1
|
Degenhardt MFS, Degenhardt HF, Bhandari YR, Lee YT, Ding J, Yu P, Heinz WF, Stagno JR, Schwieters CD, Watts NR, Wingfield PT, Rein A, Zhang J, Wang YX. Determining structures of RNA conformers using AFM and deep neural networks. Nature 2025; 637:1234-1243. [PMID: 39695231 PMCID: PMC11779638 DOI: 10.1038/s41586-024-07559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/10/2024] [Indexed: 12/20/2024]
Abstract
Much of the human genome is transcribed into RNAs1, many of which contain structural elements that are important for their function. Such RNA molecules-including those that are structured and well-folded2-are conformationally heterogeneous and flexible, which is a prerequisite for function3,4, but this limits the applicability of methods such as NMR, crystallography and cryo-electron microscopy for structure elucidation. Moreover, owing to the lack of a large RNA structure database, and no clear correlation between sequence and structure, approaches such as AlphaFold5 for protein structure prediction do not apply to RNA. Therefore, determining the structures of heterogeneous RNAs remains an unmet challenge. Here we report holistic RNA structure determination method using atomic force microscopy, unsupervised machine learning and deep neural networks (HORNET), a novel method for determining three-dimensional topological structures of RNA using atomic force microscopy images of individual molecules in solution. Owing to the high signal-to-noise ratio of atomic force microscopy, this method is ideal for capturing structures of large RNA molecules in distinct conformations. In addition to six benchmark cases, we demonstrate the utility of HORNET by determining multiple heterogeneous structures of RNase P RNA and the HIV-1 Rev response element (RRE) RNA. Thus, our method addresses one of the major challenges in determining heterogeneous structures of large and flexible RNA molecules, and contributes to the fundamental understanding of RNA structural biology.
Collapse
Affiliation(s)
- Maximilia F S Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Hermann F Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Yuba R Bhandari
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jienyu Ding
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Norman R Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul T Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alan Rein
- Retrovirus Assembly Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, USA
| | - Jinwei Zhang
- Structural Biology of Noncoding RNAs and Ribonucleoproteins Section, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
2
|
Lushnikov AJ, Avila YI, Afonin KA, Krasnoslobodtsev AV. Characterization of RNA Nanoparticles and Their Dynamic Properties Using Atomic Force Microscopy. Methods Mol Biol 2023; 2709:191-202. [PMID: 37572281 PMCID: PMC10483931 DOI: 10.1007/978-1-0716-3417-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
The protocol described in this chapter allows for acquiring topography images of RNA-based nanoring structures and assessing their dynamic properties using atomic force microscopy (AFM) imaging. AFM is an indispensable tool for characterization of nucleic acid-based nanostructures with the exceptional capability of observing complexes in the range of a few nanometers. This method can visualize structural characteristics and evaluate differences between individual structurally different RNA nanorings. Due to the highly resolved AFM topography images, we introduce an approach that allows to distinguish the differences in the dynamic behavior of RNA nanoparticles not amenable to other experimental techniques. This protocol describes in detail the preparation procedures of RNA nanostructures, AFM imaging, and data analysis.
Collapse
Affiliation(s)
- Alexander J Lushnikov
- Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, NE, USA
| | - Yelixza I Avila
- Department of Chemistry, Nanoscale Science Program, University of North Carolina, Charlotte, NC, USA
| | - Kirill A Afonin
- Department of Chemistry, Nanoscale Science Program, University of North Carolina, Charlotte, NC, USA
| | | |
Collapse
|
3
|
Wang Y, Vakhrusheva DM, Krylova IV, Kozmenkova AY, Nikolaevskaya EN, Mankaev BN, Minyaev ME, Syroeshkin MA, Egorov MP, Jouikov VV. 1,1'-Diphenyl-bis(silatrane) as the First Structurally Characterized bis(silatrane). RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Lanphere C, Offenbartl-Stiegert D, Dorey A, Pugh G, Georgiou E, Xing Y, Burns JR, Howorka S. Design, assembly, and characterization of membrane-spanning DNA nanopores. Nat Protoc 2020; 16:86-130. [PMID: 33349702 DOI: 10.1038/s41596-020-0331-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/06/2020] [Indexed: 01/08/2023]
Abstract
DNA nanopores are bio-inspired nanostructures that control molecular transport across lipid bilayer membranes. Researchers can readily engineer the structure and function of DNA nanopores to synergistically combine the strengths of DNA nanotechnology and nanopores. The pores can be harnessed in a wide range of areas, including biosensing, single-molecule chemistry, and single-molecule biophysics, as well as in cell biology and synthetic biology. Here, we provide a protocol for the rational design of nanobarrel-like DNA pores and larger DNA origami nanopores for targeted applications. We discuss strategies for the pores' chemical modification with lipid anchors to enable them to be inserted into membranes such as small unilamellar vesicles (SUVs) and planar lipid bilayers. The procedure covers the self-assembly of DNA nanopores via thermal annealing, their characterization using gel electrophoresis, purification, and direct visualization with transmission electron microscopy and atomic force microscopy. We also describe a gel assay to determine pore-membrane binding and discuss how to use single-channel current recordings and dye flux assays to confirm transport through the pores. We expect this protocol to take approximately 1 week to complete for DNA nanobarrel pores and 2-3 weeks for DNA origami pores.
Collapse
Affiliation(s)
- Conor Lanphere
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Daniel Offenbartl-Stiegert
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Adam Dorey
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Genevieve Pugh
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Elena Georgiou
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Yongzheng Xing
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Jonathan R Burns
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| | - Stefan Howorka
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| |
Collapse
|
5
|
Modes of action of the archaeal Mre11/Rad50 DNA-repair complex revealed by fast-scan atomic force microscopy. Proc Natl Acad Sci U S A 2020; 117:14936-14947. [PMID: 32541055 PMCID: PMC7334584 DOI: 10.1073/pnas.1915598117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Mre11/Rad50 (M/R) complex forms the core of an essential DNA-repair complex, conserved in all divisions of life. Here we investigate this complex from the thermophilic archaeon Sulfolobus acidocaldarius using real-time atomic force microscopy. We demonstrate that the coiled-coil regions of Rad50 facilitate M/R interaction with DNA and permit substrate translocation until a free end is encountered. We also observe that the M/R complex drives unprecedented unwinding of the DNA duplexes. Taking these findings together, we provide a model for how the M/R complex can identify DNA double-strand breaks and orchestrate repair events. Mre11 and Rad50 (M/R) proteins are part of an evolutionarily conserved macromolecular apparatus that maintains genomic integrity through repair pathways. Prior structural studies have revealed that this apparatus is extremely dynamic, displaying flexibility in the long coiled-coil regions of Rad50, a member of the structural maintenance of chromosome (SMC) superfamily of ATPases. However, many details of the mechanics of M/R chromosomal manipulation during DNA-repair events remain unclear. Here, we investigate the properties of the thermostable M/R complex from the archaeon Sulfolobus acidocaldarius using atomic force microscopy (AFM) to understand how this macromolecular machinery orchestrates DNA repair. While previous studies have observed canonical interactions between the globular domains of M/R and DNA, we observe transient interactions between DNA substrates and the Rad50 coiled coils. Fast-scan AFM videos (at 1–2 frames per second) of M/R complexes reveal that these interactions result in manipulation and translocation of the DNA substrates. Our study also shows dramatic and unprecedented ATP-dependent DNA unwinding events by the M/R complex, which extend hundreds of base pairs in length. Supported by molecular dynamic simulations, we propose a model for M/R recognition at DNA breaks in which the Rad50 coiled coils aid movement along DNA substrates until a DNA end is encountered, after which the DNA unwinding activity potentiates the downstream homologous recombination (HR)-mediated DNA repair.
Collapse
|
6
|
Pan Y, Banerjee S, Zagorski K, Shlyakhtenko LS, Kolomeisky AB, Lyubchenko YL. Molecular Model for the Surface-Catalyzed Protein Self-Assembly. J Phys Chem B 2020; 124:366-372. [PMID: 31867969 DOI: 10.1021/acs.jpcb.9b10052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The importance of cell surfaces in the self-assembly of proteins is widely accepted. One biologically significant event is the assembly of amyloidogenic proteins into aggregates, which leads to neurodegenerative disorders like Alzheimer's and Parkinson's diseases. The interaction of amyloidogenic proteins with cellular membranes appears to dramatically facilitate the aggregation process. Recent findings indicate that, in the presence of surfaces, aggregation occurs at physiologically low concentrations, suggesting that interaction with surfaces plays a critical role in the disease-prone aggregation process. However, the molecular mechanisms behind the on-surface aggregation process remain unclear. Here, we provide a theoretical model that offers a molecular explanation. According to this model, monomers transiently immobilized to surfaces increase the local monomer protein concentration and thus work as nuclei to dramatically accelerate the entire aggregation process. This physical-chemical theory was verified by experimental studies, using mica surfaces, to examine the aggregation kinetics of amyloidogenic α-synuclein protein and non-amyloidogenic cytosine deaminase APOBEC3G.
Collapse
Affiliation(s)
- Yangang Pan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha , Nebraska 68198-6025 , United States
| | - Siddhartha Banerjee
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha , Nebraska 68198-6025 , United States
| | - Karen Zagorski
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha , Nebraska 68198-6025 , United States
| | - Luda S Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha , Nebraska 68198-6025 , United States
| | - Anatoly B Kolomeisky
- Department of Chemistry-MS 60 , Rice University , 6100 Main Street , Houston , Texas 77005-1892 , Unites States
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha , Nebraska 68198-6025 , United States
| |
Collapse
|
7
|
Würtz M, Aumiller D, Gundelwein L, Jung P, Schütz C, Lehmann K, Tóth K, Rohr K. DNA accessibility of chromatosomes quantified by automated image analysis of AFM data. Sci Rep 2019; 9:12788. [PMID: 31484969 PMCID: PMC6726762 DOI: 10.1038/s41598-019-49163-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
DNA compaction and accessibility in eukaryotes are governed by nucleosomes and orchestrated through interactions between DNA and DNA-binding proteins. Using QuantAFM, a method for automated image analysis of atomic force microscopy (AFM) data, we performed a detailed statistical analysis of structural properties of mono-nucleosomes. QuantAFM allows fast analysis of AFM images, including image preprocessing, object segmentation, and quantification of different structural parameters to assess DNA accessibility of nucleosomes. A comparison of nucleosomes reconstituted with and without linker histone H1 quantified H1's already described ability of compacting the nucleosome. We further employed nucleosomes bearing two charge-modifying mutations at position R81 and R88 in histone H2A (H2A R81E/R88E) to characterize DNA accessibility under destabilizing conditions. Upon H2A mutation, even in presence of H1, the DNA opening angle at the entry/exit site was increased and the DNA wrapping length around the histone core was reduced. Interestingly, a distinct opening of the less bendable DNA side was observed upon H2A mutation, indicating an enhancement of the intrinsic asymmetry of the Widom-601 nucleosomes. This study validates AFM as a technique to investigate structural parameters of nucleosomes and highlights how the DNA sequence, together with nucleosome modifications, can influence the DNA accessibility.
Collapse
Affiliation(s)
- Martin Würtz
- German Cancer Research Center, Division Biophysics of Macromolecules, Heidelberg, 69120, Germany
- Heidelberg University, BioQuant and IPMB, Biomedical Computer Vision Group, Heidelberg, 69120, Germany
| | - Dennis Aumiller
- Heidelberg University, Institute of Computer Science, Heidelberg, 69120, Germany
| | - Lina Gundelwein
- Heidelberg University, Institute of Computer Science, Heidelberg, 69120, Germany
| | - Philipp Jung
- Heidelberg University, Institute of Computer Science, Heidelberg, 69120, Germany
| | - Christian Schütz
- Heidelberg University, Institute of Computer Science, Heidelberg, 69120, Germany
| | - Kathrin Lehmann
- German Cancer Research Center, Division Biophysics of Macromolecules, Heidelberg, 69120, Germany
- Simon Fraser University, Department of Physics, Burnaby, BC, V5A 1S6, Canada
| | - Katalin Tóth
- German Cancer Research Center, Division Biophysics of Macromolecules, Heidelberg, 69120, Germany
| | - Karl Rohr
- Heidelberg University, BioQuant and IPMB, Biomedical Computer Vision Group, Heidelberg, 69120, Germany.
- German Cancer Research Center, Heidelberg, 69120, Germany.
| |
Collapse
|
8
|
Lushnikov A, Hooy R, Sohn J, Krasnoslobodtsev A. Characterization of DNA bound cyclic GMP-AMP synthase using atomic force microscopy imaging. Methods Enzymol 2019; 625:157-166. [PMID: 31455525 DOI: 10.1016/bs.mie.2019.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The protocol described herein allows for acquiring topography images of DNA-protein complexes using Atomic Force Microscopy imaging. Since the very beginning of this method, AFM has been an indispensable tool for characterization of biomolecular complexes with exceptional capability of observing single complexes. This method can visualize structural characteristics of DNA-protein assemblies and evaluate differences between individual complexes. Although this protocol is generally applicable to a large number of various proteins complexed with DNA, we use cyclic G/AMP synthase (cGAS) enzyme as a case study for the protocol description.
Collapse
Affiliation(s)
- Alexander Lushnikov
- Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, NE, United States
| | - Richard Hooy
- Department of Biophysics and Biophysical Chemistry, John Hopkins School of Medicine, Baltimore, MD, United States
| | - Jungsan Sohn
- Department of Biophysics and Biophysical Chemistry, John Hopkins School of Medicine, Baltimore, MD, United States
| | - Alexey Krasnoslobodtsev
- Nanoimaging Core Facility at the University of Nebraska Medical Center, Omaha, NE, United States; Department of Physics, University of Nebraska Omaha, Omaha, NE, United States.
| |
Collapse
|
9
|
Heenan PR, Perkins TT. Imaging DNA Equilibrated onto Mica in Liquid Using Biochemically Relevant Deposition Conditions. ACS NANO 2019; 13:4220-4229. [PMID: 30938988 DOI: 10.1021/acsnano.8b09234] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For over 25 years, imaging of DNA by atomic force microscopy has been intensely pursued. Ideally, such images are then used to probe the physical properties of DNA and characterize protein-DNA interactions. The atomic flatness of mica makes it the preferred substrate for high signal-to-noise ratio (SNR) imaging, but the negative charge of mica and DNA hinders deposition. Traditional methods for imaging DNA and protein-DNA complexes in liquid have drawbacks: DNA conformations with an anomalous persistence length ( p), low SNR, and/or ionic deposition conditions detrimental to preserving protein-DNA interactions. Here, we developed a process to bind DNA to mica in a buffer containing both MgCl2 and KCl that resulted in high SNR images of equilibrated DNA in liquid. Achieving an equilibrated 2D configuration ( i. e., p = 50 nm) not only implied a minimally perturbative binding process but also improved data quality and quantity because the DNA's configuration was more extended. In comparison to a purely NiCl2-based protocol, we showed that an 8-fold larger fraction (90%) of 680-nm-long DNA molecules could be quantified. High-resolution images of select equilibrated molecules revealed the right-handed structure of DNA with a helical pitch of 3.5 nm. Deposition and imaging of DNA was achieved over a wide range of monovalent and divalent ionic conditions, including a buffer containing 50 mM KCl and 3 mM MgCl2. Finally, we imaged two protein-DNA complexes using this protocol: a restriction enzyme bound to DNA and a small three-nucleosome array. We expect such deposition of protein-DNA complexes at biochemically relevant ionic conditions will facilitate biophysical insights derived from imaging diverse protein-DNA complexes.
Collapse
Affiliation(s)
- Patrick R Heenan
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder , Colorado 80309 , United States
- Department of Physics , University of Colorado , Boulder , Colorado 80309 , United States
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder , Colorado 80309 , United States
- Department of Molecular, Cellular, and Developmental Biology , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
10
|
Carrasco B, Serrano E, Martín-González A, Moreno-Herrero F, Alonso JC. Bacillus subtilis MutS Modulates RecA-Mediated DNA Strand Exchange Between Divergent DNA Sequences. Front Microbiol 2019; 10:237. [PMID: 30814990 PMCID: PMC6382021 DOI: 10.3389/fmicb.2019.00237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
The efficiency of horizontal gene transfer, which contributes to acquisition and spread of antibiotic resistance and pathogenicity traits, depends on nucleotide sequence and different mismatch-repair (MMR) proteins participate in this process. To study how MutL and MutS MMR proteins regulate recombination across species boundaries, we have studied natural chromosomal transformation with DNA up to ∼23% sequence divergence. We show that Bacillus subtilis natural chromosomal transformation decreased logarithmically with increased sequence divergence up to 15% in wild type (wt) cells or in cells lacking MutS2 or mismatch repair proteins (MutL, MutS or both). Beyond 15% sequence divergence, the chromosomal transformation efficiency is ∼100-fold higher in ΔmutS and ΔmutSL than in ΔmutS2 or wt cells. In the first phase of the biphasic curve (up to 15% sequence divergence), RecA-catalyzed DNA strand exchange contributes to the delineation of species, and in the second phase, homology-facilitated illegitimate recombination might aid in the restoration of inactivated genes. To understand how MutS modulates the integration process, we monitored DNA strand exchange reactions using a circular single-stranded DNA and a linear double-stranded DNA substrate with an internal 77-bp region with ∼16% or ∼54% sequence divergence in an otherwise homologous substrate. The former substrate delayed, whereas the latter halted RecA-mediated strand exchange. Interestingly, MutS addition overcame the heterologous barrier. We propose that MutS assists DNA strand exchange by facilitating RecA disassembly, and indirectly re-engagement with the homologous 5′-end of the linear duplex. Our data supports the idea that MutS modulates bidirectional RecA-mediated integration of divergent sequences and this is important for speciation.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alejandro Martín-González
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
11
|
Stumme-Diers MP, Stormberg T, Sun Z, Lyubchenko YL. Probing The Structure And Dynamics Of Nucleosomes Using Atomic Force Microscopy Imaging. J Vis Exp 2019. [PMID: 30774135 DOI: 10.3791/58820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chromatin, which is a long chain of nucleosome subunits, is a dynamic system that allows for such critical processes as DNA replication and transcription to take place in eukaryotic cells. The dynamics of nucleosomes provides access to the DNA by replication and transcription machineries, and critically contributes to the molecular mechanisms underlying chromatin functions. Single-molecule studies such as atomic force microscopy (AFM) imaging have contributed significantly to our current understanding of the role of nucleosome structure and dynamics. The current protocol describes the steps enabling high-resolution AFM imaging techniques to study the structural and dynamic properties of nucleosomes. The protocol is illustrated by AFM data obtained for the centromere nucleosomes in which H3 histone is replaced with its counterpart centromere protein A (CENP-A). The protocol starts with the assembly of mono-nucleosomes using a continuous dilution method. The preparation of the mica substrate functionalized with aminopropyl silatrane (APS-mica) that is used for the nucleosome imaging is critical for the AFM visualization of nucleosomes described and the procedure to prepare the substrate is provided. Nucleosomes deposited on the APS-mica surface are first imaged using static AFM, which captures a snapshot of the nucleosome population. From analyses of these images, such parameters as the size of DNA wrapped around the nucleosomes can be measured and this process is also detailed. The time-lapse AFM imaging procedure in the liquid is described for the high-speed time-lapse AFM that can capture several frames of nucleosome dynamics per second. Finally, the analysis of nucleosome dynamics enabling the quantitative characterization of the dynamic processes is described and illustrated.
Collapse
Affiliation(s)
| | - Tommy Stormberg
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center
| | - Zhiqiang Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center;
| |
Collapse
|
12
|
Aghazadeh Meshgi M, Zaitsev KV, Vener MV, Churakov AV, Baumgartner J, Marschner C. Hypercoordinated Oligosilanes Based on Aminotrisphenols. ACS OMEGA 2018; 3:10317-10330. [PMID: 30198007 PMCID: PMC6120741 DOI: 10.1021/acsomega.8b01402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/17/2018] [Indexed: 05/05/2023]
Abstract
The hypercoordinated silicon chlorides ClSi[(o-OC6H4)3N] (3) and ClSi[(OC6H2Me2CH2)3N] (5) were used for the synthesis of catenated derivatives (Me3Si)3SiSi[(o-OC6H4)3N] (9), (Me3Si)3SiSiMe2SiMe2Si(SiMe3)2Si[(o-OC6H4)3N] (11), and (Me3Si)3SiSi[(OC6H2Me2CH2)3N] (13) in reactions with (Me3Si)3SiK·THF (7) or (Me3Si)3SiK·[18-crown-6] (8). It was found that the nature of the (Me3Si)3SiK solvate determines the product of interaction, resulting in the formation of (Me3Si)3Si(CH2)4OSi[(OC6H2Me2CH2)3N] (12) or 13. Compounds obtained were characterized using multinuclear NMR and UV-vis spectroscopy and mass spectrometry. The molecular structures of 3, 9, and 11-13 were investigated by single-crystal X-ray analysis, featuring hypercoordinated Si atoms in a trigonal-bipyramidal coordination environment with O atoms in the equatorial plane. The structure of the side product [N(CH2C6H2Me2O)3Si]2O (6) was also studied, indicating highly tetrahedrally distorted trigonal-bipyramidal environment at the Si atoms, which was confirmed by crystal density functional theory calculations indicating the very weak Si ← N interaction. The Si···N interatomic distances span a broad range (2.23-2.78 Å). The dependence of structural and NMR parameters for hypercoordinated catenated compounds from the type of the ligand was established.
Collapse
Affiliation(s)
- Mohammad Aghazadeh Meshgi
- Institute
of Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Kirill V. Zaitsev
- Department
of Chemistry, Moscow State University, Leninskye Gory 1, Moscow 119991, Russia
- E-mail: (K.V.Z.)
| | - Mikhail V. Vener
- Department
of Quantum Chemistry, Mendeleev University
of Chemical Technology, Miusskaya Square 9, 125047 Moscow, Russia
| | - Andrei V. Churakov
- N.S.
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr., 31, 119991 Moscow, Russia
| | - Judith Baumgartner
- Institute
of Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christoph Marschner
- Institute
of Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9, 8010 Graz, Austria
- E-mail: (C.M.)
| |
Collapse
|
13
|
Lyubchenko YL. Direct AFM Visualization of the Nanoscale Dynamics of Biomolecular Complexes. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2018; 51:403001. [PMID: 30410191 PMCID: PMC6217977 DOI: 10.1088/1361-6463/aad898] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
High-speed AFM (HS-AFM) is an advanced technique with numerous applications in biology, particularly in molecular biophysics. Developed as a time-lapse AFM technique for direct imaging fully hydrated biological molecules, HS-AFM is currently capable of visualizing the dynamics of biological molecules and their complexes at a video-data acquisition rate. Spatial resolution at the nanometer level is another important characteristic of HS-AFM. This review focuses on examples of primarily protein-DNA complexes to illustrate the high temporal and spatial resolution capabilities of HS-AFM that have resulted in novel models and/or the functional mechanisms of these biological systems.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
DNA-RNA interactions are critical for chromosome condensation in Escherichia coli. Proc Natl Acad Sci U S A 2017; 114:12225-12230. [PMID: 29087325 DOI: 10.1073/pnas.1711285114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial chromosome (nucleoid) conformation dictates faithful regulation of gene transcription. The conformation is condition-dependent and is guided by several nucleoid-associated proteins (NAPs) and at least one nucleoid-associated noncoding RNA, naRNA4. Here we investigated the molecular mechanism of how naRNA4 and the major NAP, HU, acting together organize the chromosome structure by establishing multiple DNA-DNA contacts (DNA condensation). We demonstrate that naRNA4 uniquely acts by forming complexes that may not involve long stretches of DNA-RNA hybrid. Also, uncommonly, HU, a chromosome-associated protein that is essential in the DNA-RNA interactions, is not present in the final complex. Thus, HU plays a catalytic (chaperone) role in the naRNA4-mediated DNA condensation process.
Collapse
|
15
|
Rychkov GN, Ilatovskiy AV, Nazarov IB, Shvetsov AV, Lebedev DV, Konev AY, Isaev-Ivanov VV, Onufriev AV. Partially Assembled Nucleosome Structures at Atomic Detail. Biophys J 2016; 112:460-472. [PMID: 28038734 DOI: 10.1016/j.bpj.2016.10.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/06/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022] Open
Abstract
The evidence is now overwhelming that partially assembled nucleosome states (PANS) are as important as the canonical nucleosome structure for the understanding of how accessibility to genomic DNA is regulated in cells. We use a combination of molecular dynamics simulation and atomic force microscopy to deliver, in atomic detail, structural models of three key PANS: the hexasome (H2A·H2B)·(H3·H4)2, the tetrasome (H3·H4)2, and the disome (H3·H4). Despite fluctuations of the conformation of the free DNA in these structures, regions of protected DNA in close contact with the histone core remain stable, thus establishing the basis for the understanding of the role of PANS in DNA accessibility regulation. On average, the length of protected DNA in each structure is roughly 18 basepairs per histone protein. Atomistically detailed PANS are used to explain experimental observations; specifically, we discuss interpretation of atomic force microscopy, Förster resonance energy transfer, and small-angle x-ray scattering data obtained under conditions when PANS are expected to exist. Further, we suggest an alternative interpretation of a recent genome-wide study of DNA protection in active chromatin of fruit fly, leading to a conclusion that the three PANS are present in actively transcribing regions in a substantial amount. The presence of PANS may not only be a consequence, but also a prerequisite for fast transcription in vivo.
Collapse
Affiliation(s)
- Georgy N Rychkov
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia; Institute of Physics, Nanotechnology and Telecommunications, NRU Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Andrey V Ilatovskiy
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Igor B Nazarov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexey V Shvetsov
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia; Institute of Applied Mathematics and Mechanics, NRU Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Dmitry V Lebedev
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia
| | - Alexander Y Konev
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia
| | - Vladimir V Isaev-Ivanov
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia
| | - Alexey V Onufriev
- Departments of Computer Science and Physics, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
16
|
Senapati S, Lindsay S. Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy. Acc Chem Res 2016; 49:503-10. [PMID: 26934674 DOI: 10.1021/acs.accounts.5b00533] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Atomic force microscopy (AFM) is an extremely powerful tool in the field of bionanotechnology because of its ability to image single molecules and make measurements of molecular interaction forces with piconewton sensitivity. It works in aqueous media, enabling studies of molecular phenomenon taking place under physiological conditions. Samples can be imaged in their near-native state without any further modifications such as staining or tagging. The combination of AFM imaging with the force measurement added a new feature to the AFM technique, that is, molecular recognition imaging. Molecular recognition imaging enables mapping of specific interactions between two molecules (one attached to the AFM tip and the other to the imaging substrate) by generating simultaneous topography and recognition images (TREC). Since its discovery, the recognition imaging technique has been successfully applied to different systems such as antibody-protein, aptamer-protein, peptide-protein, chromatin, antigen-antibody, cells, and so forth. Because the technique is based on specific binding between the ligand and receptor, it has the ability to detect a particular protein in a mixture of proteins or monitor a biological phenomenon in the native physiological state. One key step for recognition imaging technique is the functionalization of the AFM tips (generally, silicon, silicon nitrides, gold, etc.). Several different functionalization methods have been reported in the literature depending on the molecules of interest and the material of the tip. Polyethylene glycol is routinely used to provide flexibility needed for proper binding as a part of the linker that carries the affinity molecule. Recently, a heterofunctional triarm linker has been synthesized and successfully attached with two different affinity molecules. This novel linker, when attached to AFM tip, helped to detect two different proteins simultaneously from a mixture of proteins using a so-called "two-color" recognition image. Biological phenomena in nature often involve multimolecular interactions, and this new linker could be ideal for studying them using AFM recognition imaging. It also has the potential to be used extensively in the diagnostics technique. This Account includes fundamentals behind AFM recognition imaging, a brief discussion on tip functionalization, recent advancements, and future directions and possibilities.
Collapse
Affiliation(s)
- Subhadip Senapati
- Biodesign Institute, ‡Department of Chemistry and Biochemistry, and §Department of
Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Stuart Lindsay
- Biodesign Institute, ‡Department of Chemistry and Biochemistry, and §Department of
Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
17
|
Abstract
This article reviews atomic force microscopy (AFM) studies of DNA structure and dynamics and protein-DNA complexes, including recent advances in the visualization of protein-DNA complexes with the use of cutting-edge, high-speed AFM. Special emphasis is given to direct nanoscale visualization of dynamics of protein-DNA complexes. In the area of DNA structure and dynamics, structural studies of local non-B conformations of DNA and the interplay of local and global DNA conformations are reviewed. The application of time-lapse AFM nanoscale imaging of DNA dynamics is illustrated by studies of Holliday junction branch migration. Structure and dynamics of protein-DNA interactions include problems related to site-specific DNA recombination, DNA replication, and DNA mismatch repair. Studies involving the structure and dynamics of chromatin are also described.
Collapse
Affiliation(s)
- Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025
| | - Luda S. Shlyakhtenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025
| |
Collapse
|
18
|
Nazarov I, Chekliarova I, Rychkov G, Ilatovskiy AV, Crane-Robinson C, Tomilin A. AFM studies in diverse ionic environments of nucleosomes reconstituted on the 601 positioning sequence. Biochimie 2015; 121:5-12. [PMID: 26586109 DOI: 10.1016/j.biochi.2015.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/09/2015] [Indexed: 01/02/2023]
Abstract
Atomic force microscopy (AFM) was used to study mononucleosomes reconstituted from a DNA duplex of 353 bp containing the strong 601 octamer positioning sequence, together with recombinant human core histone octamers. Three parameters were measured: 1) the length of DNA wrapped around the core histones; 2) the number of superhelical turns, calculated from the total angle through which the DNA is bent, and 3) the volume of the DNA-histone core. This approach allowed us to define in detail the structural diversity of nucleosomes caused by disassembly of the octasome to form subnucleosomal structures containing hexasomes, tetrasomes and disomes. At low ionic strength (TE buffer) and in the presence of physiological concentrations of monovalent cations, the majority of the particles were subnucleosomal, but physiological concentrations of bivalent cations resulted in about half of the nucleosomes being canonical octasomes in which the exiting DNA duplexes cross orthogonally. The dominance of this last species explains why bivalent but not monovalent cations can induce the initial step towards compaction and convergence of neighboring nucleosomes in nucleosomal arrays to form the chromatin fiber in the absence of linker histone. The observed nucleosome structural diversity may reflect the functional plasticity of nucleosomes under physiological conditions.
Collapse
Affiliation(s)
- Igor Nazarov
- Institute of Cytology, RAS, Tikhoretski Ave. 4, Saint-Petersburg, RF, 194064, Russia.
| | - Iana Chekliarova
- Institute of Cytology, RAS, Tikhoretski Ave. 4, Saint-Petersburg, RF, 194064, Russia
| | - Georgy Rychkov
- Institute of Physics, Nanotechnology and Telecommunications, NRU Peter the Great St.Petersburg Polytechnic University, Polytechnicheskaya 29, Saint-Petersburg, RF, 195251, Russia; Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, NRC "Kurchatov Institute", Orlova Roscha, Gatchina, 188300, Russia
| | - Andrey V Ilatovskiy
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, NRC "Kurchatov Institute", Orlova Roscha, Gatchina, 188300, Russia; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Colyn Crane-Robinson
- Biophysics Laboratories, St. Michael's Building, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Alexey Tomilin
- Institute of Cytology, RAS, Tikhoretski Ave. 4, Saint-Petersburg, RF, 194064, Russia
| |
Collapse
|
19
|
Seamon KJ, Sun Z, Shlyakhtenko LS, Lyubchenko YL, Stivers JT. SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity. Nucleic Acids Res 2015; 43:6486-99. [PMID: 26101257 PMCID: PMC4513882 DOI: 10.1093/nar/gkv633] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/05/2015] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 restriction factor SAMHD1 is a tetrameric enzyme activated by guanine nucleotides with dNTP triphosphate hydrolase activity (dNTPase). In addition to this established activity, there have been a series of conflicting reports as to whether the enzyme also possesses single-stranded DNA and/or RNA 3′-5′ exonuclease activity. SAMHD1 was purified using three chromatography steps, over which the DNase activity was largely separated from the dNTPase activity, but the RNase activity persisted. Surprisingly, we found that catalytic and nucleotide activator site mutants of SAMHD1 with no dNTPase activity retained the exonuclease activities. Thus, the exonuclease activity cannot be associated with any known dNTP binding site. Monomeric SAMHD1 was found to bind preferentially to single-stranded RNA, while the tetrameric form required for dNTPase action bound weakly. ssRNA binding, but not ssDNA, induces higher-order oligomeric states that are distinct from the tetrameric form that binds dNTPs. We conclude that the trace exonuclease activities detected in SAMHD1 preparations arise from persistent contaminants that co-purify with SAMHD1 and not from the HD active site. An in vivo model is suggested where SAMHD1 alternates between the mutually exclusive functions of ssRNA binding and dNTP hydrolysis depending on dNTP pool levels and the presence of viral ssRNA.
Collapse
Affiliation(s)
- Kyle J Seamon
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | - Zhiqiang Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Luda S Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| |
Collapse
|
20
|
Analyses of nuclear proteins and nucleic acid structures using atomic force microscopy. Methods Mol Biol 2015; 1262:119-53. [PMID: 25555579 DOI: 10.1007/978-1-4939-2253-6_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Since the inception of atomic force microscopy (AFM) in 1986, the value of this technology for exploring the structure and biophysical properties of a variety of biological samples has been increasingly recognized. AFM provides the opportunity to both image samples at nanometer resolution and also measure the forces on the surface of the sample. Here, we describe a variety of methods for studying nuclear samples including single nucleic acid molecules, higher-order chromatin structures, the nucleolus, and the nucleus. Protocols to prepare nucleic acids, nucleic acid-protein complexes, reconstituted chromatin, the cell nucleus, and the nucleolus are included, as well as protocols describing how to prepare the AFM substrate and the AFM tip. Finally, we describe how to perform conventional imaging, high-speed imaging, recognition imaging, force spectroscopy, and nanoindentation experiments.
Collapse
|
21
|
Daley JM, Chiba T, Xue X, Niu H, Sung P. Multifaceted role of the Topo IIIα-RMI1-RMI2 complex and DNA2 in the BLM-dependent pathway of DNA break end resection. Nucleic Acids Res 2014; 42:11083-91. [PMID: 25200081 PMCID: PMC4176181 DOI: 10.1093/nar/gku803] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BLM, a RecQ family DNA helicase mutated in Bloom's Syndrome, participates in homologous recombination at two stages: 5' DNA end resection and double Holliday junction dissolution. BLM exists in a complex with Topo IIIα, RMI1 and RMI2. Herein, we address the role of Topo IIIα and RMI1-RMI2 in resection using a reconstituted system with purified human proteins. We show that Topo IIIα stimulates DNA unwinding by BLM in a manner that is potentiated by RMI1-RMI2, and that the processivity of resection is reliant on the Topo IIIα-RMI1-RMI2 complex. Topo IIIα localizes to the ends of double-strand breaks, thus implicating it in the recruitment of resection factors. While the single-stranded DNA binding protein RPA plays a major role in imposing the 5' to 3' polarity of resection, Topo IIIα also makes a contribution in this regard. Moreover, we show that DNA2 stimulates the helicase activity of BLM. Our results thus uncover a multifaceted role of the Topo IIIα-RMI1-RMI2 ensemble and of DNA2 in the DNA resection reaction.
Collapse
Affiliation(s)
- James M Daley
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamara Chiba
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hengyao Niu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
22
|
Ando T, Uchihashi T, Scheuring S. Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 2014; 114:3120-88. [PMID: 24476364 PMCID: PMC4076042 DOI: 10.1021/cr4003837] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Toshio Ando
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Takayuki Uchihashi
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Simon Scheuring
- U1006
INSERM/Aix-Marseille Université, Parc Scientifique et Technologique
de Luminy Bâtiment Inserm TPR2 bloc 5, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
23
|
Lyubchenko YL, Gall AA, Shlyakhtenko LS. Visualization of DNA and protein-DNA complexes with atomic force microscopy. Methods Mol Biol 2014; 1117:367-84. [PMID: 24357372 DOI: 10.1007/978-1-62703-776-1_17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This article describes sample preparation techniques for AFM imaging of DNA and protein-DNA complexes. The approach is based on chemical functionalization of the mica surface with aminopropyl silatrane (APS) to yield an APS-mica surface. This surface binds nucleic acids and nucleoprotein complexes in a wide range of ionic strengths, in the absence of divalent cations, and in a broad range of pH. The chapter describes the methodologies for the preparation of APS-mica surfaces and the preparation of samples for AFM imaging. The protocol for synthesis and purification of APS is also provided. The AFM applications are illustrated with examples of images of DNA and protein-DNA complexes.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
24
|
Senapati S, Manna S, Lindsay S, Zhang P. Application of catalyst-free click reactions in attaching affinity molecules to tips of atomic force microscopy for detection of protein biomarkers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14622-30. [PMID: 24180289 PMCID: PMC3886287 DOI: 10.1021/la4039667] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Atomic force microscopy (AFM) has been extensively used in studies of biological interactions. Particularly, AFM based force spectroscopy and recognition imaging can sense biomolecules on a single molecule level, having great potential to become a tool for molecular diagnostics in clinics. These techniques, however, require affinity molecules to be attached to AFM tips in order to specifically detect their targets. The attachment chemistry currently used on silicon tips involves multiple steps of reactions and moisture sensitive chemicals, such as (3-aminopropyl)triethoxysilane (APTES) and N-hydroxysuccinimide (NHS) ester, making the process difficult to operate in aqueous solutions. In the present study, we have developed a user-friendly protocol to functionalize the AFM tips with affinity molecules. A key feature of it is that all reactions are carried out in aqueous solutions. In summary, we first synthesized a molecular anchor composed of cyclooctyne and silatrane for introduction of a chemically reactive function to AFM tips and a bifunctional polyethylene glycol linker that harnesses two orthogonal click reactions, copper free alkyne-azide cycloaddition and thiol-vinylsulfone Michael addition, for attaching affinity molecules to AFM tips. The attachment chemistry was then validated by attaching antithrombin DNA aptamers and cyclo-RGD peptides to silicon nitride (SiN) tips, respectively, and measuring forces of unbinding these affinity molecules from their protein cognates human α-thrombin and human α5β1-integrin immobilized on mica surfaces. In turn, we used the same attachment chemistry to functionalize silicon tips with the same affinity molecules for AFM based recognition imaging, showing that the disease-relevant biomarkers such as α-thrombin and α5β1-integrin can be detected with high sensitivity and specificity by the single molecule technique. These studies demonstrate the feasibility of our attachment chemistry for the use in functionalization of AFM tips with affinity molecules.
Collapse
Affiliation(s)
- Subhadip Senapati
- Center for Single Molecule Biophysics of the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Saikat Manna
- Center for Single Molecule Biophysics of the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Stuart Lindsay
- Center for Single Molecule Biophysics of the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Peiming Zhang
- Center for Single Molecule Biophysics of the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
25
|
Haney MJ, Zhao Y, Harrison EB, Mahajan V, Ahmed S, He Z, Suresh P, Hingtgen SD, Klyachko NL, Mosley RL, Gendelman HE, Kabanov AV, Batrakova EV. Specific transfection of inflamed brain by macrophages: a new therapeutic strategy for neurodegenerative diseases. PLoS One 2013; 8:e61852. [PMID: 23620794 PMCID: PMC3631190 DOI: 10.1371/journal.pone.0061852] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/15/2013] [Indexed: 12/25/2022] Open
Abstract
The ability to precisely upregulate genes in inflamed brain holds great therapeutic promise. Here we report a novel class of vectors, genetically modified macrophages that carry reporter and therapeutic genes to neural cells. Systemic administration of macrophages transfected ex vivo with a plasmid DNA (pDNA) encoding a potent antioxidant enzyme, catalase, produced month-long expression levels of catalase in the brain resulting in three-fold reductions in inflammation and complete neuroprotection in mouse models of Parkinson's disease (PD). This resulted in significant improvements in motor functions in PD mice. Mechanistic studies revealed that transfected macrophages secreted extracellular vesicles, exosomes, packed with catalase genetic material, pDNA and mRNA, active catalase, and NF-κb, a transcription factor involved in the encoded gene expression. Exosomes efficiently transfer their contents to contiguous neurons resulting in de novo protein synthesis in target cells. Thus, genetically modified macrophages serve as a highly efficient system for reproduction, packaging, and targeted gene and drug delivery to treat inflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew J. Haney
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Yuling Zhao
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Emily B. Harrison
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vivek Mahajan
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shaheen Ahmed
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Zhijian He
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Poornima Suresh
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shawn D. Hingtgen
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Natalia L. Klyachko
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Alexander V. Kabanov
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Elena V. Batrakova
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
26
|
Sullan RMA, Churnside AB, Nguyen DM, Bull MS, Perkins TT. Atomic force microscopy with sub-picoNewton force stability for biological applications. Methods 2013; 60:131-41. [PMID: 23562681 DOI: 10.1016/j.ymeth.2013.03.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 01/24/2023] Open
Abstract
Atomic force microscopy (AFM) is widely used in the biological sciences. Despite 25 years of technical developments, two popular modes of bioAFM, imaging and single molecule force spectroscopy, remain hindered by relatively poor force precision and stability. Recently, we achieved both sub-pN force precision and stability under biologically useful conditions (in liquid at room temperature). Importantly, this sub-pN level of performance is routinely accessible using a commercial cantilever on a commercial instrument. The two critical results are that (i) force precision and stability were limited by the gold coating on the cantilevers, and (ii) smaller yet stiffer cantilevers did not lead to better force precision on time scales longer than 25 ms. These new findings complement our previous work that addressed tip-sample stability. In this review, we detail the methods needed to achieve this sub-pN force stability and demonstrate improvements in force spectroscopy and imaging when using uncoated cantilevers. With this improved cantilever performance, the widespread use of nonspecific biomolecular attachments becomes a limiting factor in high-precision studies. Thus, we conclude by briefly reviewing site-specific covalent-immobilization protocols for linking a biomolecule to the substrate and to the AFM tip.
Collapse
Affiliation(s)
- Ruby May A Sullan
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
27
|
Bansal N, Zhang M, Bhaskar A, Itotia P, Lee E, Shlyakhtenko LS, Lam TT, Fritz A, Berezney R, Lyubchenko YL, Stafford WF, Thapar R. Assembly of the SLIP1-SLBP complex on histone mRNA requires heterodimerization and sequential binding of SLBP followed by SLIP1. Biochemistry 2013; 52:520-36. [PMID: 23286197 DOI: 10.1021/bi301074r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The SLIP1-SLBP complex activates translation of replication-dependent histone mRNAs. In this report, we describe how the activity of the SLIP1-SLBP complex is modulated by phosphorylation and oligomerization. Biophysical characterization of the free proteins shows that whereas SLIP1 is a homodimer that does not bind RNA, human SLBP is an intrinsically disordered protein that is phosphorylated at 23 Ser/Thr sites when expressed in a eukaryotic expression system such as baculovirus. The bacterially expressed unphosphorylated SLIP1-SLBP complex forms a 2:2 high-affinity (K(D) < 0.9 nM) heterotetramer that is also incapable of binding histone mRNA. In contrast, phosphorylated SLBP from baculovirus has a weak affinity (K(D) ~3 μM) for SLIP1. Sequential binding of phosphorylated SLBP to the histone mRNA stem-loop motif followed by association with SLIP1 is required to form an "active" ternary complex. Phosphorylation of SLBP at Thr171 promotes dissociation of the heterotetramer to the SLIP1-SLBP heterodimer. Using alanine scanning mutagenesis, we demonstrate that the binding site on SLIP1 for SLBP lies close to the dimer interface. A single-point mutant near the SLIP1 homodimer interface abolished interaction with SLBP in vitro and reduced the abundance of histone mRNA in vivo. On the basis of these biophysical studies, we propose that oligomerization and SLBP phosphorylation may regulate the SLBP-SLIP1 complex in vivo. SLIP1 may act to sequester SLBP in vivo, protecting it from proteolytic degradation as an inactive heterotetramer, or alternatively, formation of the SLIP1-SLBP heterotetramer may facilitate removal of SLBP from the histone mRNA prior to histone mRNA degradation.
Collapse
Affiliation(s)
- Nitin Bansal
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Biotinylation of lysine 16 in histone H4 contributes toward nucleosome condensation. Arch Biochem Biophys 2012; 529:105-11. [PMID: 23219734 DOI: 10.1016/j.abb.2012.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 02/02/2023]
Abstract
Holocarboxylase synthetase (HLCS) is part of a multiprotein gene repression complex and catalyzes the covalent binding of biotin to lysines (K) in histones H3 and H4, thereby creating rare gene repression marks such as K16-biotinylated histone H4 (H4K16bio). We tested the hypothesis that H4K16bio contributes toward nucleosome condensation and gene repression by HLCS. We used recombinant histone H4 in which K16 was mutated to a cysteine (H4K16C) for subsequent chemical biotinylation of the sulfhydryl group to create H4K16Cbio. Nucleosomes were assembled by using H4K16Cbio and the 'Widom 601' nucleosomal DNA position sequence; biotin-free histone H4 and H4K16C were used as controls. Nucleosomal compaction was analyzed using atomic force microscopy (AFM). The length of DNA per nucleosome was ∼30% greater in H4K16Cbio-containing histone octamers (61.14±10.92nm) compared with native H4 (46.89±12.6nm) and H4K16C (47.26±10.32nm), suggesting biotin-dependent chromatin condensation (P<0.001). Likewise, the number of DNA turns around histone core octamers was ∼17.2% greater in in H4K16Cbio-containing octamers (1.78±0.16) compared with native H4 (1.52±0.21) and H4K16C (1.52±0.17), judged by the rotation angle (P<0.001; N=150). We conclude that biotinylation of K16 in histone H4 contributes toward chromatin condensation.
Collapse
|
29
|
Marcuello C, de Miguel R, Gomez-Moreno C, Martinez-Julvez M, Lostao A. An efficient method for enzyme immobilization evidenced by atomic force microscopy. Protein Eng Des Sel 2012; 25:715-23. [DOI: 10.1093/protein/gzs086] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Dey B, Thukral S, Krishnan S, Chakrobarty M, Gupta S, Manghani C, Rani V. DNA-protein interactions: methods for detection and analysis. Mol Cell Biochem 2012; 365:279-99. [PMID: 22399265 DOI: 10.1007/s11010-012-1269-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 02/16/2012] [Indexed: 12/18/2022]
Abstract
DNA-binding proteins control various cellular processes such as recombination, replication and transcription. This review is aimed to summarize some of the most commonly used techniques to determine DNA-protein interactions. In vitro techniques such as footprinting assays, electrophoretic mobility shift assay, southwestern blotting, yeast one-hybrid assay, phage display and proximity ligation assay have been discussed. The highly versatile in vivo techniques such as chromatin immunoprecipitation and its variants, DNA adenine methyl transferase identification as well as 3C and chip-loop assay have also been summarized. In addition, some in silico tools have been reviewed to provide computational basis for determining DNA-protein interactions. Biophysical techniques like fluorescence resonance energy transfer (FRET) techniques, FRET-FLIM, circular dichroism, atomic force microscopy, nuclear magnetic resonance, surface plasmon resonance, etc. have also been highlighted.
Collapse
Affiliation(s)
- Bipasha Dey
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10 Sector-62, Noida 201307, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
31
|
Klyachko NL, Manickam DS, Brynskikh AM, Uglanova SV, Li S, Higginbotham SM, Bronich TK, Batrakova EV, Kabanov AV. Cross-linked antioxidant nanozymes for improved delivery to CNS. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2012; 8:119-29. [PMID: 21703990 PMCID: PMC3255173 DOI: 10.1016/j.nano.2011.05.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 04/10/2011] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
Abstract
Formulations of antioxidant enzymes, superoxide dismutase 1 (SOD1, also known as Cu/Zn SOD) and catalase were prepared by electrostatic coupling of enzymes with cationic block copolymers, polyethyleneimine-poly(ethylene glycol) or poly(L-lysine)-poly(ethylene glycol), followed by covalent cross-linking to stabilize nanoparticles (NPs). Different cross-linking strategies (using glutaraldehyde, bis-(sulfosuccinimidyl)suberate sodium salt or 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride with N-hydroxysulfosuccinimide) and reaction conditions (pH and polycation/protein charge ratio) were investigated that allowed immobilizing active enzymes in cross-linked NPs, termed "nanozymes." Bienzyme NPs, containing both SOD1 and catalase were also formulated. Formation of complexes was confirmed using denaturing gel electrophoresis and western blotting; physicochemical characterization was conducted using dynamic light scattering and atomic force microscopy. In vivo studies of (125)I-labeled SOD1-containing nanozymes in mice demonstrated their increased stability in both blood and brain and increased accumulation in brain tissues, in comparison with non-cross-linked complexes and native SOD1. Future studies will evaluate the potential of these formulations for delivery of antioxidant enzymes to the central nervous system to attenuate oxidative stress associated with neurological diseases. FROM THE CLINICAL EDITOR Formulations of antioxidant enzyme complexes were demonstrated along with their increased stability in both blood and brain and increased accumulation in CNS tissue. Future studies will evaluate the potential of these formulations for antioxidant enzyme deliver to the CNS to attenuate oxidative stress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Natalia L. Klyachko
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Devika S. Manickam
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Anna M. Brynskikh
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
- Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, Nebraska, USA
| | - Svetlana V. Uglanova
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Shu Li
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Sheila M. Higginbotham
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Tatiana K. Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Elena V. Batrakova
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Alexander V. Kabanov
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| |
Collapse
|
32
|
Mica functionalization for imaging of DNA and protein-DNA complexes with atomic force microscopy. Methods Mol Biol 2012; 931:295-312. [PMID: 23027008 DOI: 10.1007/978-1-62703-056-4_14] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface preparation is a key step for reliable and reproducible imaging of DNA and protein-DNA complexes with atomic force microscopy (AFM). This article describes the approaches for chemical functionalization of the mica surface. One approach utilizes 3-aminopropyl-trietoxy silane (APTES), enabling one to obtain a smooth surface termed AP-mica. This surface binds nucleic acids and nucleoprotein complexes in a wide range of ionic strengths, in the absence of divalent cations and in a broad range of pH. Another method utilizes aminopropyl silatrane (APS) to yield an APS-mica surface. The advantage of APS-mica compared with AP-mica is the ability to obtain reliable and reproducible time-lapse images in aqueous solutions. The chapter describes the methodologies for the preparation of AP-mica and APS-mica surfaces and the preparation of samples for AFM imaging. The protocol for synthesis and purification of APS is also provided. The applications are illustrated with a number of examples.
Collapse
|
33
|
Li D, Yang Z, Long Y, Zhao G, Lv B, Hiew S, Ng MTT, Guo J, Tan H, Zhang H, Yuan W, Su H, Li T. Precise engineering and visualization of signs and magnitudes of DNA writhe on the basis of PNA invasion. Chem Commun (Camb) 2011; 47:10695-7. [PMID: 21892494 DOI: 10.1039/c1cc13158c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It is demonstrated that the right and left handedness of DNA supercoils can be engineered precisely and readily at the molecular level in vitro through utilization of the invading property of peptide nucleic acid.
Collapse
Affiliation(s)
- Dawei Li
- RecDivision of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Miyagi A, Ando T, Lyubchenko YL. Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy. Biochemistry 2011; 50:7901-8. [PMID: 21846149 DOI: 10.1021/bi200946z] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A fundamental challenge of gene regulation is the accessibility of DNA within nucleosomes. Recent studies performed by various techniques, including single-molecule approaches, led to the realization that nucleosomes are quite dynamic rather than static systems, as they were once considered. Direct data are needed to characterize the dynamics of nucleosomes. Specifically, if nucleosomes are dynamic, the following questions need to be answered. What is the range of nucleosome dynamics? Is a non-ATP-dependent unwrapping of nucleosomes possible? What are the factors facilitating the large-scale opening and unwrapping of nucleosomes? In previous studies using time-lapse atomic force microscopy (AFM) imaging, we were able, for the first time, to observe spontaneous, ATP-independent unwrapping of nucleosomes. However, low temporal resolution did not allow visualization of various pathways of nucleosome dynamics. In the studies described here, we applied high-speed time-lapse AFM (HS-AFM) capable of visualizing molecular dynamics on the millisecond time scale to study the nucleosome dynamics. The mononucleosomes were assembled on a 353 bp DNA substrate containing nucleosome-specific 601 sequence. With HS-AFM, we were able to observe the dynamics of nucleosome on a subsecond time scale and visualize various pathways of nucleosome dynamics, such as sliding and unwrapping to various extents, including complete dissociation. These studies highlight an important role of electrostatic interactions in chromatin dynamics. Overall, our findings shed new light on nucleosome dynamics and provide a novel hypothesis for the mechanisms controlling the spontaneous dynamics of chromatin.
Collapse
Affiliation(s)
- Atsushi Miyagi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, USA
| | | | | |
Collapse
|
35
|
Lyubchenko YL, Shlyakhtenko LS, Ando T. Imaging of nucleic acids with atomic force microscopy. Methods 2011; 54:274-83. [PMID: 21310240 PMCID: PMC3114274 DOI: 10.1016/j.ymeth.2011.02.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 12/07/2010] [Accepted: 02/01/2011] [Indexed: 11/18/2022] Open
Abstract
Atomic force microscopy (AFM) is a key tool of nanotechnology with great importance in applications to DNA nanotechnology and to the recently emerging field of RNA nanotechnology. Advances in the methodology of AFM now enable reliable and reproducible imaging of DNA of various structures, topologies, and DNA and RNA nanostructures. These advances are reviewed here with emphasis on methods utilizing modification of mica to prepare the surfaces enabling reliable and reproducible imaging of DNA and RNA nanostructures. Since the AFM technology for DNA is more mature, AFM imaging of DNA is introduced in this review to provide experience and background for the improvement of AFM imaging of RNA. Examples of imaging different structures of RNA and DNA are discussed and illustrated. Special attention is given to the potential use of AFM to image the dynamics of nucleic acids at the nanometer scale. As such, we review recent advances with the use of time-lapse AFM.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| | | | | |
Collapse
|
36
|
Lyubchenko YL. Preparation of DNA and nucleoprotein samples for AFM imaging. Micron 2011; 42:196-206. [PMID: 20864349 PMCID: PMC2997872 DOI: 10.1016/j.micron.2010.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/24/2010] [Accepted: 08/24/2010] [Indexed: 02/06/2023]
Abstract
Sample preparation techniques allowing reliable and reproducible imaging of DNA with various structures, topologies and complexes with proteins are reviewed. The major emphasis is given to methods utilizing chemical functionalization of mica, enabling preparation of the surfaces with required characteristics. The methods are illustrated by examples of imaging of different DNA structures. Special attention is given to the possibility of AFM to image the dynamics of DNA at the nanoscale. The capabilities of time-lapse AFM in aqueous solutions are illustrated by imaging of dynamic processes as transitions of local alternative structures (transition of DNA between H and B forms). The application of AFM to studies of protein-DNA complexes is illustrated by a few examples of imaging site-specific complexes, as well as such systems as chromatin. The time-lapse AFM studies of protein-DNA complexes including very recent advances with the use of high-speed AFM are reviewed.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, United States.
| |
Collapse
|
37
|
Puri JK, Singh R, Chahal VK. Silatranes: a review on their synthesis, structure, reactivity and applications. Chem Soc Rev 2011; 40:1791-840. [DOI: 10.1039/b925899j] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Li D, Yang Z, Zhao G, Long Y, Lv B, Li C, Hiew S, Ng MTT, Guo J, Tan H, Zhang H, Li T. Manipulating DNA writhe through varying DNA sequences. Chem Commun (Camb) 2011; 47:7479-81. [DOI: 10.1039/c1cc11543j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Zhao Y, Haney MJ, Klyachko NL, Li S, Booth SL, Higginbotham SM, Jones J, Zimmerman MC, Mosley RL, Kabanov AV, Gendelman HE, Batrakova EV. Polyelectrolyte complex optimization for macrophage delivery of redox enzyme nanoparticles. Nanomedicine (Lond) 2011; 6:25-42. [PMID: 21182416 PMCID: PMC3037278 DOI: 10.2217/nnm.10.129] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND We posit that cell-mediated drug delivery can improve transport of therapeutic enzymes to the brain and decrease inflammation and neurodegeneration seen during Parkinson's disease. Our prior works demonstrated that macrophages loaded with nanoformulated catalase ('nanozyme') then parenterally injected protect the nigrostriatum in a murine model of Parkinson's disease. Packaging of catalase into block ionomer complex with a synthetic polyelectrolyte block copolymer precludes enzyme degradation in macrophages. METHODS We examined relationships between the composition and structure of block ionomer complexes with a range of block copolymers, their physicochemical characteristics, and loading, release and catalase enzymatic activity in bone marrow-derived macrophages. RESULTS Formation of block ionomer complexes resulted in improved aggregation stability. Block ionomer complexes with ε-polylysine and poly(L-glutamic acid)-poly(ethylene glycol) demonstrated the least cytotoxicity and high loading and release rates. However, these formulations did not efficiently protect catalase inside macrophages. CONCLUSION Nanozymes with polyethyleneimine- and poly(L-lysine)(10)-poly(ethylene glycol) provided the best protection of enzymatic activity for cell-mediated drug delivery.
Collapse
Affiliation(s)
- Yuling Zhao
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Matthew J. Haney
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Natalia L. Klyachko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Chemical Enzymology, Faculty of Chemistry, M.V.Lomonosov Moscow State University, Moscow, Russia
| | - Shu Li
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Stephanie L. Booth
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sheila M. Higginbotham
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jocelyn Jones
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Matthew C. Zimmerman
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - R. Lee Mosley
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Center for Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Alexander V. Kabanov
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Howard E. Gendelman
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Center for Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Elena V. Batrakova
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
40
|
Lyubchenko YL, Kim BH, Krasnoslobodtsev AV, Yu J. Nanoimaging for protein misfolding diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:526-43. [PMID: 20665728 DOI: 10.1002/wnan.102] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Misfolding and aggregation of proteins are widespread phenomena leading to the development of numerous neurodegenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases. Each of these diseases is linked to structural misfolding and aggregation of a particular protein. The aggregated forms of the protein induce the development of a particular disease at all levels, leading to neuronal dysfunction and loss. Because protein refolding is frequently accompanied by transient association of partially folded intermediates, the propensity to aggregate is considered a general characteristic of the majority of proteins. X-ray crystallography, nuclear magnetic resonance, electron microscopy, and atomic force microscopy have provided important information on the structure of aggregates. However, fundamental questions, such as why the misfolded conformation of the protein is formed, and why this state is important for self-assembly, remain unanswered. Although it is well known that the same protein under pathological conditions can lead to the formation of aggregates with diverse biological consequences, the conditions leading to misfolding and the formation of the disease prone complexes are unclear, complicating any development of efficient prevention of the diseases. Misfolded states exist transiently, so answering these questions requires the use of novel approaches and methods. Progress has been made during the past few years, when recently developed ensemble methods and single-molecule biophysics techniques were applied to the problem of the protein misfolding. In this review, the impacts of these studies on the understanding of the mechanisms of the protein self-assembly into aggregates and on the development of treatments of the diseases are discussed.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| | | | | | | |
Collapse
|
41
|
MeCP2 binds cooperatively to its substrate and competes with histone H1 for chromatin binding sites. Mol Cell Biol 2010; 30:4656-70. [PMID: 20679481 DOI: 10.1128/mcb.00379-10] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sporadic mutations in the hMeCP2 gene, coding for a protein that preferentially binds symmetrically methylated CpGs, result in the severe neurological disorder Rett syndrome (RTT). In the present work, employing a wide range of experimental approaches, we shed new light on the many levels of MeCP2 interaction with DNA and chromatin. We show that strong methylation-independent as well as methylation-dependent binding by MeCP2 is influenced by DNA length. Although MeCP2 is strictly monomeric in solution, its binding to DNA is cooperative, with dimeric binding strongly correlated with methylation density, and strengthened by nearby A/T repeats. Dimeric binding is abolished in the F155S and R294X severe RTT mutants. MeCP2 also binds chromatin in vitro, resulting in compaction-related changes in nucleosome architecture that resemble the classical zigzag motif induced by histone H1 and considered important for 30-nm-fiber formation. In vivo chromatin binding kinetics and in vitro steady-state nucleosome binding of both MeCP2 and H1 provide strong evidence for competition between MeCP2 and H1 for common binding sites. This suggests that chromatin binding by MeCP2 and H1 in vivo should be viewed in the context of competitive multifactorial regulation.
Collapse
|
42
|
Zaremba M, Owsicka A, Tamulaitis G, Sasnauskas G, Shlyakhtenko LS, Lushnikov AY, Lyubchenko YL, Laurens N, van den Broek B, Wuite GJL, Siksnys V. DNA synapsis through transient tetramerization triggers cleavage by Ecl18kI restriction enzyme. Nucleic Acids Res 2010; 38:7142-54. [PMID: 20571089 PMCID: PMC2978343 DOI: 10.1093/nar/gkq560] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To cut DNA at their target sites, restriction enzymes assemble into different oligomeric structures. The Ecl18kI endonuclease in the crystal is arranged as a tetramer made of two dimers each bound to a DNA copy. However, free in solution Ecl18kI is a dimer. To find out whether the Ecl18kI dimer or tetramer represents the functionally important assembly, we generated mutants aimed at disrupting the putative dimer–dimer interface and analysed the functional properties of Ecl18kI and mutant variants. We show by atomic force microscopy that on two-site DNA, Ecl18kI loops out an intervening DNA fragment and forms a tetramer. Using the tethered particle motion technique, we demonstrate that in solution DNA looping is highly dynamic and involves a transient interaction between the two DNA-bound dimers. Furthermore, we show that Ecl18kI cleaves DNA in the synaptic complex much faster than when acting on a single recognition site. Contrary to Ecl18kI, the tetramerization interface mutant R174A binds DNA as a dimer, shows no DNA looping and is virtually inactive. We conclude that Ecl18kI follows the association model for the synaptic complex assembly in which it binds to the target site as a dimer and then associates into a transient tetrameric form to accomplish the cleavage reaction.
Collapse
Affiliation(s)
- Mindaugas Zaremba
- Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shlyakhtenko LS, Lushnikov AY, Lyubchenko YL. Dynamics of nucleosomes revealed by time-lapse atomic force microscopy. Biochemistry 2009; 48:7842-8. [PMID: 19618963 PMCID: PMC2752652 DOI: 10.1021/bi900977t] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The dynamics of chromatin provides the access to DNA within nucleosomes, and therefore, this process is critically involved in the regulation of chromatin function. However, our knowledge of the large-range dynamics of nucleosomes is limited. Answers to the questions, such as the range of opening of the nucleosome and the mechanism via which the opening occurs and propagates, remain unknown. Here we applied single-molecule time-lapse atomic force microscopy (AFM) imaging to directly visualize the dynamics of nucleosomes and identify the mechanism of the large range DNA exposure. With this technique, we are able to observe the process of unwrapping of nucleosomes. The unwrapping of nucleosomes proceeds from the ends of the particles, allowing for the unwrapping of DNA regions as large as dozens of base pairs. This process may lead to a complete unfolding of nucleosomes and dissociation of the histone core from the complex. The unwrapping occurs in the absence of proteins involved in the chromatin remodeling that require ATP hydrolysis for their function, suggesting that the inherent dynamics of nucleosomes can contribute to the chromatin unwrapping process. These findings shed a new light on molecular mechanisms of nucleosome dynamics and provide novel hypotheses about the understanding of the action of remodeling proteins as well as other intracellular systems in chromatin dynamics.
Collapse
Affiliation(s)
- Luda S. Shlyakhtenko
- Department of Pharmaceutical Science, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025
| | - Alexander Y. Lushnikov
- Department of Pharmaceutical Science, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Science, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025
| |
Collapse
|