1
|
Wang J, Pei B, Yan J, Xu X, Fang AN, Ocansey DKW, Zhang X, Qian H, Xu W, Mao F. hucMSC-Derived Exosomes Alleviate the Deterioration of Colitis via the miR-146a/SUMO1 Axis. Mol Pharm 2022; 19:484-493. [PMID: 35084199 DOI: 10.1021/acs.molpharmaceut.1c00450] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human umbilical cord mesenchymal stem cell-derived exosome (hucMSC-Ex) plays an important role in tissue repair and immunomodulation, leading to the mitigation of inflammatory bowel disease. However, the preventive function of hucMSC-Ex in the onset and progression of colitis-associated colon cancer (CAC) is poorly understood. In the current study, dextran sodium sulfate/azoxymethane-induced colitis mouse model was established, and the mice disease activity index, body weight, colon length, tumor counts, survival curve, tissue H&E/immunohistochemistry, and cytokines expression were analyzed to evaluate the effects of hucMSC-Ex on CAC. In addition, miR-146a mimics were transfected into colonic epithelial cells (fetal human cells) to evaluate their role in the hucMSC-Ex-mediated regulation of SUMO1. The results showed that hucMSC-Ex inhibits the expression of SUMO1 to reduce the process of CAC progression. Further analysis indicated that miR-146a targets and inhibits SUMO1 expression and its binding to β-catenin. In conclusion, our findings showed that hucMSC-Ex is effective in alleviating the deterioration of colitis via the miR-146a-mediated inhibition of SUMO1, which is crucial in this disease process.
Collapse
Affiliation(s)
- Jingyan Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Tongxiang First People's Hospital, Jiaochang Road 1918, Tongxiang, Zhejiang 314500, P. R. China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu 223800, P. R. China
| | - Jialai Yan
- Department of Basic Medicine, Anhui Medical College, Hefei, Anhui 230601, P. R. China
| | - Xinwei Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - An-Ning Fang
- Department of Basic Medicine, Anhui Medical College, Hefei, Anhui 230601, P. R. China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Directorate of University Health Services, University of Cape Coast, Cape Coast 5007, Ghana
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
2
|
Quan Y, Hinshaw SM, Wang PC, Harrison SC, Zhou H. Ctf3/CENP-I provides a docking site for the desumoylase Ulp2 at the kinetochore. THE JOURNAL OF CELL BIOLOGY 2021; 220:212227. [PMID: 34081091 PMCID: PMC8178754 DOI: 10.1083/jcb.202012149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023]
Abstract
The step-by-step process of chromosome segregation defines the stages of the cell cycle. In eukaryotes, signals controlling these steps converge upon the kinetochore, a multiprotein assembly that connects spindle microtubules to chromosomal centromeres. Kinetochores control and adapt to major chromosomal transactions, including replication of centromeric DNA, biorientation of sister centromeres on the metaphase spindle, and transit of sister chromatids into daughter cells during anaphase. Although the mechanisms that ensure tight microtubule coupling at anaphase are at least partly understood, kinetochore adaptations that support other cell cycle transitions are not. We report here a mechanism that enables regulated control of kinetochore sumoylation. A conserved surface of the Ctf3/CENP-I kinetochore protein provides a binding site for Ulp2, the nuclear enzyme that removes SUMO chains from modified substrates. Ctf3 mutations that disable Ulp2 recruitment cause elevated inner kinetochore sumoylation and defective chromosome segregation. The location of the site within the assembled kinetochore suggests coordination between sumoylation and other cell cycle–regulated processes.
Collapse
Affiliation(s)
- Yun Quan
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Stephen M Hinshaw
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA
| | - Pang-Che Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA
| | - Huilin Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
3
|
Wang J, Zhang Z, Fang A, Wu K, Chen X, Wang G, Mao F. Resveratrol Attenuates Inflammatory Bowel Disease in Mice by Regulating SUMO1. Biol Pharm Bull 2020; 43:450-457. [DOI: 10.1248/bpb.b19-00786] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jingyan Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University
| | | | - Anning Fang
- Department of Basic Medicine, Anhui Medical College
| | - Kehan Wu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University
| | - Xiang Chen
- Zhenjiang Institute for Drug and Food Control
| | - Gaoying Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University
| |
Collapse
|
4
|
Mohan M, Akula D, Dhillon A, Goyal A, Anindya R. Human RAD51 paralogue RAD51C fosters repair of alkylated DNA by interacting with the ALKBH3 demethylase. Nucleic Acids Res 2019; 47:11729-11745. [PMID: 31642493 PMCID: PMC7145530 DOI: 10.1093/nar/gkz938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
The integrity of our DNA is challenged daily by a variety of chemicals that cause DNA base alkylation. DNA alkylation repair is an essential cellular defence mechanism to prevent the cytotoxicity or mutagenesis from DNA alkylating chemicals. Human oxidative demethylase ALKBH3 is a central component of alkylation repair, especially from single-stranded DNA. However, the molecular mechanism of ALKBH3-mediated damage recognition and repair is less understood. We report that ALKBH3 has a direct protein-protein interaction with human RAD51 paralogue RAD51C. We also provide evidence that RAD51C-ALKBH3 interaction stimulates ALKBH3-mediated repair of methyl-adduct located within 3'-tailed DNA, which serves as a substrate for the RAD51 recombinase. We further show that the lack of RAD51C-ALKBH3 interaction affects ALKBH3 function in vitro and in vivo. Our data provide a molecular mechanism underlying upstream events of alkyl adduct recognition and repair by ALKBH3.
Collapse
Affiliation(s)
- Monisha Mohan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Deepa Akula
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Arun Dhillon
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| |
Collapse
|
5
|
Bauer SL, Chen J, Åström SU. Helicase/SUMO-targeted ubiquitin ligase Uls1 interacts with the Holliday junction resolvase Yen1. PLoS One 2019; 14:e0214102. [PMID: 30897139 PMCID: PMC6428284 DOI: 10.1371/journal.pone.0214102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/06/2019] [Indexed: 11/30/2022] Open
Abstract
Resolution of branched DNA structures is pivotal for repair of stalled replication forks and meiotic recombination intermediates. The Yen1 nuclease cleaves both Holliday junctions and replication forks. We show that Yen1 interacts physically with Uls1, a suggested SUMO-targeted ubiquitin ligase that also contains a SWI/SNF-family ATPase-domain. Yen1 is SUMO-modified in its noncatalytic carboxyl terminus and DNA damage induces SUMOylation. SUMO-modification of Yen1 strengthens the interaction to Uls1, and mutations in SUMO interaction motifs in Uls1 weakens the interaction. However, Uls1 does not regulate the steady-state level of SUMO-modified Yen1 or chromatin-associated Yen1. In addition, SUMO-modification of Yen1 does not affect the catalytic activity in vitro. Consistent with a shared function for Uls1 and Yen1, mutations in both genes display similar phenotypes. Both uls1 and yen1 display negative genetic interactions with the alternative HJ-cleaving nuclease Mus81, manifested both in hypersensitivity to DNA damaging agents and in meiotic defects. Point mutations in ULS1 (uls1K975R and uls1C1330S, C1333S) predicted to inactivate the ATPase and ubiquitin ligase activities, respectively, are as defective as the null allele, indicating that both functions of Uls1 are essential. A micrococcal nuclease sequencing experiment showed that Uls1 had minimal effects on global nucleosome positioning/occupancy. Moreover, increased gene dosage of YEN1 partially alleviates the mus81 uls1 sensitivity to DNA damage. We suggest a preliminary model in which Uls1 acts in the same pathway as Yen1 to resolve branched DNA structures.
Collapse
Affiliation(s)
- Stefanie L. Bauer
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jiang Chen
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Stefan U. Åström
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
6
|
Datta SP, Jana K, Mondal A, Ganguly S, Sarkar S. Multiple paralogues of α-SNAP in Giardia lamblia exhibit independent subcellular localization and redistribution during encystation and stress. Parasit Vectors 2018; 11:539. [PMID: 30286802 PMCID: PMC6172762 DOI: 10.1186/s13071-018-3112-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The differently-diverged parasitic protist Giardia lamblia is known to have minimal machinery for vesicular transport. Yet, it has three paralogues of SNAP, a crucial component that together with NSF brings about disassembly of the cis-SNARE complex formed following vesicle fusion to target membranes. Given that most opisthokont hosts of this gut parasite express only one α-SNAP, this study was undertaken to determine whether these giardial SNAP proteins have undergone functional divergence. RESULTS All three SNAP paralogues are expressed in trophozoites, encysting trophozoites and cysts. Even though one of them clusters with γ-SNAP sequences in a phylogenetic tree, functional complementation analysis in yeast indicates that all the three proteins are functionally orthologous to α-SNAP. Localization studies showed a mostly non-overlapping distribution of these α-SNAPs in trophozoites, encysting cells and cysts. In addition, two of the paralogues exhibit substantial subcellular redistribution during encystation, which was also seen following exposure to oxidative stress. However, the expression of the three genes remained unchanged during this redistribution process. There is also a difference in the affinity of each of these α-SNAP paralogues for GlNSF. CONCLUSIONS None of the genes encoding the three α-SNAPs are pseudogenes and the encoded proteins are likely to discharge non-redundant functions in the different morphological states of G. lamblia. Based on the difference in the interaction of individual α-SNAPs with GlNSF and their non-overlapping pattern of subcellular redistribution during encystation and under stress conditions, it may be concluded that the three giardial α-SNAP paralogues have undergone functional divergence. Presence of one of the giardial α-SNAPs at the PDRs of flagella, where neither GlNSF nor any of the SNAREs localize, indicates that this α-SNAP discharges a SNARE-independent role in this gut pathogen.
Collapse
Affiliation(s)
- Shankari Prasad Datta
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Avisek Mondal
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata, West Bengal, 700054, India.,Present Address: Section on Developmental Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Sandipan Ganguly
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Srimonti Sarkar
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
7
|
Greenlee M, Alonso A, Rahman M, Meednu N, Davis K, Tabb V, Cook R, Miller RK. The TOG protein Stu2/XMAP215 interacts covalently and noncovalently with SUMO. Cytoskeleton (Hoboken) 2018; 75:290-306. [PMID: 29729126 PMCID: PMC6712953 DOI: 10.1002/cm.21449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/21/2023]
Abstract
Stu2p is the yeast member of the XMAP215/Dis1/ch‐TOG family of microtubule‐associated proteins that promote microtubule polymerization. However, the factors that regulate its activity are not clearly understood. Here we report that Stu2p in the budding yeast Saccharomyces cerevisiae interacts with SUMO by covalent and noncovalent mechanisms. Stu2p interacted by two‐hybrid analysis with the yeast SUMO Smt3p, its E2 Ubc9p, and the E3 Nfi1p. A region of Stu2p containing the dimerization domain was both necessary and sufficient for interaction with SUMO and Ubc9p. Stu2p was found to be sumoylated both in vitro and in vivo. Stu2p copurified with SUMO in a pull‐down assay and vice versa. Stu2p also bound to a nonconjugatable form of SUMO, suggesting that Stu2p can interact noncovalently with SUMO. In addition, Stu2p interacted with the STUbL enzyme Ris1p. Stu2p also copurified with ubiquitin in a pull‐down assay, suggesting that it can be modified by both SUMO and ubiquitin. Tubulin, a major binding partner of Stu2p, also interacted noncovalently with SUMO. By two‐hybrid analysis, the beta‐tubulin Tub2p interacted with SUMO independently of the microtubule stressor, benomyl. Together, these findings raise the possibility that the microtubule polymerization activities mediated by Stu2p are regulated through sumoylation pathways.
Collapse
Affiliation(s)
- Matt Greenlee
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Annabel Alonso
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Maliha Rahman
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Nida Meednu
- Department of Biology, University of Rochester, Rochester, New York, 14627
| | - Kayla Davis
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Victoria Tabb
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - River Cook
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Rita K Miller
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| |
Collapse
|
8
|
Bhagwat SR, Hajela K, Kumar A. Proteolysis to Identify Protease Substrates: Cleave to Decipher. Proteomics 2018; 18:e1800011. [DOI: 10.1002/pmic.201800011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Sonali R. Bhagwat
- Discipline of Biosciences and Biomedical Engineering; Indian Institute of Technology; Indore 453552 Simrol India
| | - Krishnan Hajela
- School of Life Sciences; Devi Ahilya Vishwavidyalaya; Indore 452001 India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering; Indian Institute of Technology; Indore 453552 Simrol India
| |
Collapse
|
9
|
Matunis MJ, Rodriguez MS. Concepts and Methodologies to Study Protein SUMOylation: An Overview. Methods Mol Biol 2018; 1475:3-22. [PMID: 27631794 DOI: 10.1007/978-1-4939-6358-4_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein modification by the small ubiquitin-related modifier (SUMO) was simultaneously discovered by several groups at the middle of the 1990s. Although distinct names were proposed including Sentrin, GMP1, PIC1, or SMT3, SUMO became the most popular. Early studies on the functions of SUMOylation focused on activities in the nucleus, including transcription activation, chromatin structure, and DNA repair. However, it is now recognized that SUMOylation affects a large diversity of cellular processes both in the nucleus and the cytoplasm and functions of SUMOylation appear to have undefined limits. SUMO-conjugating enzymes and specific proteases actively regulate the modification status of target proteins. The recent discoveries of ubiquitin-SUMO hybrid chains, multiple SUMO-interacting motifs, and macromolecular complexes regulated by SUMOylation underscore the high complexity of this dynamic reversible system. New conceptual frameworks suggested by these findings have motivated the development of new methodologies to study pre- and post-SUMOylation events in vitro and in vivo, using distinct model organisms. Here we summarize some of the new developments and methodologies in the field, particularly those that will be further elaborated on in the chapters integrating this book.
Collapse
Affiliation(s)
- Michael J Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe St., Room W8118, Baltimore, MD, 21205, USA.
| | | |
Collapse
|
10
|
Abstract
Protein modification with the small ubiquitin-related modifier (SUMO) can affect protein function, enzyme activity, protein-protein interactions, protein stability, protein targeting and cellular localization. SUMO influences the function and regulation of metabolic enzymes within pathways, and in some cases targets entire metabolic pathways by affecting the activity of transcription factors or by facilitating the translocation of entire metabolic pathways to subcellular compartments. SUMO modification is also a key component of nutrient- and metabolic-sensing mechanisms that regulate cellular metabolism. In addition to its established roles in maintaining metabolic homeostasis, there is increasing evidence that SUMO is a key factor in facilitating cellular stress responses through the regulation and/or adaptation of the most fundamental metabolic processes, including energy and nucleotide metabolism. This review focuses on the role of SUMO in cellular metabolism and metabolic disease.
Collapse
|
11
|
Proteomics analysis of the endogenous, constitutive, leaf SUMOylome. J Proteomics 2017; 150:268-280. [DOI: 10.1016/j.jprot.2016.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/11/2016] [Accepted: 09/21/2016] [Indexed: 12/25/2022]
|
12
|
Husnjak K, Keiten-Schmitz J, Müller S. Identification and Characterization of SUMO-SIM Interactions. Methods Mol Biol 2016; 1475:79-98. [PMID: 27631799 DOI: 10.1007/978-1-4939-6358-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The covalent attachment of SUMO to lysine residues of cellular proteins serves as an important mechanism for the dynamic control of protein networks. SUMO conjugates typically mediate selected protein-protein interactions by binding to specific recognition modules. Identification of SUMO-binding proteins and the characterization of the binding motifs are key to understanding SUMO signaling. Here we describe two complementary approaches that are used to tackle these questions.
Collapse
Affiliation(s)
- Koraljka Husnjak
- Institute of Biochemistry II, Goethe University, Medical School, Theodor-Stern-Kai 7, 60590, Frankfurt (Main), Germany.
| | - Jan Keiten-Schmitz
- Institute of Biochemistry II, Goethe University, Medical School, Theodor-Stern-Kai 7, 60590, Frankfurt (Main), Germany
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University, Medical School, Theodor-Stern-Kai 7, 60590, Frankfurt (Main), Germany.
| |
Collapse
|
13
|
Abstract
The small ubiquitin-like modifier SUMO regulates many aspects of cellular physiology to maintain cell homeostasis, both under normal conditions and during cell stress. Components of the transcriptional apparatus and chromatin are among the most prominent SUMO substrates. The prevailing view is that SUMO serves to repress transcription. However, as we will discuss in this review, this model needs to be refined, because recent studies have revealed that SUMO can also have profound positive effects on transcription.
Collapse
Affiliation(s)
- Pierre Chymkowitch
- Department of Molecular Biology, Institute of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Aurélie Nguéa P
- Department of Molecular Biology, Institute of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Jorrit M Enserink
- Department of Molecular Biology, Institute of Microbiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Alonso A, Greenlee M, Matts J, Kline J, Davis KJ, Miller RK. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton (Hoboken) 2015; 72:305-39. [PMID: 26033929 PMCID: PMC5049490 DOI: 10.1002/cm.21226] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022]
Abstract
Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule-associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin-regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non-covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO-targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Matt Greenlee
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jessica Matts
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jake Kline
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Kayla J. Davis
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Rita K. Miller
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| |
Collapse
|
15
|
The CacyBP/SIP protein is sumoylated in neuroblastoma NB2a cells. Neurochem Res 2014; 38:2427-32. [PMID: 24078263 PMCID: PMC3824344 DOI: 10.1007/s11064-013-1155-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 10/31/2022]
Abstract
The Calcyclin binding protein and Siah-1 interacting protein (CacyBP/SIP) protein is highly expressed in mammalian brain as well as in neuroblastoma NB2a cells and pheochromocytoma PC12 cells. This protein interacts with several targets such as cytoskeletal proteins or ERK1/2 kinase and seems to be involved in many cellular processes. In this work we examined a post-translational modification of CacyBP/SIP which might have an effect on its function. Since theoretical analysis of the amino acid sequence of CacyBP/SIP indicated several lysine residues which could potentially be sumoylated we checked experimentally whether this protein might be modified by SUMO attachment. We have shown that indeed CacyBP/SIP bound the E2 SUMO ligase, Ubc9, in neuroblastoma NB2a cell extract and was sumoylated in these cells. By fractionation of NB2a cell extract we have found that, contrary to the majority of SUMO-modified proteins, sumoylated CacyBP/SIP is present in the cytoplasmic and not in the nuclear fraction. We have also established that lysine 16 is the residue which undergoes sumoylation in the CacyBP/SIP protein.
Collapse
|
16
|
An RNAi-based dimorphic genetic screen identified the double bromodomain protein BET-1 as a sumo-dependent attenuator of RAS-mediated signalling. PLoS One 2013; 8:e83659. [PMID: 24349540 PMCID: PMC3862036 DOI: 10.1371/journal.pone.0083659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/13/2013] [Indexed: 12/30/2022] Open
Abstract
Attenuation of RAS/RAF/MAPK signalling is essential to prevent hyperactivation of this oncogenic pathway. In C. elegans, the sumoylation pathway and a combination of histone tail modifications regulate gene expression to attenuate the LET-60 (RAS) signalling pathway. We hypothesised that a number of chromatin regulators are likely to depend on sumoylation to attenuate the pathway. To reveal these, we designed an RNAi-based dimorphic genetic screen that selects candidates based on their ability to act as enhancers of a sumo mutant phenotype, such interactions would suggest that the candidates may be physically associated with sumoylation. We found 16 enhancers, one of which BET-1, is a conserved double bromodomain containing protein. We further characterised BET-1 and showed that it can physically associate with SMO-1 and UBC-9, and that it can be sumoylated in vitro within the second bromodomain at lysine 252. Previous work has shown that BET-1 can bind acetyl-lysines on histone tails to influence gene expression. In conclusion, our screening approach has identified BET-1 as a Sumo-dependent attenuator of LET-60-mediated signalling and our characterisation suggests that BET-1 can be sumoylated.
Collapse
|
17
|
Ward JD, Bojanala N, Bernal T, Ashrafi K, Asahina M, Yamamoto KR. Sumoylated NHR-25/NR5A regulates cell fate during C. elegans vulval development. PLoS Genet 2013; 9:e1003992. [PMID: 24348269 PMCID: PMC3861103 DOI: 10.1371/journal.pgen.1003992] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
Individual metazoan transcription factors (TFs) regulate distinct sets of genes depending on cell type and developmental or physiological context. The precise mechanisms by which regulatory information from ligands, genomic sequence elements, co-factors, and post-translational modifications are integrated by TFs remain challenging questions. Here, we examine how a single regulatory input, sumoylation, differentially modulates the activity of a conserved C. elegans nuclear hormone receptor, NHR-25, in different cell types. Through a combination of yeast two-hybrid analysis and in vitro biochemistry we identified the single C. elegans SUMO (SMO-1) as an NHR-25 interacting protein, and showed that NHR-25 is sumoylated on at least four lysines. Some of the sumoylation acceptor sites are in common with those of the NHR-25 mammalian orthologs SF-1 and LRH-1, demonstrating that sumoylation has been strongly conserved within the NR5A family. We showed that NHR-25 bound canonical SF-1 binding sequences to regulate transcription, and that NHR-25 activity was enhanced in vivo upon loss of sumoylation. Knockdown of smo-1 mimicked NHR-25 overexpression with respect to maintenance of the 3° cell fate in vulval precursor cells (VPCs) during development. Importantly, however, overexpression of unsumoylatable alleles of NHR-25 revealed that NHR-25 sumoylation is critical for maintaining 3° cell fate. Moreover, SUMO also conferred formation of a developmental time-dependent NHR-25 concentration gradient across the VPCs. That is, accumulation of GFP-tagged NHR-25 was uniform across VPCs at the beginning of development, but as cells began dividing, a smo-1-dependent NHR-25 gradient formed with highest levels in 1° fated VPCs, intermediate levels in 2° fated VPCs, and low levels in 3° fated VPCs. We conclude that sumoylation operates at multiple levels to affect NHR-25 activity in a highly coordinated spatial and temporal manner.
Collapse
Affiliation(s)
- Jordan D. Ward
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Nagagireesh Bojanala
- Institute of Parasitology, Biology Centre ASCR, Ceske Budejovice, Czech Republic
- University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Teresita Bernal
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Masako Asahina
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- Institute of Parasitology, Biology Centre ASCR, Ceske Budejovice, Czech Republic
- University of South Bohemia, Ceske Budejovice, Czech Republic
- * E-mail: (MA); (KRY)
| | - Keith R. Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MA); (KRY)
| |
Collapse
|
18
|
New insights into the role of the small ubiquitin-like modifier (SUMO) in plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:161-209. [PMID: 23273862 DOI: 10.1016/b978-0-12-405210-9.00005-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small ubiquitin-like modifier (SUMO) is a small (∼12kDa) protein that occurs in all eukaryotes and participates in the reversible posttranslational modification of target cellular proteins. The three-dimensional structure of SUMO and ubiquitin (Ub) are superimposable although there is very little similarity in their primary amino acid sequences. In all organisms, conjugation and deconjugation of Ub and SUMO proceed by the same reactions while using pathway-specific enzymes. SUMO conjugation in plants is a part of the controls governing important biological processes such as growth, development, flowering, environmental (abiotic) stress responses, and response to pathogen infection. Most of the evidence for this comes from genetic analyses. Recent efforts to dissect the function of sumoylation have focused on uncovering targets of SUMO conjugation by using either a yeast two-hybrid screen employing components of the SUMO cycle as bait or by using affinity purification of SUMO-conjugated proteins followed by identification of these proteins by mass spectrometry. This chapter reviews the current knowledge regarding sumoylation in plants, with special focus on the model plant Arabidopsis thaliana.
Collapse
|
19
|
Li Z, Wu S, Wang J, Li W, Lin Y, Ji C, Xue J, Chen J. Evaluation of the interactions of HIV-1 integrase with small ubiquitin-like modifiers and their conjugation enzyme Ubc9. Int J Mol Med 2012; 30:1053-60. [PMID: 22895527 DOI: 10.3892/ijmm.2012.1088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/18/2012] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) integrase mediates the integration of reverse-transcribed viral cDNA into the genome of the host for the stable maintenance of the viral genome and the persistence of HIV-1 infection. In this study, the relationships between HIV-1 integrase (HIV-1 IN) and three SUMO conjugation pathway proteins, as well as the effects of these associations, were investigated. The overexpression of SUMO1/SUMO2 and Ubc9 changed the intracellular localization of HIV-1 IN from a diffuse distribution to a punctate localization. SUMO1, SUMO2 and Ubc9 were shown to interact with HIV-1 IN. The SUMOylation of HIV-1 IN was verified. In addition, SUMO1, SUMO2 and Ubc9 were shown to influence the integration of both lentivirus and HIV-1. The overexpression of Ubc9 inhibited viral genome integration, and the upregulation of SUMO1 or SUMO2 enhanced the inhibitory effect of Ubc9. Knockdown of the endogenous levels of SUMO1, SUMO2 and Ubc9 increased the level of viral integration, while reverse transcription and the nuclear import of preintegration complex (PIC) were not affected. Our findings suggest that SUMO conjugation pathway proteins may act as cellular restriction factors and be detrimental to HIV-1 infection. These findings merit further investigation because of their potentially significant implications for the cellular antiviral response to HIV-1 infection.
Collapse
Affiliation(s)
- Zhihui Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
EHD {EH [Eps15 (epidermal growth factor receptor substrate 15) homology]-domain-containing} proteins participate in several endocytic events, such as the internalization and the recycling processes. There are four EHD proteins in mammalian cells, EHD1–EHD4, each with diverse roles in the recycling pathway of endocytosis. EHD2 is a plasma-membrane-associated member of the EHD family that regulates internalization. Since several endocytic proteins have been shown to undergo nucleocytoplasmic shuttling and have been assigned roles in regulation of gene expression, we tested the possibility that EHD proteins also shuttle to the nucleus. Our results showed that, among the three EHD proteins (EHD1–EHD3) that were tested, only EHD2 accumulates in the nucleus under nuclear export inhibition treatment. Moreover, the presence of a NLS (nuclear localization signal) was essential for its entry into the nucleus. Nuclear exit of EHD2 depended partially on its NES (nuclear export signal). Elimination of a potential SUMOylation site in EHD2 resulted in a major accumulation of the protein in the nucleus, indicating the involvement of SUMOylation in the nuclear exit of EHD2. We confirmed the SUMOylation of EHD2 by employing co-immunoprecipitation and the yeast two-hybrid system. Using GAL4-based transactivation assay as well as a KLF7 (Krüppel-like factor 7)-dependent transcription assay of the p21WAF1/Cip1 [CDKN1A (cyclin-dependent kinase inhibitor 1A)] gene, we showed that EHD2 represses transcription. qRT-PCR (quantitative real-time PCR) of RNA from cells overexpressing EHD2 or of RNA from cells knocked down for EHD2 confirmed that EHD2 represses transcription of the p21WAF1/Cip1 gene.
Collapse
|
21
|
The SUMO pathway promotes basic helix-loop-helix proneural factor activity via a direct effect on the Zn finger protein senseless. Mol Cell Biol 2012; 32:2849-60. [PMID: 22586269 DOI: 10.1128/mcb.06595-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During development, proneural transcription factors of the basic helix-loop-helix (bHLH) family are required to commit cells to a neural fate. In Drosophila neurogenesis, a key mechanism promoting sense organ precursor (SOP) fate is the synergy between proneural factors and their coactivator Senseless in transcriptional activation of target genes. Here we present evidence that posttranslational modification by SUMO enhances this synergy via an effect on Senseless protein. We show that Senseless is a direct target for SUMO modification and that mutagenesis of a predicted SUMOylation motif in Senseless reduces Senseless/proneural synergy both in vivo and in cell culture. We propose that SUMOylation of Senseless via lysine 509 promotes its synergy with proneural proteins during transcriptional activation and hence regulates an important step in neurogenesis leading to the formation and maturation of the SOPs.
Collapse
|
22
|
Song Y, Liao J. An in vitro Förster resonance energy transfer-based high-throughput screening assay for inhibitors of protein-protein interactions in SUMOylation pathway. Assay Drug Dev Technol 2011; 10:336-43. [PMID: 22192309 DOI: 10.1089/adt.2011.0394] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Förster resonance energy transfer (FRET) is a powerful tool in biological research and has been widely used in the study of biomolecular interactions. SUMOylation is an important post-translational modification that is involved in many key biological processes. As a multi-step cascade reaction, SUMOylation involves multiple enzymes and protein-protein interactions. Here, we report the development of an in vitro FRET-based high-throughput screening (HTS) assay in SUMOylation. This assay is based on steady state and high efficiency of the fluorescent energy transfer between CyPet and YPet fused to SUMO1 and Ubc9, respectively. We optimized the assay and performed a small-scale pilot study to validate the screening platform. Carried out in 384-well plate format, our FRET-based HTS provides a powerful tool for large-scale and high-throughput applications.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
23
|
Abstract
Whilst the study of yeast genomes and transcriptomes is in an advanced state, there is still much to learn about the resulting proteins in terms of cataloging, characterization of post-translational modifications, turnover, and the dynamics of sub-cellular localization and interactions. Analysis of the transcripts gives little insight into function or diversity as changes in RNA levels do not always correlate with the resulting protein abundance. A number of global and targeted attempts have been made to catalog and characterize the yeast proteome and we describe here the methods used to gain a greater understanding of the yeast proteome. This comprehensive review also describes future approaches that will aid completion in identifying and characterizing the remaining 20% of the undetermined yeast proteome as well as giving new insight into protein dynamics.
Collapse
Affiliation(s)
- Johanna Rees
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
24
|
Park HJ, Kim WY, Park HC, Lee SY, Bohnert HJ, Yun DJ. SUMO and SUMOylation in plants. Mol Cells 2011; 32:305-16. [PMID: 21912873 PMCID: PMC3887640 DOI: 10.1007/s10059-011-0122-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 11/28/2022] Open
Abstract
The traditional focus on the central dogma of molecular biology, from gene through RNA to protein, has now been replaced by the recognition of an additional mechanism. The new regulatory mechanism, post-translational modifications to proteins, can actively alter protein function or activity introducing additional levels of functional complexity by altering cellular and sub-cellular location, protein interactions and the outcome of biochemical reaction chains. Modifications by ubiquitin (Ub) and ubiquitin-like modifiers systems are conserved in all eukaryotic organisms. One of them, small ubiquitin-like modifier (SUMO) is present in plants. The SUMO mechanism includes several isoforms of proteins that are involved in reactions of sumoylation and de-sumoylation. Sumoylation affects several important processes in plants. Outstanding among those are responses to environmental stresses. These may be abiotic stresses, such as phosphate deficiency, heat, low temperature, and drought, or biotic stressses, as well including defense reactions to pathogen infection. Also, the regulations of flowering time, cell growth and development, and nitrogen assimilation have recently been added to this list. Identification of SUMO targets is material to characterize the function of sumoylation or desumoylation. Affinity purification and mass spectrometric identification have been done lately in plants. Further SUMO noncovalent binding appears to have function in other model organisms and SUMO interacting proteins in plants will be of interest to plant biologists who dissect the dynamic function of SUMO. This review will discuss results of recent insights into the role of sumoylation in plants.
Collapse
Affiliation(s)
- Hee Jin Park
- Division of Applied Life Science (Brain Korea 21 Program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (Brain Korea 21 Program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Hyeong Cheol Park
- Division of Applied Life Science (Brain Korea 21 Program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (Brain Korea 21 Program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Hans J. Bohnert
- Division of Applied Life Science (Brain Korea 21 Program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dae-Jin Yun
- Division of Applied Life Science (Brain Korea 21 Program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| |
Collapse
|
25
|
Khan SH, Ahmad F, Ahmad N, Flynn DC, Kumar R. Protein-protein interactions: principles, techniques, and their potential role in new drug development. J Biomol Struct Dyn 2011; 28:929-38. [PMID: 21469753 DOI: 10.1080/07391102.2011.10508619] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A vast network of genes is inter-linked through protein-protein interactions and is critical component of almost every biological process under physiological conditions. Any disruption of the biologically essential network leads to pathological conditions resulting into related diseases. Therefore, proper understanding of biological functions warrants a comprehensive knowledge of protein-protein interactions and the molecular mechanisms that govern such processes. The importance of protein-protein interaction process is highlighted by the fact that a number of powerful techniques/methods have been developed to understand how such interactions take place under various physiological and pathological conditions. Many of the key protein-protein interactions are known to participate in disease-associated signaling pathways, and represent novel targets for therapeutic intervention. Thus, controlling protein-protein interactions offers a rich dividend for the discovery of new drug targets. Availability of various tools to study and the knowledge of human genome have put us in a unique position to understand highly complex biological network, and the mechanisms involved therein. In this review article, we have summarized protein-protein interaction networks, techniques/methods of their binding/kinetic parameters, and the role of these interactions in the development of potential tools for drug designing.
Collapse
Affiliation(s)
- Shagufta H Khan
- Department of Basic Sciences, The Commonwealth Medical College, 501 Madison Avenue, Scranton, PA 18510, USA
| | | | | | | | | |
Collapse
|