1
|
Giuliodori AM, Belardinelli R, Duval M, Garofalo R, Schenckbecher E, Hauryliuk V, Ennifar E, Marzi S. Escherichia coli CspA stimulates translation in the cold of its own mRNA by promoting ribosome progression. Front Microbiol 2023; 14:1118329. [PMID: 36846801 PMCID: PMC9947658 DOI: 10.3389/fmicb.2023.1118329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 02/11/2023] Open
Abstract
Escherichia coli CspA is an RNA binding protein that accumulates during cold-shock and stimulates translation of several mRNAs-including its own. Translation in the cold of cspA mRNA involves a cis-acting thermosensor element, which enhances ribosome binding, and the trans-acting action of CspA. Using reconstituted translation systems and probing experiments we show that, at low temperature, CspA specifically promotes the translation of the cspA mRNA folded in the conformation less accessible to the ribosome, which is formed at 37°C but is retained upon cold shock. CspA interacts with its mRNA without inducing large structural rearrangements, but allowing the progression of the ribosomes during the transition from translation initiation to translation elongation. A similar structure-dependent mechanism may be responsible for the CspA-dependent translation stimulation observed with other probed mRNAs, for which the transition to the elongation phase is progressively facilitated during cold acclimation with the accumulation of CspA.
Collapse
Affiliation(s)
- Anna Maria Giuliodori
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy,*Correspondence: Anna Maria Giuliodori, ✉
| | - Riccardo Belardinelli
- Architecture et Réactivité de l’ARN, CNRS 9002, Université de Strasbourg, Strasbourg, France
| | - Melodie Duval
- Architecture et Réactivité de l’ARN, CNRS 9002, Université de Strasbourg, Strasbourg, France
| | - Raffaella Garofalo
- Architecture et Réactivité de l’ARN, CNRS 9002, Université de Strasbourg, Strasbourg, France
| | - Emma Schenckbecher
- Architecture et Réactivité de l’ARN, CNRS 9002, Université de Strasbourg, Strasbourg, France
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, Lund, Sweden,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Eric Ennifar
- Architecture et Réactivité de l’ARN, CNRS 9002, Université de Strasbourg, Strasbourg, France
| | - Stefano Marzi
- Architecture et Réactivité de l’ARN, CNRS 9002, Université de Strasbourg, Strasbourg, France,Stefano Marzi, ✉
| |
Collapse
|
2
|
Desgranges E, Barrientos L, Herrgott L, Marzi S, Toledo-Arana A, Moreau K, Vandenesch F, Romby P, Caldelari I. The 3'UTR-derived sRNA RsaG coordinates redox homeostasis and metabolism adaptation in response to glucose-6-phosphate uptake in Staphylococcus aureus. Mol Microbiol 2021; 117:193-214. [PMID: 34783400 DOI: 10.1111/mmi.14845] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 01/28/2023]
Abstract
Staphylococcus aureus RsaG is a 3'-untranslated region (3'UTR) derived sRNA from the conserved uhpT gene encoding a glucose-6-phosphate (G6P) transporter expressed in response to extracellular G6P. The transcript uhpT-RsaG undergoes degradation from 5'- to 3'-end by the action of the exoribonucleases J1/J2, which are blocked by a stable hairpin structure at the 5'-end of RsaG, leading to its accumulation. RsaG together with uhpT is induced when bacteria are internalized into host cells or in the presence of mucus-secreting cells. Using MS2-affinity purification coupled with RNA sequencing, several RNAs were identified as targets including mRNAs encoding the transcriptional factors Rex, CcpA, SarA, and the sRNA RsaI. Our data suggested that RsaG contributes to the control of redox homeostasis and adjusts metabolism to changing environmental conditions. RsaG uses different molecular mechanisms to stabilize, degrade, or repress the translation of its mRNA targets. Although RsaG is conserved only in closely related species, the uhpT 3'UTR of the ape pathogen S. simiae harbors an sRNA, whose sequence is highly different, and which does not respond to G6P levels. Our results hypothesized that the 3'UTRs from UhpT transporter encoding mRNAs could have rapidly evolved to enable adaptation to host niches.
Collapse
Affiliation(s)
- Emma Desgranges
- Architecture et Réactivité de l'ARN, UPR9002, CNRS, Université de Strasbourg, Strasbourg, France
| | - Laura Barrientos
- Architecture et Réactivité de l'ARN, UPR9002, CNRS, Université de Strasbourg, Strasbourg, France
| | - Lucas Herrgott
- Architecture et Réactivité de l'ARN, UPR9002, CNRS, Université de Strasbourg, Strasbourg, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, UPR9002, CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Université de Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Université de Lyon, Lyon, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, UPR9002, CNRS, Université de Strasbourg, Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, UPR9002, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
The 5' NAD Cap of RNAIII Modulates Toxin Production in Staphylococcus aureus Isolates. J Bacteriol 2020; 202:JB.00591-19. [PMID: 31871032 DOI: 10.1128/jb.00591-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/18/2019] [Indexed: 01/14/2023] Open
Abstract
Nicotinamide adenosine dinucleotide (NAD) has been found to be covalently attached to the 5' ends of specific RNAs in many different organisms, but the physiological consequences of this modification are largely unknown. Here, we report the occurrence of several NAD-RNAs in the opportunistic pathogen Staphylococcus aureus Most prominently, RNAIII, a central quorum-sensing regulator of this bacterium's physiology, was found to be 5' NAD capped in a range from 10 to 35%. NAD incorporation efficiency into RNAIII was found to depend in vivo on the -1 position of the P3 promoter. An increase in RNAIII's NAD content led to a decreased expression of alpha- and delta-toxins, resulting in reduced cytotoxicity of the modified strains. These effects seem to be caused neither by changes in RNAIII's secondary structure nor by a different translatability upon NAD attachment, as indicated by unaltered patterns in in vitro chemical probing and toeprinting experiments. Even though we did not observe any effect of this modification on RNAIII's secondary structure or translatability in vitro, additional unidentified factors might account for the modulation of exotoxins in vivo Ultimately, the study constitutes a step forward in the discovery of new roles of the NAD molecule in bacteria.IMPORTANCE Numerous organisms, including bacteria, are endowed with a 5' NAD cap in specific RNAs. While the presence of the 5' NAD cap modulates the stability of the modified RNA species, a significant biological function and phenotype have not been assigned so far. Here, we show the presence of a 5' NAD cap in RNAIII from S. aureus, a dual-function regulatory RNA involved in quorum-sensing processes and regulation of virulence factor expression. We also demonstrate that altering the natural NAD modification ratio of RNAIII leads to a decrease in exotoxin production, thereby modulating the bacterium's virulence. Our work unveils a new layer of regulation of RNAIII and the agr system that might be linked to the redox state of the NAD molecule in the cell.
Collapse
|
4
|
Lalaouna D, Baude J, Wu Z, Tomasini A, Chicher J, Marzi S, Vandenesch F, Romby P, Caldelari I, Moreau K. RsaC sRNA modulates the oxidative stress response of Staphylococcus aureus during manganese starvation. Nucleic Acids Res 2019; 47:9871-9887. [PMID: 31504767 PMCID: PMC6765141 DOI: 10.1093/nar/gkz728] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/22/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
The human opportunistic pathogen Staphylococcus aureus produces numerous small regulatory RNAs (sRNAs) for which functions are still poorly understood. Here, we focused on an atypical and large sRNA called RsaC. Its length varies between different isolates due to the presence of repeated sequences at the 5′ end while its 3′ part is structurally independent and highly conserved. Using MS2-affinity purification coupled with RNA sequencing (MAPS) and quantitative differential proteomics, sodA mRNA was identified as a primary target of RsaC sRNA. SodA is a Mn-dependent superoxide dismutase involved in oxidative stress response. Remarkably, rsaC gene is co-transcribed with the major manganese ABC transporter MntABC and, consequently, RsaC is mainly produced in response to Mn starvation. This 3′UTR-derived sRNA is released from mntABC-RsaC precursor after cleavage by RNase III. The mature and stable form of RsaC inhibits the synthesis of the Mn-containing enzyme SodA synthesis and favors the oxidative stress response mediated by SodM, an alternative SOD enzyme using either Mn or Fe as co-factor. In addition, other putative targets of RsaC are involved in oxidative stress (ROS and NOS) and metal homeostasis (Fe and Zn). Consequently, RsaC may balance two interconnected defensive responses, i.e. oxidative stress and metal-dependent nutritional immunity.
Collapse
Affiliation(s)
- David Lalaouna
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Jessica Baude
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon1, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Arnaud Tomasini
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg-Esplanade, IBMC-CNRS, Strasbourg, France
| | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon1, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France.,Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Pascale Romby
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Isabelle Caldelari
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon1, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France
| |
Collapse
|
5
|
Bronesky D, Desgranges E, Corvaglia A, François P, Caballero CJ, Prado L, Toledo-Arana A, Lasa I, Moreau K, Vandenesch F, Marzi S, Romby P, Caldelari I. A multifaceted small RNA modulates gene expression upon glucose limitation in Staphylococcus aureus. EMBO J 2019; 38:e99363. [PMID: 30760492 PMCID: PMC6418428 DOI: 10.15252/embj.201899363] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 12/17/2018] [Accepted: 01/21/2019] [Indexed: 01/10/2023] Open
Abstract
Pathogenic bacteria must rapidly adapt to ever-changing environmental signals resulting in metabolism remodeling. The carbon catabolite repression, mediated by the catabolite control protein A (CcpA), is used to express genes involved in utilization and metabolism of the preferred carbon source. Here, we have identified RsaI as a CcpA-repressed small non-coding RNA that is inhibited by high glucose concentrations. When glucose is consumed, RsaI represses translation initiation of mRNAs encoding a permease of glucose uptake and the FN3K enzyme that protects proteins against damage caused by high glucose concentrations. RsaI also binds to the 3' untranslated region of icaR mRNA encoding the transcriptional repressor of exopolysaccharide production and to sRNAs induced by the uptake of glucose-6 phosphate or nitric oxide. Furthermore, RsaI expression is accompanied by a decreased transcription of genes involved in carbon catabolism pathway and an activation of genes involved in energy production, fermentation, and nitric oxide detoxification. This multifaceted RNA can be considered as a metabolic signature when glucose becomes scarce and growth is arrested.
Collapse
Affiliation(s)
- Delphine Bronesky
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Emma Desgranges
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Anna Corvaglia
- Genomic Research Laboratory, Department of Medical Specialties, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Patrice François
- Genomic Research Laboratory, Department of Medical Specialties, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | | | - Laura Prado
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-GN, Navarra, Spain
| | | | - Inigo Lasa
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, Pamplona, Spain
| | - Karen Moreau
- CIRI, Centre international de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Univ Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre international de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Univ Lyon, Lyon, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Lalaouna D, Desgranges E, Caldelari I, Marzi S. MS2-Affinity Purification Coupled With RNA Sequencing Approach in the Human Pathogen Staphylococcus aureus. Methods Enzymol 2018; 612:393-411. [PMID: 30502950 DOI: 10.1016/bs.mie.2018.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus aureus is a Gram-positive major human pathogen involved in a wide range of human infectious diseases (from minor skin infections to septicemia, endocarditis or toxic shock syndrome). The treatment of S. aureus infections is very challenging due to the emergence of multiple antibiotic-resistant isolates. The high diversity of clinical symptoms caused by S. aureus depends on the precise expression of numerous virulence factors and stress response pathways, which are tightly regulated at every level (transcriptional, posttranscriptional, translational, and posttranslational). During the last two decades, it has become evident that small regulatory RNAs (sRNAs) play a major role in fast adaptive responses, mainly by targeting mRNA translation. sRNAs act as antisense RNAs by forming noncontiguous pairings with their target mRNAs and their mechanisms of action vary according to the interaction site. To obtain a global and detailed view of the regulatory networks involved in the adaptive processes of S. aureus, we have adapted the MAPS approach to get individual sRNA targetomes. We also set up different strategies to validate MAPS results and establish sRNA regulatory activities. As this method has been first developed in Gram-negative bacteria, we provide here a protocol for its application in S. aureus and highlight underlying differences. Finally, we discuss several points that have been and could be further improved and provide a workflow file for the automatic analysis of the sequencing in Galaxy.
Collapse
Affiliation(s)
- David Lalaouna
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, Strasbourg, France
| | - Emma Desgranges
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, Strasbourg, France.
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, Strasbourg, France.
| |
Collapse
|
7
|
Azam MS, Vanderpool CK. Translational regulation by bacterial small RNAs via an unusual Hfq-dependent mechanism. Nucleic Acids Res 2018; 46:2585-2599. [PMID: 29294046 PMCID: PMC5861419 DOI: 10.1093/nar/gkx1286] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/08/2017] [Accepted: 12/21/2017] [Indexed: 01/06/2023] Open
Abstract
In bacteria, the canonical mechanism of translational repression by small RNAs (sRNAs) involves sRNA-mRNA base pairing that occludes the ribosome binding site (RBS), directly preventing translation. In this mechanism, the sRNA is the direct regulator, while the RNA chaperone Hfq plays a supporting role by stabilizing the sRNA. There are a few examples where the sRNA does not directly interfere with ribosome binding, yet translation of the target mRNA is still inhibited. Mechanistically, this non-canonical regulation by sRNAs is poorly understood. Our previous work demonstrated repression of the mannose transporter manX mRNA by the sRNA SgrS, but the regulatory mechanism was unknown. Here, we report that manX translation is controlled by a molecular role-reversal mechanism where Hfq, not the sRNA, is the direct repressor. Hfq binding adjacent to the manX RBS is required for sRNA-mediated translational repression. Translation of manX is also regulated by another sRNA, DicF, via the same non-canonical Hfq-dependent mechanism. Our results suggest that the sRNAs recruit Hfq to its binding site or stabilize the mRNA-Hfq complex. This work adds to the growing number of examples of diverse mechanisms of translational regulation by sRNAs in bacteria.
Collapse
Affiliation(s)
- Muhammad S Azam
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Tomasini A, Moreau K, Chicher J, Geissmann T, Vandenesch F, Romby P, Marzi S, Caldelari I. The RNA targetome of Staphylococcus aureus non-coding RNA RsaA: impact on cell surface properties and defense mechanisms. Nucleic Acids Res 2017; 45:6746-6760. [PMID: 28379505 PMCID: PMC5499838 DOI: 10.1093/nar/gkx219] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/24/2017] [Indexed: 01/08/2023] Open
Abstract
The virulon of Staphyloccocus aureus is controlled by intricate connections between transcriptional and post-transcriptional regulators including proteins and small non-coding RNAs (sRNAs). Many of the sRNAs regulate gene expression through base-pairings with mRNAs. However, characterization of the direct sRNA targets in Gram-positive bacteria remained a difficult challenge. Here, we have applied and adapted the MS2-affinity purification approach coupled to RNA sequencing (MAPS) to determine the targetome of RsaA sRNA of S. aureus, known to repress the synthesis of the transcriptional regulator MgrA. Several mRNAs were enriched with RsaA expanding its regulatory network. Besides mgrA, several of these mRNAs encode a family of SsaA-like enzymes involved in peptidoglycan metabolism and the secreted anti-inflammatory FLIPr protein. Using a combination of in vivo and in vitro approaches, these mRNAs were validated as direct RsaA targets. Quantitative differential proteomics of wild-type and mutant strains corroborated the MAPS results. Additionally, it revealed that RsaA indirectly activated the synthesis of surface proteins supporting previous data that RsaA stimulated biofilm formation and favoured chronic infections. All together, this study shows that MAPS could also be easily applied in Gram-positive bacteria for identification of sRNA targetome.
Collapse
Affiliation(s)
- Arnaud Tomasini
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
| | - Karen Moreau
- CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, University of Lyon, F-69008, Lyon, France
| | | | - Thomas Geissmann
- CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, University of Lyon, F-69008, Lyon, France
| | - François Vandenesch
- CIRI, International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, University of Lyon, F-69008, Lyon, France
| | - Pascale Romby
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
| | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
| | - Isabelle Caldelari
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
| |
Collapse
|
9
|
Durand S, Braun F, Helfer AC, Romby P, Condon C. sRNA-mediated activation of gene expression by inhibition of 5'-3' exonucleolytic mRNA degradation. eLife 2017; 6. [PMID: 28436820 PMCID: PMC5419742 DOI: 10.7554/elife.23602] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/23/2017] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional control by small regulatory RNA (sRNA) is critical for rapid adaptive processes. sRNAs can directly modulate mRNA degradation in Proteobacteria without interfering with translation. However, Firmicutes have a fundamentally different set of ribonucleases for mRNA degradation and whether sRNAs can regulate the activity of these enzymes is an open question. We show that Bacillus subtilis RoxS, a major trans-acting sRNA shared with Staphylococus aureus, prevents degradation of the yflS mRNA, encoding a malate transporter. In the presence of malate, RoxS transiently escapes from repression by the NADH-sensitive transcription factor Rex and binds to the extreme 5'-end of yflS mRNA. This impairs the 5'-3' exoribonuclease activity of RNase J1, increasing the half-life of the primary transcript and concomitantly enhancing ribosome binding to increase expression of the transporter. Globally, the different targets regulated by RoxS suggest that it helps readjust the cellular NAD+/NADH balance when perturbed by different stimuli.
Collapse
Affiliation(s)
- Sylvain Durand
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Frédérique Braun
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Anne-Catherine Helfer
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Pascale Romby
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France.,Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Ciarán Condon
- UMR8261 CNRS, Université Paris Diderot (Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
10
|
Purification, identification, and functional analysis of polysomes from the human pathogen Staphylococcus aureus. Methods 2017; 117:59-66. [DOI: 10.1016/j.ymeth.2016.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/21/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022] Open
|
11
|
One Gene and Two Proteins: a Leaderless mRNA Supports the Translation of a Shorter Form of the Shigella VirF Regulator. mBio 2016; 7:mBio.01860-16. [PMID: 27834204 PMCID: PMC5101355 DOI: 10.1128/mbio.01860-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
VirF, an AraC-like activator, is required to trigger a regulatory cascade that initiates the invasive program of Shigella spp., the etiological agents of bacillary dysentery in humans. VirF expression is activated upon entry into the host and depends on many environmental signals. Here, we show that the virF mRNA is translated into two proteins, the major form, VirF30 (30 kDa), and the shorter VirF21 (21 kDa), lacking the N-terminal segment. By site-specific mutagenesis and toeprint analysis, we identified the translation start sites of VirF30 and VirF21 and showed that the two different forms of VirF arise from differential translation. Interestingly, in vitro and in vivo translation experiments showed that VirF21 is also translated from a leaderless mRNA (llmRNA) whose 5′ end is at position +309/+310, only 1 or 2 nucleotides upstream of the ATG84 start codon of VirF21. The llmRNA is transcribed from a gene-internal promoter, which we identified here. Functional analysis revealed that while VirF30 is responsible for activation of the virulence system, VirF21 negatively autoregulates virF expression itself. Since VirF21 modulates the intracellular VirF levels, this suggests that transcription of the llmRNA might occur when the onset of the virulence program is not required. We speculate that environmental cues, like stress conditions, may promote changes in virF mRNA transcription and preferential translation of llmRNA. Shigella spp. are a major cause of dysentery in humans. In bacteria of this genus, the activation of the invasive program involves a multitude of signals that act on all layers of the gene regulatory hierarchy. By controlling the essential genes for host cell invasion, VirF is the key regulator of the switch from the noninvasive to the invasive phenotype. Here, we show that the Shigella virF gene encodes two proteins of different sizes, VirF30 and VirF21, that are functionally distinct. The major form, VirF30, activates the genes necessary for virulence, whereas the minor VirF21, which shares the C-terminal two-thirds of VirF30, negatively autoregulates virF expression itself. VirF21 is transcribed from a newly identified gene-internal promoter and, moreover, is translated from an unusual leaderless mRNA. The identification of a new player in regulation adds complexity to the regulation of the Shigella invasive process and may help development of new therapies for shigellosis.
Collapse
|
12
|
Khusainov I, Vicens Q, Bochler A, Grosse F, Myasnikov A, Ménétret JF, Chicher J, Marzi S, Romby P, Yusupova G, Yusupov M, Hashem Y. Structure of the 70S ribosome from human pathogen Staphylococcus aureus. Nucleic Acids Res 2016; 44:10491-10504. [PMID: 27906650 PMCID: PMC5137454 DOI: 10.1093/nar/gkw933] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/02/2016] [Accepted: 10/06/2016] [Indexed: 01/07/2023] Open
Abstract
Comparative structural studies of ribosomes from various organisms keep offering exciting insights on how species-specific or environment-related structural features of ribosomes may impact translation specificity and its regulation. Although the importance of such features may be less obvious within more closely related organisms, their existence could account for vital yet species-specific mechanisms of translation regulation that would involve stalling, cell survival and antibiotic resistance. Here, we present the first full 70S ribosome structure from Staphylococcus aureus, a Gram-positive pathogenic bacterium, solved by cryo-electron microscopy. Comparative analysis with other known bacterial ribosomes pinpoints several unique features specific to S. aureus around a conserved core, at both the protein and the RNA levels. Our work provides the structural basis for the many studies aiming at understanding translation regulation in S. aureus and for designing drugs against this often multi-resistant pathogen.
Collapse
Affiliation(s)
- Iskander Khusainov
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch 67400, France.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Quentin Vicens
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| | - Anthony Bochler
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| | - François Grosse
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| | - Alexander Myasnikov
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch 67400, France
| | - Jean-François Ménétret
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch 67400, France
| | - Johana Chicher
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| | - Gulnara Yusupova
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch 67400, France
| | - Marat Yusupov
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch 67400, France
| | - Yaser Hashem
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg 67084, France
| |
Collapse
|
13
|
Mechanistic study of base-pairing small regulatory RNAs in bacteria. Methods 2016; 117:67-76. [PMID: 27693881 DOI: 10.1016/j.ymeth.2016.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/22/2016] [Indexed: 11/24/2022] Open
Abstract
In all three kingdoms of life, RNA is not only involved in the expression of genetic information, but also carries out extremely diverse cellular functions. This versatility is essentially due to the fact that RNA molecules can exploit the power of base pairing to allow them to fold into a wide variety of structures through which they can perform diverse roles, but also to selectively target and bind to other nucleic acids. This is true in particular for bacterial small regulatory RNAs that act by imperfect base-pairing with target mRNAs, and thereby control their expression through different mechanisms. Here we outline an overview of in vivo and in vitro approaches that are currently used to gain mechanistic insights into how these sRNAs control gene expression in bacteria.
Collapse
|
14
|
Khusainov I, Marenna A, Cerciat M, Fechter P, Hashem Y, Marzi S, Romby P, Yusupova G, Yusupov M. A glimpse on Staphylococcus aureus translation machinery and its control. Mol Biol 2016. [DOI: 10.1134/s002689331604004x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Mollerup MS, Ross JA, Helfer AC, Meistrup K, Romby P, Kallipolitis BH. Two novel members of the LhrC family of small RNAs in Listeria monocytogenes with overlapping regulatory functions but distinctive expression profiles. RNA Biol 2016; 13:895-915. [PMID: 27400116 DOI: 10.1080/15476286.2016.1208332] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multicopy small RNAs (sRNAs) have gained recognition as an important feature of bacterial gene regulation. In the human pathogen Listeria monocytogenes, 5 homologous sRNAs, called LhrC1-5, control gene expression by base pairing to target mRNAs though 3 conserved UCCC motifs common to all 5 LhrCs. We show here that the sRNAs Rli22 and Rli33-1 are structurally and functionally related to LhrC1-5, expanding the LhrC family to 7 members, which makes it the largest multicopy sRNA family reported so far. Rli22 and Rli33-1 both contain 2 UCCC motifs important for post-transcriptional repression of 3 LhrC target genes. One such target, oppA, encodes a virulence-associated oligo-peptide binding protein. Like LhrC1-5, Rli22 and Rli33-1 employ their UCCC motifs to recognize the Shine-Dalgarno region of oppA mRNA and prevent formation of the ribosomal complex, demonstrating that the 7 sRNAs act in a functionally redundant manner. However, differential expression profiles of the sRNAs under infection-relevant conditions suggest that they might also possess non-overlapping functions. Collectively, this makes the LhrC family a unique case for studying the purpose of sRNA multiplicity in the context of bacterial virulence.
Collapse
Affiliation(s)
- Maria Storm Mollerup
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Joseph Andrew Ross
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Anne-Catherine Helfer
- b Architecture et Réactivité de l´ARN, Université de Strasbourg, CNRS, IBMC , Strasbourg , France
| | - Kristine Meistrup
- a Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense , Denmark
| | - Pascale Romby
- b Architecture et Réactivité de l´ARN, Université de Strasbourg, CNRS, IBMC , Strasbourg , France
| | | |
Collapse
|
16
|
Lioliou E, Fechter P, Caldelari I, Jester BC, Dubrac S, Helfer AC, Boisset S, Vandenesch F, Romby P, Geissmann T. Various checkpoints prevent the synthesis of Staphylococcus aureus peptidoglycan hydrolase LytM in the stationary growth phase. RNA Biol 2016; 13:427-40. [PMID: 26901414 DOI: 10.1080/15476286.2016.1153209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In Staphylococcus aureus, peptidoglycan metabolism plays a role in the host inflammatory response and pathogenesis. Transcription of the peptidoglycan hydrolases is activated by the essential 2-component system WalKR at low cell density. During stationary growth phase, WalKR is not active and transcription of the peptidoglycan hydrolase genes is repressed. In this work, we studied regulation of expression of the glycylglycine endopeptidase LytM. We show that, in addition to the transcriptional regulation mediated by WalKR, the synthesis of LytM is negatively controlled by a unique mechanism at the stationary growth phase. We have identified 2 different mRNAs encoding lytM, which vary in the length of their 5' untranslated (5'UTR) regions. LytM is predominantly produced from the WalKR-regulated mRNA transcript carrying a short 5'UTR. The lytM mRNA is also transcribed as part of a polycistronic operon with the upstream SA0264 gene and is constitutively expressed. Although SA0264 protein can be synthesized from the longer operon transcript, lytM cannot be translated because its ribosome-binding site is sequestered into a translationally inactive secondary structure. In addition, the effector of the agr system, RNAIII, can inhibit translation of lytM present on the operon without altering the transcript level but does not have an effect on the translation of the upstream gene. We propose that this dual regulation of lytM expression, at the transcriptional and post-transcriptional levels, contributes to prevent cell wall damage during the stationary phase of growth.
Collapse
Affiliation(s)
- Efthimia Lioliou
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Pierre Fechter
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Isabelle Caldelari
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Brian C Jester
- b Institute of Systems and Synthetic Biology, University of Evry-Val-d'Essonne, CNRS FRE3561 , Evry , France
| | - Sarah Dubrac
- c Unité de Biologie des Bactéries pathogènes à Gram-positif, Institut Pasteur , 28 rue du Dr Roux, Paris , France
| | - Anne-Catherine Helfer
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Sandrine Boisset
- d CIRI, Center International de Recherche en Infectiologie - Inserm U1111 - Université Lyon 1 - Ecole Normale Supérieure de Lyon - CNRS UMR5308 , 21 Avenue Tony Garnier, LYON cedex 07 , France
| | - François Vandenesch
- d CIRI, Center International de Recherche en Infectiologie - Inserm U1111 - Université Lyon 1 - Ecole Normale Supérieure de Lyon - CNRS UMR5308 , 21 Avenue Tony Garnier, LYON cedex 07 , France
| | - Pascale Romby
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Thomas Geissmann
- d CIRI, Center International de Recherche en Infectiologie - Inserm U1111 - Université Lyon 1 - Ecole Normale Supérieure de Lyon - CNRS UMR5308 , 21 Avenue Tony Garnier, LYON cedex 07 , France
| |
Collapse
|
17
|
Wicker-Planquart C, Ceres N, Jault JM. The C-terminal α-helix of YsxC is essential for its binding to 50S ribosome and rRNAs. FEBS Lett 2015; 589:2080-6. [PMID: 26103561 DOI: 10.1016/j.febslet.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/01/2015] [Accepted: 06/09/2015] [Indexed: 11/28/2022]
Abstract
YsxC is an essential P-loop GTPase that interacts with the 50S subunit of the ribosome. The putative implication in ribosome binding of two basic clusters of YsxC, a conserved positively charged patch including R31, R116, H117 and K146 lying adjacent to the nucleotide-binding site, and the C-terminal alpha helix, was investigated. C-terminal truncation variants of YsxC were unable to bind to both ribosome and rRNAs, whereas mutations in the other cluster did not affect YsxC binding. Our results indicate that the basic C-terminal region of YsxC is required for its binding to the 50S ribosomal subunit.
Collapse
Affiliation(s)
- Catherine Wicker-Planquart
- CNRS, IBS, 6 rue Jules Horowitz, 38000 Grenoble, France; Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France.
| | - Nicoletta Ceres
- BMSSI, UMR 5086 CNRS/Université Claude Bernard Lyon I, France
| | - Jean-Michel Jault
- CNRS, IBS, 6 rue Jules Horowitz, 38000 Grenoble, France; Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France.
| |
Collapse
|
18
|
Wicker-Planquart C, Jault JM. Interaction between Bacillus subtilis YsxC and ribosomes (or rRNAs). FEBS Lett 2015; 589:1026-32. [PMID: 25771857 DOI: 10.1016/j.febslet.2015.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/04/2015] [Indexed: 11/28/2022]
Abstract
YsxC is an essential P-loop GTPase, that binds to the 50S ribosomal subunit, and is required for the proper assembly of the ribosome. The aim of this study was to characterize YsxC ribosome interactions. The stoichiometry of YsxC ribosome subunit complex was evaluated. We showed that YsxC binding to the 50S ribosomal subunit is not affected by GTP, but in the presence of GDP the stoichiometry of YsxC-ribosome is decreased. YsxC GTPase activity was stimulated upon 50S ribosomal subunit binding. In addition, it is shown for the first time that YsxC binds both 16S and 23S ribosomal RNAs.
Collapse
Affiliation(s)
- Catherine Wicker-Planquart
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France.
| | - Jean-Michel Jault
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France.
| |
Collapse
|
19
|
Ellis MJ, Trussler RS, Haniford DB. Hfq binds directly to the ribosome-binding site of IS10 transposase mRNA to inhibit translation. Mol Microbiol 2015; 96:633-50. [PMID: 25649688 PMCID: PMC5006887 DOI: 10.1111/mmi.12961] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 12/31/2022]
Abstract
Hfq is a critical component of post‐transcriptional regulatory networks in most bacteria. It usually functions as a chaperone for base‐pairing small RNAs, although non‐canonical regulatory roles are continually emerging. We have previously shown that Hfq represses IS10/Tn10 transposase expression through both antisense RNA‐dependent and independent mechanisms. In the current work, we set out to define the regulatory role of Hfq in the absence of the IS10 antisense RNA. We show here that an interaction between the distal surface of Hfq and the ribosome‐binding site of transposase mRNA (RNA‐IN) is required for repressing translation initiation. Additionally, this interaction was critical for the in vivo association of Hfq and RNA‐IN. Finally, we present evidence that the small RNA ChiX activates transposase expression by titrating Hfq away from RNA‐IN. The current results are considered in the broader context of Hfq biology and implications for Hfq titration by ChiX are discussed.
Collapse
Affiliation(s)
- Michael J Ellis
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | |
Collapse
|
20
|
Durand S, Braun F, Lioliou E, Romilly C, Helfer AC, Kuhn L, Quittot N, Nicolas P, Romby P, Condon C. A nitric oxide regulated small RNA controls expression of genes involved in redox homeostasis in Bacillus subtilis. PLoS Genet 2015; 11:e1004957. [PMID: 25643072 PMCID: PMC4409812 DOI: 10.1371/journal.pgen.1004957] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/15/2014] [Indexed: 11/18/2022] Open
Abstract
RsaE is the only known trans-acting small regulatory RNA (sRNA) besides the ubiquitous 6S RNA that is conserved between the human pathogen Staphylococcus aureus and the soil-dwelling Firmicute Bacillus subtilis. Although a number of RsaE targets are known in S. aureus, neither the environmental signals that lead to its expression nor its physiological role are known. Here we show that expression of the B. subtilis homolog of RsaE is regulated by the presence of nitric oxide (NO) in the cellular milieu. Control of expression by NO is dependent on the ResDE two-component system in B. subtilis and we determined that the same is true in S. aureus. Transcriptome and proteome analyses revealed that many genes with functions related to oxidative stress and oxidation-reduction reactions were up-regulated in a B. subtilis strain lacking this sRNA. We have thus renamed it RoxS. The prediction of RoxS-dependent mRNA targets also suggested a significant enrichment for mRNAs related to respiration and electron transfer. Among the potential direct mRNA targets, we have validated the ppnKB mRNA, encoding an NAD+/NADH kinase, both in vivo and in vitro. RoxS controls both translation initiation and the stability of this transcript, in the latter case via two independent pathways implicating RNase Y and RNase III. Furthermore, RNase Y intervenes at an additional level by processing the 5′ end of the RoxS sRNA removing about 20 nucleotides. Processing of RoxS allows it to interact more efficiently with a second target, the sucCD mRNA, encoding succinyl-CoA synthase, thus expanding the repertoire of targets recognized by this sRNA. Bacteria have evolved various strategies to continually monitor the redox state of the internal and external environments to prevent cell damage and/or to protect them from host defense mechanisms. These signals modify the expression of genes, allowing bacteria to adapt to altered redox environments and to maintain homeostasis. Studies in Enterobacteriaceae have shown that sRNAs play central roles in adaptation to oxidative stress. We show here that the conserved sRNA, RoxS is induced by the presence of nitric oxide (NO) in the medium, through the ResDE and SrrAB two-component systems of Bacillus subtilis and Staphylococcus aureus, respectively. B. subtilis RoxS regulates functions related to oxidation-reduction reactions and acts as an antisense RNA to control translation initiation and the degradation of ppnKB mRNA, encoding an NAD+/NADH kinase. Interestingly, RNase Y processes the 5′ end of the RoxS sRNA leading to a truncated sRNA that in turn interacts more efficiently with a second target, the sucCD mRNA, encoding succinyl-CoA synthase. Taken together this work shows that RoxS is part of a complex regulatory network that allows the cell to sense and respond to redox perturbations, and revealed a novel process that allows an expansion of the repertoire of sRNA targets.
Collapse
Affiliation(s)
- Sylvain Durand
- CNRS FRE 3630 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Frédérique Braun
- CNRS FRE 3630 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Efthimia Lioliou
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Cédric Romilly
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Anne-Catherine Helfer
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Laurianne Kuhn
- Plateforme Protéomique Esplanade, IBMC, Strasbourg, France
| | - Noé Quittot
- Mathématique Informatique et Génome, INRA UR1077, Jouy en Josas, France
| | - Pierre Nicolas
- Mathématique Informatique et Génome, INRA UR1077, Jouy en Josas, France
| | - Pascale Romby
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
- * E-mail: (CC); (PR)
| | - Ciarán Condon
- CNRS FRE 3630 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
- * E-mail: (CC); (PR)
| |
Collapse
|
21
|
Romilly C, Lays C, Tomasini A, Caldelari I, Benito Y, Hammann P, Geissmann T, Boisset S, Romby P, Vandenesch F. A non-coding RNA promotes bacterial persistence and decreases virulence by regulating a regulator in Staphylococcus aureus. PLoS Pathog 2014; 10:e1003979. [PMID: 24651379 PMCID: PMC3961350 DOI: 10.1371/journal.ppat.1003979] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus produces a high number of RNAs for which the functions are poorly understood. Several non-coding RNAs carry a C-rich sequence suggesting that they regulate mRNAs at the post-transcriptional level. We demonstrate that the Sigma B-dependent RsaA RNA represses the synthesis of the global transcriptional regulator MgrA by forming an imperfect duplex with the Shine and Dalgarno sequence and a loop-loop interaction within the coding region of the target mRNA. These two recognition sites are required for translation repression. Consequently, RsaA causes enhanced production of biofilm and a decreased synthesis of capsule formation in several strain backgrounds. These phenotypes led to a decreased protection of S. aureus against opsonophagocytic killing by polymorphonuclear leukocytes compared to the mutant strains lacking RsaA. Mice animal models showed that RsaA attenuates the severity of acute systemic infections and enhances chronic catheter infection. RsaA takes part in a regulatory network that contributes to the complex interactions of S. aureus with the host immune system to moderate invasiveness and favour chronic infections. It is the first example of a conserved small RNA in S. aureus functioning as a virulence suppressor of acute infections. Because S. aureus is essentially a human commensal, we propose that RsaA has been positively selected through evolution to support commensalism and saprophytic interactions with the host. Staphylococcus aureus is a commensal and an opportunistic pathogen that causes a large range of community and hospital-acquired infections. The bacteria produce an array of virulence factors, the expression of which is regulated by a set of regulators including proteins and RNAs. In recent years, a large number of small non-coding RNAs encoded by the S. aureus genome have been identified but determination of their function is still lagging behind. This study shows that RsaA, a staphylococcal conserved non-coding RNA, operates at the post-transcriptional level by repressing the translation of the master regulatory protein MgrA. The repression is based on a direct interaction of RsaA with the ribosome binding site of mgrA mRNA. Through MgrA regulation, RsaA activates biofilm formation and inhibits capsule synthesis. Using appropriate animal models, we showed that RsaA acts as a suppressor of virulence because the deletion of its gene increases the invasiveness of S. aureus in the mice sepsis model. RsaA is thus part of complex regulatory network that modify the interactions of S. aureus with the eukaryotic immune system. These findings illustrate how small RNAs can have a major impact in bacterial biology.
Collapse
Affiliation(s)
- Cédric Romilly
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Claire Lays
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- Inserm U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Arnaud Tomasini
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Yvonne Benito
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- Inserm U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | | | - Thomas Geissmann
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- Inserm U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Sandrine Boisset
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- Inserm U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
- * E-mail: (PR); (FV)
| | - François Vandenesch
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- Inserm U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Hospices Civils de Lyon, Lyon, France
- * E-mail: (PR); (FV)
| |
Collapse
|
22
|
Abstract
The high-resolution structure of the eukaryotic ribosome from yeast, determined at 3.0-Å resolution, permitted the unambiguous determination of the protein side chains, eukaryote-specific proteins, protein insertions, and ribosomal RNA expansion segments of the 80 proteins and ∼5,500 RNA bases that constitute the 80S ribosome. A comparison between this first atomic model of the entire 80S eukaryotic ribosome and previously determined structures of bacterial ribosomes confirmed early genetic and structural data indicating that they share an evolutionarily conserved core of ribosomal RNA and proteins. It also confirmed the conserved organization of essential functional sites, such as the peptidyl transferase center and the decoding site. New structural information about eukaryote-specific elements, such as expansion segments and new ribosomal proteins, forms the structural framework for the design and analysis of experiments that will explore the eukaryotic translational apparatus and the evolutionary forces that shaped it. New nomenclature for ribosomal proteins, based on the names of protein families, has been proposed.
Collapse
Affiliation(s)
- Gulnara Yusupova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg F-67000, France
| | | |
Collapse
|
23
|
Ruiz de los Mozos I, Vergara-Irigaray M, Segura V, Villanueva M, Bitarte N, Saramago M, Domingues S, Arraiano CM, Fechter P, Romby P, Valle J, Solano C, Lasa I, Toledo-Arana A. Base pairing interaction between 5'- and 3'-UTRs controls icaR mRNA translation in Staphylococcus aureus. PLoS Genet 2013; 9:e1004001. [PMID: 24367275 PMCID: PMC3868564 DOI: 10.1371/journal.pgen.1004001] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/20/2013] [Indexed: 11/18/2022] Open
Abstract
The presence of regulatory sequences in the 3′ untranslated region (3′-UTR) of eukaryotic mRNAs controlling RNA stability and translation efficiency is widely recognized. In contrast, the relevance of 3′-UTRs in bacterial mRNA functionality has been disregarded. Here, we report evidences showing that around one-third of the mapped mRNAs of the major human pathogen Staphylococcus aureus carry 3′-UTRs longer than 100-nt and thus, potential regulatory functions. We selected the long 3′-UTR of icaR, which codes for the repressor of the main exopolysaccharidic compound of the S. aureus biofilm matrix, to evaluate the role that 3′-UTRs may play in controlling mRNA expression. We showed that base pairing between the 3′-UTR and the Shine-Dalgarno (SD) region of icaR mRNA interferes with the translation initiation complex and generates a double-stranded substrate for RNase III. Deletion or substitution of the motif (UCCCCUG) within icaR 3′-UTR was sufficient to abolish this interaction and resulted in the accumulation of IcaR repressor and inhibition of biofilm development. Our findings provide a singular example of a new potential post-transcriptional regulatory mechanism to modulate bacterial gene expression through the interaction of a 3′-UTR with the 5′-UTR of the same mRNA. At both sides of the protein-coding region, the mRNA molecule contains sequences that are not translated to protein. In eukaryotes, the untranslated 3′ region (3′-UTR), which comprises from the last codon used in translation to the 3′ end of the mRNA, controls mRNA stability, location and translation efficiency. In contrast, knowledge about the functions of 3′-UTRs in bacterial physiology is scarce. Here, we demonstrate that bacterial 3′-UTRs might play regulatory functions that might resemble those already described in eukaryotes. Transcriptome analysis of the human pathogen Staphylococcus aureus revealed that at least 30% of mRNAs contain long 3′-UTRs. Using the 3′-UTR of the mRNA encoding the main biofilm repressor IcaR as a model, we show that the 3′-UTR interferes with the translation initiation complex and promotes mRNA decay through base pairing with the ribosome binding site. This event contributes to adjusting IcaR level and modulating exopolysaccharide production and biofilm development in S. aureus. Our data illustrate that bacterial 3′-UTRs can provide strategies for fine-tuning control of gene expression.
Collapse
Affiliation(s)
- Igor Ruiz de los Mozos
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Marta Vergara-Irigaray
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Victor Segura
- Genomics, Proteomics and Bioinformatics Unit. Center for Applied Medical Research. University of Navarra. Pamplona, Spain
| | - Maite Villanueva
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Nerea Bitarte
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Margarida Saramago
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. Oeiras, Portugal
| | - Susana Domingues
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. Oeiras, Portugal
| | - Cecilia M. Arraiano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. Oeiras, Portugal
| | - Pierre Fechter
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC. Strasbourg, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC. Strasbourg, France
| | - Jaione Valle
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Cristina Solano
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
- * E-mail: (IL); (ATA)
| | - Alejandro Toledo-Arana
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
- * E-mail: (IL); (ATA)
| |
Collapse
|
24
|
Duval M, Korepanov A, Fuchsbauer O, Fechter P, Haller A, Fabbretti A, Choulier L, Micura R, Klaholz BP, Romby P, Springer M, Marzi S. Escherichia coli ribosomal protein S1 unfolds structured mRNAs onto the ribosome for active translation initiation. PLoS Biol 2013; 11:e1001731. [PMID: 24339747 PMCID: PMC3858243 DOI: 10.1371/journal.pbio.1001731] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/25/2013] [Indexed: 11/24/2022] Open
Abstract
Regulation of translation initiation is well appropriate to adapt cell growth in response to stress and environmental changes. Many bacterial mRNAs adopt structures in their 5' untranslated regions that modulate the accessibility of the 30S ribosomal subunit. Structured mRNAs interact with the 30S in a two-step process where the docking of a folded mRNA precedes an accommodation step. Here, we used a combination of experimental approaches in vitro (kinetic of mRNA unfolding and binding experiments to analyze mRNA-protein or mRNA-ribosome complexes, toeprinting assays to follow the formation of ribosomal initiation complexes) and in vivo (genetic) to monitor the action of ribosomal protein S1 on the initiation of structured and regulated mRNAs. We demonstrate that r-protein S1 endows the 30S with an RNA chaperone activity that is essential for the docking and the unfolding of structured mRNAs, and for the correct positioning of the initiation codon inside the decoding channel. The first three OB-fold domains of S1 retain all its activities (mRNA and 30S binding, RNA melting activity) on the 30S subunit. S1 is not required for all mRNAs and acts differently on mRNAs according to the signals present at their 5' ends. This work shows that S1 confers to the ribosome dynamic properties to initiate translation of a large set of mRNAs with diverse structural features.
Collapse
Affiliation(s)
- Mélodie Duval
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire-CNRS, Strasbourg, France
| | - Alexey Korepanov
- CNRS UPR9073, University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Olivier Fuchsbauer
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire-CNRS, Strasbourg, France
| | - Pierre Fechter
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire-CNRS, Strasbourg, France
| | - Andrea Haller
- Institute of Organic Chemistry and Center for Molecular Biosciences, Leopold Franzens University, Innsbruck, Austria
| | - Attilio Fabbretti
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, Camerino, Italy
| | - Laurence Choulier
- CNRS UMR 7213, Université de Strasbourg, Faculté de pharmacie, Illkirch, France
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, Leopold Franzens University, Innsbruck, Austria
| | - Bruno P. Klaholz
- Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, UMR 7104-CNRS, U964-INSERM, Illkirch, France; and Université de Strasbourg, Strasbourg, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire-CNRS, Strasbourg, France
| | - Mathias Springer
- CNRS UPR9073, University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire-CNRS, Strasbourg, France
| |
Collapse
|
25
|
Romilly C, Chevalier C, Marzi S, Masquida B, Geissmann T, Vandenesch F, Westhof E, Romby P. Loop-loop interactions involved in antisense regulation are processed by the endoribonuclease III in Staphylococcus aureus. RNA Biol 2012; 9:1461-72. [PMID: 23134978 DOI: 10.4161/rna.22710] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The endoribonuclease III (RNase III) belongs to the enzyme family known to process double-stranded RNAs. Staphylococcus aureus RNase III was shown to regulate, in concert with the quorum sensing induced RNAIII, the degradation of several mRNAs encoding virulence factors and the transcriptional repressor of toxins Rot. Two of the mRNA-RNAIII complexes involve fully base paired loop-loop interactions with similar sequences that are cleaved by RNase III at a unique position. We show here that the sequence of the base pairs within the loop-loop interaction is not critical for RNase III cleavage, but that the co-axial stacking of three consecutive helices provides an ideal topology for RNase III recognition. In contrast, RNase III induces several strong cleavages in a regular helix, which carries a sequence similar to the loop-loop interaction. The introduction of a bulged loop that interrupts the regular helix restrains the number of cleavages. This work shows that S. aureus RNase III is able to bind and cleave a variety of RNA-mRNA substrates, and that specific structure elements direct the action of RNase III.
Collapse
Affiliation(s)
- Cédric Romilly
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Desnoyers G, Massé E. Noncanonical repression of translation initiation through small RNA recruitment of the RNA chaperone Hfq. Genes Dev 2012; 26:726-39. [PMID: 22474262 DOI: 10.1101/gad.182493.111] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The RNA chaperone Hfq is mostly known to help small regulatory RNAs (sRNAs) interact with target mRNAs to block initiating ribosomes. In this model, whereas the sRNA is directly competing with initiating 30S ribosomal subunits, Hfq plays only an indirect role, allowing optimal sRNA-mRNA pairing. Here we report that Hfq is recruited by a sRNA, Spot42, to bind to a precise AU-rich region in the vicinity of the translation initiation region (TIR) of sdhC mRNA and competes directly with 30S ribosomal subunits. We show that the sRNA Spot42 binds sdhC too far upstream of the TIR to directly repress translation initiation in vitro and in vivo. Contrary to the canonical model of sRNA regulation, this suggests a new mechanism where Hfq is directly involved in the translational repression of the target mRNA and where the sRNA acts only as a recruitment factor.
Collapse
Affiliation(s)
- Guillaume Desnoyers
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | |
Collapse
|
27
|
Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol Mol Biol Rev 2012; 75:434-67, first page of table of contents. [PMID: 21885680 DOI: 10.1128/mmbr.00008-11] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The correct translation of mRNA depends critically on the ability to initiate at the right AUG codon. For most mRNAs in eukaryotic cells, this is accomplished by the scanning mechanism, wherein the small (40S) ribosomal subunit attaches to the 5' end of the mRNA and then inspects the leader base by base for an AUG in a suitable context, using complementarity with the anticodon of methionyl initiator tRNA (Met-tRNAiMet) as the key means of identifying AUG. Over the past decade, a combination of yeast genetics, biochemical analysis in reconstituted systems, and structural biology has enabled great progress in deciphering the mechanism of ribosomal scanning. A robust molecular model now exists, describing the roles of initiation factors, notably eukaryotic initiation factor 1 (eIF1) and eIF1A, in stabilizing an "open" conformation of the 40S subunit with Met-tRNAiMet bound in a low-affinity state conducive to scanning and in triggering rearrangement into a "closed" conformation incompatible with scanning, which features Met-tRNAiMet more tightly bound to the "P" site and base paired with AUG. It has also emerged that multiple DEAD-box RNA helicases participate in producing a single-stranded "landing pad" for the 40S subunit and in removing the secondary structure to enable the mRNA to traverse the 40S mRNA-binding channel in the single-stranded form for base-by-base inspection in the P site.
Collapse
|
28
|
Song KY, Choi HS, Law PY, Wei LN, Loh HH. Post-transcriptional regulation of mu-opioid receptor: role of the RNA-binding proteins heterogeneous nuclear ribonucleoprotein H1 and F. Cell Mol Life Sci 2011; 69:599-610. [PMID: 21739230 DOI: 10.1007/s00018-011-0761-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/13/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
Classical opioids have been historically used for the treatment of pain and are among the most widely used drugs for both acute severe pain and long-term pain. Morphine and endogenous mu-opioid peptides exert their pharmacological actions mainly through the mu-opioid receptor (MOR). However, the expression of opioid receptor (OR) proteins is controlled by extensive transcriptional and post-transcriptional processing. Previously, the 5'-untranslated region (UTR) of the mouse MOR was found to be important for post-transcriptional regulation of the MOR gene in neuronal cells. To identify proteins binding to the 5'-UTR as potential regulators of the mouse MOR gene, affinity column chromatography using 5'-UTR-specific RNA oligonucleotides was performed using neuroblastoma NS20Y cells. Chromatography was followed by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. We identified two heterogeneous ribonucleoproteins (hnRNPs) that bound to RNA sequences of interest: hnRNP H1 and hnRNP F. Binding of these proteins to the RNA region was M4-region sequence-specific as confirmed by Western-blot analysis and RNA supershift assay. Furthermore, a cotransfection study showed that the presence of hnRNP H1 and F resulted in repressed expression of the mouse MOR. Our data suggest that hnRNP H1 and F can function as repressors of MOR translation dependent on the M4 (-75 to -71 bp upstream of ATG) sequences. We demonstrate for the first time a role of hnRNPs as post-transcriptional repressors in MOR gene regulation.
Collapse
Affiliation(s)
- Kyu Young Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
29
|
Chevalier C, Boisset S, Romilly C, Masquida B, Fechter P, Geissmann T, Vandenesch F, Romby P. Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation. PLoS Pathog 2010; 6:e1000809. [PMID: 20300607 PMCID: PMC2837412 DOI: 10.1371/journal.ppat.1000809] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/05/2010] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus RNAIII is the intracellular effector of the quorum sensing system that temporally controls a large number of virulence factors including exoproteins and cell-wall-associated proteins. Staphylocoagulase is one major virulence factor, which promotes clotting of human plasma. Like the major cell surface protein A, the expression of staphylocoagulase is strongly repressed by the quorum sensing system at the post-exponential growth phase. Here we used a combination of approaches in vivo and in vitro to analyze the mechanism used by RNAIII to regulate the expression of staphylocoagulase. Our data show that RNAIII represses the synthesis of the protein through a direct binding with the mRNA. Structure mapping shows that two distant regions of RNAIII interact with coa mRNA and that the mRNA harbors a conserved signature as found in other RNAIII-target mRNAs. The resulting complex is composed of an imperfect duplex masking the Shine-Dalgarno sequence of coa mRNA and of a loop-loop interaction occurring downstream in the coding region. The imperfect duplex is sufficient to prevent the formation of the ribosomal initiation complex and to repress the expression of a reporter gene in vivo. In addition, the double-strand-specific endoribonuclease III cleaves the two regions of the mRNA bound to RNAIII that may contribute to the degradation of the repressed mRNA. This study validates another direct target of RNAIII that plays a role in virulence. It also illustrates the diversity of RNAIII-mRNA topologies and how these multiple RNAIII-mRNA interactions would mediate virulence regulation.
Collapse
Affiliation(s)
- Clément Chevalier
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Sandrine Boisset
- INSERM U851, Centre National de Référence des Staphylocoques, Lyon, France; Université de Lyon, Lyon, France
| | - Cédric Romilly
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Benoit Masquida
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Pierre Fechter
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Thomas Geissmann
- INSERM U851, Centre National de Référence des Staphylocoques, Lyon, France; Université de Lyon, Lyon, France
| | - François Vandenesch
- INSERM U851, Centre National de Référence des Staphylocoques, Lyon, France; Université de Lyon, Lyon, France
- * E-mail: (FV); (PR)
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
- * E-mail: (FV); (PR)
| |
Collapse
|
30
|
Moreno R, Marzi S, Romby P, Rojo F. The Crc global regulator binds to an unpaired A-rich motif at the Pseudomonas putida alkS mRNA coding sequence and inhibits translation initiation. Nucleic Acids Res 2010; 37:7678-90. [PMID: 19825982 PMCID: PMC2794181 DOI: 10.1093/nar/gkp825] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Crc is a key global translational regulator in Pseudomonads that orchestrates the hierarchy of induction of several catabolic pathways for amino acids, sugars, hydrocarbons or aromatic compounds. In the presence of amino acids, which are preferred carbon sources, Crc inhibits translation of the Pseudomonas putida alkS and benR mRNAs, which code for transcriptional regulators of genes required to assimilate alkanes (hydrocarbons) and benzoate (an aromatic compound), respectively. Crc binds to the 5′-end of these mRNAs, but the sequence and/or structure recognized, and the way in which it inhibits translation, were unknown. We have determined the secondary structure of the alkS mRNA 5′-end through its sensitivity to several ribonucleases and chemical reagents. Footprinting and band-shift assays using variant alkS mRNAs have shown that Crc specifically binds to a short unpaired A-rich sequence located adjacent to the alkS AUG start codon. This interaction is stable enough to prevent formation of the translational initiation complex. A similar Crc-binding site was localized at benR mRNA, upstream of the Shine–Dalgarno sequence. This allowed predicting binding sites at other Crc-regulated genes, deriving a consensus sequence that will help to validate new Crc targets and to discriminate between direct and indirect effects of this regulator.
Collapse
Affiliation(s)
- Renata Moreno
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|