevation of urinary tubular proteins. This study investigated transcriptional changes in biopsies from renal transplant patients with PTD to disclose molecular mechanisms underlying graft injury and functional recovery. Methods Thirty-three renal transplant patients with high urinary levels of retinol-binding protein, a biomarker of PTD, were enrolled in the study. The initial immunosuppressive scheme included azathioprine, cyclosporine, and steroids. After randomization, 18 patients (group 2) had their treatment modified by reducing cyclosporine dosage and substituting azathioprine for mycophenolate mofetil, while the other 15 patients (group 1) remained under the initial scheme. Patients were biopsied at enrollment and after 12 months of follow-up, and paired comparisons were performed between their intragraft gene expression profiles. The differential transcriptome profiles were analyzed by constructing gene co-expression networks and identifying enriched functions and central nodes in each network. Results Only the alternative immunosuppressive scheme used in group 2 ameliorated renal function and tubular proteinuria after 12 months of follow-up. Intragraft molecular changes observed in group 2 were linked to autophagy, extracellular matrix, and adaptive immunity. Conversely, gene expression changes in group 1 were related to fibrosis, endocytosis, ubiquitination, and endoplasmic reticulum stress. Conclusion These results suggest that molecular networks associated with the control of endocytosis, autophagy, protein overload, fibrosis, and adaptive immunity may be involved in improvement of graft function. Electronic supplementary material The online version of this article (doi:10.1186/s40246-015-0059-6) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Modulation of V-ATPase by βA3/A1-Crystallin in Retinal Pigment Epithelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:779-84. [PMID: 26427489 DOI: 10.1007/978-3-319-17121-0_104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We have previously demonstrated that βA3/A1-crystallin, a member of the β/γ-crystallin superfamily, is expressed in the astrocytes and retinal pigment epithelial (RPE) cells of the eye. In order to understand the physiological functions of βA3/A1-crystallin in RPE cells, we generated conditional knockout (cKO) mice where Cryba1, the gene encoding βA3/A1-crystallin, is deleted specifically from the RPE using the Cre-loxP system. By utilizing the cKO model, we have shown that this protein is required by RPE cells for proper lysosomal degradation of photoreceptor outer segments (OS) that have been internalized in phagosomes and also for the proper functioning of the autophagy process. We also reported that βA3/A1-crystallin is trafficked to lysosomes, where it regulates endolysosomal acidification by modulating the activity of the lysosomal V-ATPase complex. Our results show that the V-ATPase activity in cKO RPE is significantly lower than WT RPE. Since, V-ATPase is important for regulating lysosomal pH, we noticed that endolysosomal pH was higher in the cKO cells compared to the WT cells. Increased lysosomal pH in cKO RPE is also associated with reduced Cathepsin D activity. Cathepsin D is a major lysosomal aspartic protease involved in the degradation of the OS and hence we believe that reduced proteolytic activity contributes to impaired degradation of OS in the cKO RPE. Reduced lysosomal activity in the cKO RPE also contributes to the incomplete degradation of the autophagosomes. Our results also suggest that βA3/A1-crystallin regulates V-ATPase activity by binding to the V0 subunit of the V-ATPase complex. Taken together, these results suggest a novel mechanism by which βA3/A1-crystallin regulates lysosomal function by modulating the activity of V-ATPase.
Collapse
|
27
|
Abstract
Autophagy, or 'self-eating', is an adaptive process that enables cells to cope with metabolic, toxic, and even infectious stressors. Although the adaptive capability of autophagy is generally considered beneficial, autophagy can also enhance nutrient utilization and improve growth characteristics of cancer cells. Moreover, autophagy can promote greater cellular robustness in the context of therapeutic intervention. In advanced prostate cancer, preclinical data provide evidence that autophagy facilitates both disease progression and therapeutic resistance. Notably, androgen deprivation therapy, taxane-based chemotherapy, targeted kinase inhibition, and nutrient restriction all induce significant cellular distress and, subsequently, autophagy. Understanding the context-dependent role of autophagy in cancer development and treatment resistance has the potential to improve current treatment of advanced prostate cancer. Indeed, preclinical studies have shown that the pharmacological inhibition of autophagy (with agents including chloroquine, hydroxychloroquine, metformin, and desmethylclomipramine) can enhance the cell-killing effect of cancer therapeutics, and a number of these agents are currently under investigation in clinical trials. However, many of these autophagy modulators are relatively nonspecific, and cytotoxicity in noncancerous tissues is still a concern. Moving forward, refinement of autophagy modulation is needed.
Collapse
|
28
|
Gomez-Cambronero J, Kantonen S. A river runs through it: how autophagy, senescence, and phagocytosis could be linked to phospholipase D by Wnt signaling. J Leukoc Biol 2014; 96:779-84. [PMID: 25082152 DOI: 10.1189/jlb.2vmr0214-120rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neutrophils and macrophages are professional phagocytic cells, extremely efficient at the process of engulfing and killing bacteria. Autophagy is a similar process, by which phagosomes recycle internal cell structures during nutrient shortages. Some pathogens are able to subvert the autophagy process, funneling nutrients for their own use and for the host's detriment. Additionally, a failure to mount an efficient autophagy is a deviation on the cell's part from normal cellular function into cell senescence and cessation of the cell cycle. In spite of these reasons, the mechanism of autophagy and senescence in leukocytes has been under studied. We advance here the concept of a common thread underlying both autophagy and senescence, which implicates PLD. Such a PLD-based autophagy mechanism would involve two positive inputs: the generation of PA to help the initiation of the autophagosome and a protein-protein interaction between PLD and PKC that leads to enhanced PA. One negative input is also involved in this process: down-regulation of PLD gene expression by mTOR. Additionally, a dual positive/negative input plays a role in PLD-mediated autophagy, β-catenin increase of autophagy through PLD up-regulation, and a subsequent feedback termination by Dvl degradation in case of excessive autophagy. An abnormal PLD-mTOR-PKC-β-catenin/Wnt network function could lead to faulty autophagy and a means for opportunistic pathogens to survive inside of the cell.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, Dayton, Ohio, USA
| | - Samuel Kantonen
- Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, Dayton, Ohio, USA
| |
Collapse
|
29
|
Hale AN, Ledbetter DJ, Gawriluk TR, Rucker EB. Autophagy: regulation and role in development. Autophagy 2014; 9:951-72. [PMID: 24121596 DOI: 10.4161/auto.24273] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy is an evolutionarily conserved cellular process through which long-lived proteins and damaged organelles are recycled to maintain energy homeostasis. These proteins and organelles are sequestered into a double-membrane structure, or autophagosome, which subsequently fuses with a lysosome in order to degrade the cargo. Although originally classified as a type of programmed cell death, autophagy is more widely viewed as a basic cell survival mechanism to combat environmental stressors. Autophagy genes were initially identified in yeast and were found to be necessary to circumvent nutrient stress and starvation. Subsequent elucidation of mammalian gene counterparts has highlighted the importance of this process to normal development. This review provides an overview of autophagy, the types of autophagy, its regulation and its known impact on development gleaned primarily from murine models.
Collapse
Affiliation(s)
- Amber N Hale
- Department of Biology; University of Kentucky; Lexington, KY USA
| | | | | | | |
Collapse
|
30
|
Zhang R, Chi X, Wang S, Qi B, Yu X, Chen JL. The regulation of autophagy by influenza A virus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:498083. [PMID: 24779013 PMCID: PMC3980786 DOI: 10.1155/2014/498083] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/27/2014] [Indexed: 11/17/2022]
Abstract
Influenza A virus is a dreadful pathogen of animals and humans, causing widespread infection and severe morbidity and mortality. It is essential to characterize the influenza A virus-host interaction and develop efficient counter measures against the viral infection. Autophagy is known as a catabolic process for the recycling of the cytoplasmic macromolecules. Recently, it has been shown that autophagy is a critical mechanism underlying the interaction between influenza A virus and its host. Autophagy can be induced by the infection with influenza A virus, which is considered as a necessary process for the viral proliferation, including the accumulation of viral elements during the replication of influenza A virus. On the other hand, influenza A virus can inhibit the autophagic formation via interaction with the autophagy-related genes (Atg) and signaling pathways. In addition, autophagy is involved in the influenza virus-regulated cell deaths, leading to significant changes in host apoptosis. Interestingly, the high pathogenic strains of influenza A virus, such as H5N1, stimulate autophagic cell death and appear to interplay with the autophagy in distinct ways as compared with low pathogenic strains. This review discusses the regulation of autophagy, an influenza A virus driven process.
Collapse
Affiliation(s)
- Rong Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaojuan Chi
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Baomin Qi
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqiang Yu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA
| | - Ji-Long Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China ; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| |
Collapse
|
31
|
Merkel cell polyomavirus small T antigen targets the NEMO adaptor protein to disrupt inflammatory signaling. J Virol 2013; 87:13853-67. [PMID: 24109239 DOI: 10.1128/jvi.02159-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive nonmelanoma skin cancer arising from epidermal mechanoreceptor Merkel cells. In 2008, a novel human polyomavirus, Merkel cell polyomavirus (MCPyV), was identified and is strongly implicated in MCC pathogenesis. Currently, little is known regarding the virus-host cell interactions which support virus replication and virus-induced mechanisms in cellular transformation and metastasis. Here we identify a new function of MCPyV small T antigen (ST) as an inhibitor of NF-κB-mediated transcription. This effect is due to an interaction between MCPyV ST and the NF-κB essential modulator (NEMO) adaptor protein. MCPyV ST expression inhibits IκB kinase α (IKKα)/IKKβ-mediated IκB phosphorylation, which limits translocation of the NF-κB heterodimer to the nucleus. Regulation of this process involves a previously undescribed interaction between MCPyV ST and the cellular phosphatase subunits, protein phosphatase 4C (PP4C) and/or protein phosphatase 2A (PP2A) Aβ, but not PP2A Aα. Together, these results highlight a novel function of MCPyV ST to subvert the innate immune response, allowing establishment of early or persistent infection within the host cell.
Collapse
|
32
|
King JS, Gueho A, Hagedorn M, Gopaldass N, Leuba F, Soldati T, Insall RH. WASH is required for lysosomal recycling and efficient autophagic and phagocytic digestion. Mol Biol Cell 2013; 24:2714-26. [PMID: 23885127 PMCID: PMC3756923 DOI: 10.1091/mbc.e13-02-0092] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/05/2013] [Accepted: 07/01/2013] [Indexed: 12/22/2022] Open
Abstract
Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) is an important regulator of vesicle trafficking. By generating actin on the surface of intracellular vesicles, WASH is able to directly regulate endosomal sorting and maturation. We report that, in Dictyostelium, WASH is also required for the lysosomal digestion of both phagocytic and autophagic cargo. Consequently, Dictyostelium cells lacking WASH are unable to grow on many bacteria or to digest their own cytoplasm to survive starvation. WASH is required for efficient phagosomal proteolysis, and proteomic analysis demonstrates that this is due to reduced delivery of lysosomal hydrolases. Both protease and lipase delivery are disrupted, and lipid catabolism is also perturbed. Starvation-induced autophagy therefore leads to phospholipid accumulation within WASH-null lysosomes. This causes the formation of multilamellar bodies typical of many lysosomal storage diseases. Mechanistically, we show that, in cells lacking WASH, cathepsin D becomes trapped in a late endosomal compartment, unable to be recycled to nascent phagosomes and autophagosomes. WASH is therefore required for the maturation of lysosomes to a stage at which hydrolases can be retrieved and reused.
Collapse
Affiliation(s)
- Jason S. King
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Aurélie Gueho
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Monica Hagedorn
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Navin Gopaldass
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Florence Leuba
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Robert H. Insall
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| |
Collapse
|
33
|
Oczypok EA, Oury TD, Chu CT. It's a cell-eat-cell world: autophagy and phagocytosis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:612-22. [PMID: 23369575 PMCID: PMC3589073 DOI: 10.1016/j.ajpath.2012.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/06/2012] [Indexed: 11/26/2022]
Abstract
The process of cellular eating, or the phagocytic swallowing of one cell by another, is an ancient manifestation of the struggle for life itself. Following the endosymbiotic origin of eukaryotic cells, increased cellular and then multicellular complexity was accompanied by the emergence of autophagic mechanisms for self-digestion. Heterophagy and autophagy function not only to protect the nutritive status of cells, but also as defensive responses against microbial pathogens externally or the ill effects of damaged proteins and organelles within. Because of the key roles played by phagocytosis and autophagy in a wide range of acute and chronic human diseases, pathologists have played similarly key roles in elucidating basic regulatory phases for both processes. Studies in diverse organ systems (including the brain, liver, kidney, lung, and muscle) have defined key roles for these lysosomal pathways in infection control, cell death, inflammation, cancer, neurodegeneration, and mitochondrial homeostasis. The literature reviewed here exemplifies the role of pathology in defining leading-edge questions for continued molecular and pathophysiological investigations into all forms of cellular digestion.
Collapse
Affiliation(s)
- Elizabeth A. Oczypok
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Charleen T. Chu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Chan LLY, Shen D, Wilkinson AR, Patton W, Lai N, Chan E, Kuksin D, Lin B, Qiu J. A novel image-based cytometry method for autophagy detection in living cells. Autophagy 2012; 8:1371-82. [PMID: 22895056 PMCID: PMC3442883 DOI: 10.4161/auto.21028] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an important cellular catabolic process that plays a variety of important roles, including maintenance of the amino acid pool during starvation, recycling of damaged proteins and organelles, and clearance of intracellular microbes. Currently employed autophagy detection methods include fluorescence microscopy, biochemical measurement, SDS-PAGE and western blotting, but they are time consuming, labor intensive, and require much experience for accurate interpretation. More recently, development of novel fluorescent probes have allowed the investigation of autophagy via standard flow cytometry. However, flow cytometers remain relatively expensive and require a considerable amount of maintenance. Previously, image-based cytometry has been shown to perform automated fluorescence-based cellular analysis comparable to flow cytometry. In this study, we developed a novel method using the Cellometer image-based cytometer in combination with Cyto-ID(®) Green dye for autophagy detection in live cells. The method is compared with flow cytometry by measuring macroautophagy in nutrient-starved Jurkat cells. Results demonstrate similar trends of autophagic response, but different magnitude of fluorescence signal increases, which may arise from different analysis approaches characteristic of the two instrument platforms. The possibility of using this method for drug discovery applications is also demonstrated through the measurement of dose-response kinetics upon induction of autophagy with rapamycin and tamoxifen. The described image-based cytometry/fluorescent dye method should serve as a useful addition to the current arsenal of techniques available in support of autophagy-based drug discovery relating to various pathological disorders.
Collapse
Affiliation(s)
- Leo Li-Ying Chan
- Department of Technology R&D, Nexcelom Bioscience, LLC, Lawrence, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Poulose SM, Bielinski DF, Shukitt-Hale B. Walnut diet reduces accumulation of polyubiquitinated proteins and inflammation in the brain of aged rats. J Nutr Biochem 2012; 24:912-9. [PMID: 22917841 DOI: 10.1016/j.jnutbio.2012.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/29/2012] [Accepted: 06/08/2012] [Indexed: 12/22/2022]
Abstract
An increase in the aggregation of misfolded/damaged polyubiquitinated proteins has been the hallmark of many age-related neurodegenerative diseases. The accumulation of these potentially toxic proteins in brain increases with age, in part due to increased oxidative and inflammatory stresses. Walnuts, rich in omega fatty acids, have been shown to improve memory, cognition and neuronal effects related to oxidative stress (OS) and inflammation (INF) in animals and human trials. The current study found that feeding 19-month-old rats with a 6% or 9% walnut diet significantly reduced the aggregation of polyubiquitinated proteins and activated autophagy, a neuronal housekeeping function, in the striatum and hippocampus. Walnut-fed animals exhibited up-regulation of autophagy through inhibiting phosphorylation of mTOR, up-regulating ATG7 and Beclin 1, and turnover of MAP1BLC3 proteins. The clearance of polyubiquitinated protein aggregates such as p62/SQSTM1 was more profound in hippocampus, a critical region in the brain involved in memory and cognitive performance, than striatum. The clearance of ubiquitinated aggregates was in tandem with significant reductions in OS/INF, as indicated by the levels of P38-MAP kinase and phosphorylations of nuclear factor kappa B and cyclic AMP response element binding protein. The results demonstrate the effectiveness of a walnut-supplemented diet in activating the autophagy function in brain beyond its traditionally known antioxidant and anti-inflammatory benefits.
Collapse
Affiliation(s)
- Shibu M Poulose
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston MA 02111, USA
| | | | | |
Collapse
|
36
|
Checinska A, Soengas MS. The gluttonous side of malignant melanoma: basic and clinical implications of macroautophagy. Pigment Cell Melanoma Res 2012; 24:1116-32. [PMID: 21995431 DOI: 10.1111/j.1755-148x.2011.00927.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
True to their inherent aggressive behavior, melanomas keep impressing the melanoma community with their ability to bypass tumor suppressor mechanisms. Name a pathway with the potential to control cell survival and melanoma cells will likely have it potentiated by multiple genetic or epigenetic alterations. In the context of progression and chemoresistance, large efforts have been dedicated to the identification of protective mechanisms associated with or linked to apoptotic death programs. These studies have guided the design of targeted anticancer strategies. Still, the promise for pro-apoptotic inducers as lead compounds for drug development has yet to come to fruition. It was then a question of time to identify alternative modulators of cell viability. An ideal candidate that is raising great expectations in the oncology field is autophagy, a catabolic process with multiple roles in cell homeostasis. Here we review the incipient literature on autophagy markers in melanocytic lesions. Intriguingly, histopathological studies are unveiling an intrinsic inter- and intratumor variability in the expression of autophagy modulators. Nonetheless, functional studies support a key role of autopaphagy programs in the response to a variety of stress factors. These include adaptive responses to nutrient deprivation, hypoxia and many anticancer agents, among other stimuli. Strategies are being also developed to mobilize the endocytic machinery and shift autolysosomes into death effectors. The opportunities that lie ahead in this field are exciting. Various authophagy mediators are potentially druggable. Moreover, animal models and the development of sophisticated screening methods offer a platform for multilevel academic-industrial collaborations. These efforts are expected to open avenues of research and, hopefully, lead to a more rational approach to melanoma treatment.
Collapse
Affiliation(s)
- Agnieszka Checinska
- Melanoma Laboratory, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Centre), Madrid, Spain
| | | |
Collapse
|
37
|
Seidel K, Vinet J, Dunnen WFAD, Brunt ER, Meister M, Boncoraglio A, Zijlstra MP, Boddeke HWGM, Rüb U, Kampinga HH, Carra S. The HSPB8-BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases. Neuropathol Appl Neurobiol 2012; 38:39-53. [PMID: 21696420 DOI: 10.1111/j.1365-2990.2011.01198.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS HSPB8 is a small heat shock protein that forms a complex with the co-chaperone BAG3. Overexpression of the HSPB8-BAG3 complex in cells stimulates autophagy and facilitates the clearance of mutated aggregation-prone proteins, whose accumulation is a hallmark of many neurodegenerative disorders. HSPB8-BAG3 could thus play a protective role in protein aggregation diseases and might be specifically upregulated in response to aggregate-prone protein-mediated toxicity. Here we analysed HSPB8-BAG3 expression levels in post-mortem human brain tissue from patients suffering of the following protein conformation disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3 (SCA3). METHODS Western blotting and immunohistochemistry techniques were used to analyse HSPB8 and BAG3 expression levels in fibroblasts from SCA3 patients and post-mortem brain tissues, respectively. RESULTS In all diseases investigated, we observed a strong upregulation of HSPB8 and a moderate upregulation of BAG3 specifically in astrocytes in the cerebral areas affected by neuronal damage and degeneration. Intriguingly, no significant change in the HSPB8-BAG3 expression levels was observed within neurones, irrespective of their localization or of the presence of proteinaceous aggregates. CONCLUSIONS We propose that the upregulation of HSPB8 and BAG3 may enhance the ability of astrocytes to clear aggregated proteins released from neurones and cellular debris, maintain the local tissue homeostasis and/or participate in the cytoskeletal remodelling that astrocytes undergo during astrogliosis.
Collapse
Affiliation(s)
- K Seidel
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Agola JO, Jim PA, Ward HH, Basuray S, Wandinger-Ness A. Rab GTPases as regulators of endocytosis, targets of disease and therapeutic opportunities. Clin Genet 2011; 80:305-18. [PMID: 21651512 PMCID: PMC3187864 DOI: 10.1111/j.1399-0004.2011.01724.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/03/2011] [Indexed: 12/27/2022]
Abstract
Rab GTPases are well-recognized targets in human disease, although are underexplored therapeutically. Elucidation of how mutant or dysregulated Rab GTPases and accessory proteins contribute to organ specific and systemic disease remains an area of intensive study and an essential foundation for effective drug targeting. Mutation of Rab GTPases or associated regulatory proteins causes numerous human genetic diseases. Cancer, neurodegeneration and diabetes represent examples of acquired human diseases resulting from the up- or downregulation or aberrant function of Rab GTPases. The broad range of physiologic processes and organ systems affected by altered Rab GTPase activity is based on pivotal roles in responding to cell signaling and metabolic demand through the coordinated regulation of membrane trafficking. The Rab-regulated processes of cargo sorting, cytoskeletal translocation of vesicles and appropriate fusion with the target membranes control cell metabolism, viability, growth and differentiation. In this review, we focus on Rab GTPase roles in endocytosis to illustrate normal function and the consequences of dysregulation resulting in human disease. Selected examples are designed to illustrate how defects in Rab GTPase cascades alter endocytic trafficking that underlie neurologic, lipid storage, and metabolic bone disorders as well as cancer. Perspectives on potential therapeutic modulation of GTPase activity through small molecule interventions are provided.
Collapse
Affiliation(s)
- J O Agola
- Department of Pathology Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
39
|
Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J Virol 2011; 85:10561-71. [PMID: 21835792 DOI: 10.1128/jvi.00173-11] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy has been shown to facilitate replication or production of hepatitis C virus (HCV); nevertheless, how HCV induces autophagy remains unclear. Here, we demonstrate that HCV nonstructural protein 4B (NS4B) alone can induce autophagy signaling; amino acid residues 1 to 190 of NS4B are sufficient for this induction. Further studies showed that the phosphorylation levels of S6K and 4E-BP1 were not altered, suggesting that the mTOR/S6 kinase pathway and mTOR/4E-BP1 pathway did not contribute to NS4B- or HCV-induced autophagy. Inhibition of Rab5 function by silencing Rab5 or overexpressing dominant-negative Rab5 mutant (S34N) resulted in significant reduction of NS4B- or HCV-induced autophagic vesicle formation. Moreover, the autophagy induction was impaired by inhibition of class III phosphoinositide 3-kinase (PI 3-kinase) Vps34 function. Finally, the coimmunoprecipitation assay indicated that NS4B formed a complex with Rab5 and Vps34, supporting the notion that Rab5 and Vps34 are involved in NS4B-induced autophagy. Taken together, these results not only reveal a novel role of NS4B in autophagy but also offer a clue to the mechanism of HCV-induced autophagy.
Collapse
|
40
|
Vanhorebeek I, Gunst J, Derde S, Derese I, Boussemaere M, Güiza F, Martinet W, Timmermans JP, D'Hoore A, Wouters PJ, Van den Berghe G. Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients. J Clin Endocrinol Metab 2011; 96:E633-45. [PMID: 21270330 DOI: 10.1210/jc.2010-2563] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
CONTEXT Responses to critical illness, such as excessive inflammation and hyperglycemia, may trigger detrimental chain reactions that damage cellular proteins and organelles. Such responses to illness contribute to the risk of (nonresolving) multiple organ dysfunction and adverse outcome. OBJECTIVE We studied autophagy as a bulk degradation pathway able to remove toxic protein aggregates and damaged organelles and how these are affected by preventing hyperglycemia with insulin during critical illness. DESIGN AND SETTING Patients participated in a randomized study, conducted at a university hospital surgical/medical intensive care unit. PATIENTS We studied adult prolonged critically ill patients vs. controls. INTERVENTIONS Tolerating excessive hyperglycemia was compared with intensive insulin therapy targeting normoglycemia. MAIN OUTCOME MEASURES We quantified (ultra)structural abnormalities and hepatic and skeletal muscle protein levels of key players in autophagy. RESULTS Morphologically, both liver and muscle revealed an autophagy-deficiency phenotype. Proteins involved in initiation and elongation steps of autophagy were induced 1.3- to 6.5-fold by critical illness (P ≤ 0.01), but mature autophagic vacuole formation was 62% impaired (P = 0.05) and proteins normally degraded by autophagy accumulated up to 97-fold (P ≤ 0.03). Mitophagy markers were unaltered or down-regulated (P = 0.05). Although insulin preserved hepatocytic mitochondrial integrity (P = 0.05), it further reduced the number of autophagic vacuoles by 80% (P = 0.05). CONCLUSIONS Insufficient autophagy in prolonged critical illness may cause inadequate removal of damaged proteins and mitochondria. Such incomplete clearance of cellular damage, inflicted by illness and aggravated by hyperglycemia, could explain lack of recovery from organ failure in prolonged critically ill patients. These data open perspectives for therapies that activate autophagy during critical illness.
Collapse
Affiliation(s)
- Ilse Vanhorebeek
- Department of Intensive Care Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Leukocyte-cancer cell fusion: initiator of the warburg effect in malignancy? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:151-72. [PMID: 21506013 DOI: 10.1007/978-94-007-0782-5_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The causes of metastasis remain unknown, however it has been proposed for nearly a century that metastatic cells are generated by fusion of tumor cells with tumor-associated leukocytes such as macrophages. Indeed, regardless of cell or tissue origin, when cancer cells in the original in situ tumor transform to malignant, invasive cells, they generally become aneuploid and begin to express molecules and traits characteristic of activated macrophages. This includes two key features of malignancy: chemotactic motility and the use of aerobic glycolysis as a metabolic energy source (the Warburg effect). Here we review evidence that these phenomena can be well-explained by macrophage-cancer cell fusion, as evidenced by studies of experimental macrophage-melanoma hybrids generated in vitro and spontaneous host-tumor hybrids in animals and more recently humans. A key finding to emerge is that experimental and spontaneous cancer cell hybrids alike displayed a high degree of constitutive autophagy, a macrophage trait that is expressed under hypoxia and nutrient deprivation as part of the Warburg effect. Subsequent surveys of 21 different human cancers from nearly 2,000 cases recently revealed that the vast majority (~85%) exhibited autophagy and that this was associated with tumor proliferation and metastasis. While much work needs to be done, we posit that these findings with human cancers could be a reflection of widespread leukocyte-cancer cell fusion as an initiator of metastasis. Such fusions would generate hybrids that express the macrophage capabilities for motility and survival under adverse conditions of hypoxia and nutrient deprivation, while at the same time maintaining the deregulated mitotic cycle of the cancer cell fusion partner.
Collapse
|
42
|
Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog 2010; 6:e1001230. [PMID: 21187903 PMCID: PMC3002989 DOI: 10.1371/journal.ppat.1001230] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 11/15/2010] [Indexed: 11/19/2022] Open
Abstract
The “enhanced intracellular survival” (eis) gene of Mycobacterium tuberculosis (Mtb) is involved in the intracellular survival of M. smegmatis. However, its exact effects on host cell function remain elusive. We herein report that Mtb Eis plays essential roles in modulating macrophage autophagy, inflammatory responses, and cell death via a reactive oxygen species (ROS)-dependent pathway. Macrophages infected with an Mtb eis-deletion mutant H37Rv (Mtb-Δeis) displayed markedly increased accumulation of massive autophagic vacuoles and formation of autophagosomes in vitro and in vivo. Infection of macrophages with Mtb-Δeis increased the production of tumor necrosis factor-α and interleukin-6 over the levels produced by infection with wild-type or complemented strains. Elevated ROS generation in macrophages infected with Mtb-Δeis (for which NADPH oxidase and mitochondria were largely responsible) rendered the cells highly sensitive to autophagy activation and cytokine production. Despite considerable activation of autophagy and proinflammatory responses, macrophages infected with Mtb-Δeis underwent caspase-independent cell death. This cell death was significantly inhibited by blockade of autophagy and c-Jun N-terminal kinase-ROS signaling, suggesting that excessive autophagy and oxidative stress are detrimental to cell survival. Finally, artificial over-expression of Eis or pretreatment with recombinant Eis abrogated production of both ROS and proinflammatory cytokines, which depends on the N-acetyltransferase domain of the Eis protein. Collectively, these data indicate that Mtb Eis suppresses host innate immune defenses by modulating autophagy, inflammation, and cell death in a redox-dependent manner. Tuberculosis is a global health problem: at least one-third of the world's population is infected with Mycobacterium tuberculosis (Mtb). Mtb is a successful pathogen that enhances its own intracellular survival by arresting phagolysosomal fusion. Recently, autophagy has emerged as a host defense strategy against Mtb infection, through stimulation of the fusion of phagosomes and lysosomes. However, excessive and uncontrolled autophagic activity can be detrimental to host cells and can result in their death. The Mtb “enhanced intracellular survival” (eis) gene has been implicated in the intracellular survival of M. smegmatis. However, its exact role and how it regulates host innate immune responses have not been fully explained. Here, we provide evidence that Eis suppresses macrophage autophagy, inflammation, and cell death through the inhibition of reactive oxygen species (ROS) generation. Although it has previously been demonstrated that autophagy is a key host defense response to mycobacterial infections, our data indicate that excessive autophagy, and the resulting cell death, do not significantly affect host defense responses to mycobacteria. Additionally, our data reveal that Eis's ability to regulate ROS generation and proinflammatory responses depends on its N-acetyltransferase domain. These results underscore a previously unrecognized role of Eis in modulating host inflammatory responses, oxidative stress, and cell survival/death during mycobacterial infection.
Collapse
|
43
|
Abstract
Vibrio parahaemolyticus is a Gram-negative bacterium responsible for gastroenteritis acquired from the consumption of contaminated shellfish. This bacterium harbours two type III secretion systems, one on each chromosome. The type III secretion system on chromosome I induces cell death by a temporally controlled sequence of events that is caspase-independent and first involves induction of autophagy, followed by cellular rounding, and finally cellular lysis. VopQ is a type III secreted effector that is necessary for the induction of autophagy as mutant strains lacking VopQ are attenuated in their ability to induce autophagy during infection. VopQ is sufficient to induce rapid autophagy as demonstrated by microinjection of recombinant VopQ into GFP-LC3 HeLa cells. Our results demonstrate that VopQ is both necessary and sufficient for induction of autophagy during V. parahaemolyticus-mediated cell death and this effect is independent of phosphatidylinositol-3-kinases but requires Atg5. Furthermore, induction of VopQ-mediated autophagy prevents recruitment of the necessary cellular machinery required for phagocytosis of V. parahaemolyticus during infection. These data provide important insights into the mechanism used by V. parahaemolyticus to cause disease.
Collapse
Affiliation(s)
- Dara L. Burdette
- Department of Molecular Biology, University of Texas, Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Joachim Seemann
- Department of Cell Biology, University of Texas, Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas, Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| |
Collapse
|
44
|
Abstract
Autophagy is a cell biological process, enabling cells to autodigest their own cytosol when starved, remove cytoplasmic protein aggregates too large for proteasomal degradation, eliminate aberrant or over-proliferated organelles, and sanitize the cytoplasm by killing intracellular microbes. The role of autophagy has been expanded in recent years to include diverse immunological effector and regulatory functions. In this review, we summarize the multiple immunological roles of autophagy uncovered to date and focus primarily on details of induction of autophagy by pattern recognition receptors, as a newly established Toll-like receptor output. Taken together with other links between autophagy and innate and adaptive immunity processes, this cell-autonomous antimicrobial defense may be evolutionarily positioned at the root of immunity with the multiple innate and adaptive immunity connections uncovered to date reflecting a co-evolution of this ancient cell-defense mechanism and more advanced immunological systems in metazoans.
Collapse
Affiliation(s)
- MA Delgado
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - V Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| |
Collapse
|
45
|
Jellinger KA. Recent advances in our understanding of neurodegeneration. J Neural Transm (Vienna) 2009; 116:1111-62. [DOI: 10.1007/s00702-009-0240-y] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/05/2009] [Indexed: 12/12/2022]
|
46
|
Delgado M, Singh S, De Haro S, Master S, Ponpuak M, Dinkins C, Ornatowski W, Vergne I, Deretic V. Autophagy and pattern recognition receptors in innate immunity. Immunol Rev 2009; 227:189-202. [PMID: 19120485 PMCID: PMC2788953 DOI: 10.1111/j.1600-065x.2008.00725.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autophagy is a physiologically and immunologically controlled intracellular homeostatic pathway that sequesters and degrades cytoplasmic targets including macromolecular aggregates, cellular organelles such as mitochondria, and whole microbes or their products. Recent advances show that autophagy plays a role in innate immunity in several ways: (i) direct elimination of intracellular microbes by digestion in autolysosomes, (ii) delivery of cytosolic microbial products to pattern recognition receptors (PRRs) in a process referred to as topological inversion, and (iii) as an anti-microbial effector of Toll-like receptors and other PRR signaling. Autophagy eliminates pathogens in vitro and in vivo but, when aberrant due to mutations, contributes to human inflammatory disorders such as Crohn's disease. In this review, we examine these relationships and propose that autophagy is one of the most ancient innate immune defenses that has possibly evolved at the time of alpha-protobacteria-pre-eukaryote relationships, leading up to modern eukaryotic cell-mitochondrial symbiosis, and that during the metazoan evolution, additional layers of immunological regulation have been superimposed and integrated with this primordial innate immunity mechanism.
Collapse
Affiliation(s)
- Monica Delgado
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|