1
|
Castro Colabianchi AM, González Pérez NG, Franchini LF, López SL. A maternal dorsoventral prepattern revealed by an asymmetric distribution of ventralizing molecules before fertilization in Xenopus laevis. Front Cell Dev Biol 2024; 12:1365705. [PMID: 38572484 PMCID: PMC10987785 DOI: 10.3389/fcell.2024.1365705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
The establishment of the embryonic dorsoventral axis in Xenopus occurs when the radial symmetry around the egg's animal-vegetal axis is broken to give rise to the typical symmetry of Bilaterians. We have previously shown that the Notch1 protein is ventrally enriched during early embryogenesis in Xenopus laevis and zebrafish and exerts ventralizing activity through β-Catenin destabilization and the positive regulation of ventral center genes in X. laevis. These findings led us to further investigate when these asymmetries arise. In this work, we show that the asymmetrical distribution of Notch1 protein and mRNA precedes cortical rotation and even fertilization in X. laevis. Moreover, we found that in unfertilized eggs transcripts encoded by the ventralizing gene bmp4 are also asymmetrically distributed in the animal hemisphere and notch1 transcripts accumulate consistently on the same side of the eccentric maturation point. Strikingly, a Notch1 asymmetry orthogonal to the animal-vegetal axis appears during X. laevis oogenesis. Thus, we show for the first time a maternal bias in the distribution of molecules that are later involved in ventral patterning during embryonic axialization, strongly supporting the hypothesis of a dorsoventral prepattern or intrinsic bilaterality of Xenopus eggs before fertilization.
Collapse
Affiliation(s)
- Aitana M. Castro Colabianchi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular “Prof. Dr. Andrés E. Carrasco”, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
| | - Nicolás G. González Pérez
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular “Prof. Dr. Andrés E. Carrasco”, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
| | - Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvia L. López
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular “Prof. Dr. Andrés E. Carrasco”, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
| |
Collapse
|
2
|
Differential nuclear import sets the timing of protein access to the embryonic genome. Nat Commun 2022; 13:5887. [PMID: 36202846 PMCID: PMC9537182 DOI: 10.1038/s41467-022-33429-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/16/2022] [Indexed: 02/02/2023] Open
Abstract
The development of a fertilized egg to an embryo requires the proper temporal control of gene expression. During cell differentiation, timing is often controlled via cascades of transcription factors (TFs). However, in early development, transcription is often inactive, and many TF levels stay constant, suggesting that alternative mechanisms govern the observed rapid and ordered onset of gene expression. Here, we find that in early embryonic development access of maternally deposited nuclear proteins to the genome is temporally ordered via importin affinities, thereby timing the expression of downstream targets. We quantify changes in the nuclear proteome during early development and find that nuclear proteins, such as TFs and RNA polymerases, enter the nucleus sequentially. Moreover, we find that the timing of nuclear proteins' access to the genome corresponds to the timing of downstream gene activation. We show that the affinity of proteins to importin is a major determinant in the timing of protein entry into embryonic nuclei. Thus, we propose a mechanism by which embryos encode the timing of gene expression in early development via biochemical affinities. This process could be critical for embryos to organize themselves before deploying the regulatory cascades that control cell identities.
Collapse
|
3
|
Rodríguez-Nuevo A, Torres-Sanchez A, Duran JM, De Guirior C, Martínez-Zamora MA, Böke E. Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I. Nature 2022; 607:756-761. [PMID: 35859172 PMCID: PMC9329100 DOI: 10.1038/s41586-022-04979-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/15/2022] [Indexed: 12/23/2022]
Abstract
Oocytes form before birth and remain viable for several decades before fertilization1. Although poor oocyte quality accounts for most female fertility problems, little is known about how oocytes maintain cellular fitness, or why their quality eventually declines with age2. Reactive oxygen species (ROS) produced as by-products of mitochondrial activity are associated with lower rates of fertilization and embryo survival3-5. Yet, how healthy oocytes balance essential mitochondrial activity with the production of ROS is unknown. Here we show that oocytes evade ROS by remodelling the mitochondrial electron transport chain through elimination of complex I. Combining live-cell imaging and proteomics in human and Xenopus oocytes, we find that early oocytes exhibit greatly reduced levels of complex I. This is accompanied by a highly active mitochondrial unfolded protein response, which is indicative of an imbalanced electron transport chain. Biochemical and functional assays confirm that complex I is neither assembled nor active in early oocytes. Thus, we report a physiological cell type without complex I in animals. Our findings also clarify why patients with complex-I-related hereditary mitochondrial diseases do not experience subfertility. Complex I suppression represents an evolutionarily conserved strategy that allows longevity while maintaining biological activity in long-lived oocytes.
Collapse
Affiliation(s)
- Aida Rodríguez-Nuevo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ariadna Torres-Sanchez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Juan M Duran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cristian De Guirior
- Gynaecology Department, Institute Clinic of Gynaecology, Obstetrics and Neonatology, Hospital Clinic, Barcelona, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Angeles Martínez-Zamora
- Gynaecology Department, Institute Clinic of Gynaecology, Obstetrics and Neonatology, Hospital Clinic, Barcelona, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
4
|
Dhandapani L, Salzer MC, Duran JM, Zaffagnini G, De Guirior C, Martínez-Zamora MA, Böke E. Comparative analysis of vertebrates reveals that mouse primordial oocytes do not contain a Balbiani body. J Cell Sci 2021; 135:273712. [PMID: 34897463 DOI: 10.1242/jcs.259394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022] Open
Abstract
Oocytes spend the majority of their lifetime in a primordial state. The cellular and molecular biology of primordial oocytes is largely unexplored; yet, studying these is necessary to understand the mechanisms through which oocytes maintain cellular fitness for decades, and why they eventually fail with age. Here, we develop enabling methods for live-imaging based comparative characterization of Xenopus, mouse and human primordial oocytes. We show that primordial oocytes in all three vertebrate species contain active mitochondria, Golgi apparatus and lysosomes. We further demonstrate that human and Xenopus oocytes have a Balbiani body characterized by a dense accumulation of mitochondria in their cytoplasm. However, despite previous reports, we did not find a Balbiani body in mouse oocytes. Instead, we demonstrate what was previously used as a marker for the Balbiani body in mouse primordial oocytes is in fact a ring-shaped Golgi apparatus that is not functionally associated with oocyte dormancy. Our work provides the first insights into the organisation of the cytoplasm in mammalian primordial oocytes, and clarifies relative advantages and limitations of choosing different model organisms for studying oocyte dormancy.
Collapse
Affiliation(s)
- Laasya Dhandapani
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Marion C Salzer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Juan M Duran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Gabriele Zaffagnini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Cristian De Guirior
- Gynaecology Department, Institute Clinic of Gynaecology, Obstetrics and Neonatology, Hospital Clinic, Barcelona, Spain.,Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Angeles Martínez-Zamora
- Gynaecology Department, Institute Clinic of Gynaecology, Obstetrics and Neonatology, Hospital Clinic, Barcelona, Spain.,Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
5
|
Holehouse AS, Ginell GM, Griffith D, Böke E. Clustering of Aromatic Residues in Prion-like Domains Can Tune the Formation, State, and Organization of Biomolecular Condensates. Biochemistry 2021; 60:3566-3581. [PMID: 34784177 PMCID: PMC8638251 DOI: 10.1021/acs.biochem.1c00465] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Indexed: 12/12/2022]
Abstract
In immature oocytes, Balbiani bodies are conserved membraneless condensates implicated in oocyte polarization, the organization of mitochondria, and long-term organelle and RNA storage. In Xenopus laevis, Balbiani body assembly is mediated by the protein Velo1. Velo1 contains an N-terminal prion-like domain (PLD) that is essential for Balbiani body formation. PLDs have emerged as a class of intrinsically disordered regions that can undergo various different types of intracellular phase transitions and are often associated with dynamic, liquid-like condensates. Intriguingly, the Velo1 PLD forms solid-like assemblies. Here we sought to understand why Velo1 phase behavior appears to be biophysically distinct from that of other PLD-containing proteins. Through bioinformatic analysis and coarse-grained simulations, we predict that the clustering of aromatic residues and the amino acid composition of residues between aromatics can influence condensate material properties, organization, and the driving forces for assembly. To test our predictions, we redesigned the Velo1 PLD to test the impact of targeted sequence changes in vivo. We found that the Velo1 design with evenly spaced aromatic residues shows rapid internal dynamics, as probed by fluorescent recovery after photobleaching, even when recruited into Balbiani bodies. Our results suggest that Velo1 might have been selected in evolution for distinctly clustered aromatic residues to maintain the structure of Balbiani bodies in long-lived oocytes. In general, our work identifies several tunable parameters that can be used to augment the condensate material state, offering a road map for the design of synthetic condensates.
Collapse
Affiliation(s)
- Alex S. Holehouse
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, Missouri 63130, United States
| | - Garrett M. Ginell
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, Missouri 63130, United States
| | - Daniel Griffith
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, Missouri 63130, United States
| | - Elvan Böke
- Centre
for Genomic Regulation (CRG), The Barcelona
Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat
Pompeu Fabra (UPF), Barcelona 08002, Spain
| |
Collapse
|
6
|
Crapse J, Pappireddi N, Gupta M, Shvartsman SY, Wieschaus E, Wühr M. Evaluating the Arrhenius equation for developmental processes. Mol Syst Biol 2021; 17:e9895. [PMID: 34414660 PMCID: PMC8377445 DOI: 10.15252/msb.20209895] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/15/2022] Open
Abstract
The famous Arrhenius equation is well suited to describing the temperature dependence of chemical reactions but has also been used for complicated biological processes. Here, we evaluate how well the simple Arrhenius equation predicts complex multi-step biological processes, using frog and fruit fly embryogenesis as two canonical models. We find that the Arrhenius equation provides a good approximation for the temperature dependence of embryogenesis, even though individual developmental intervals scale differently with temperature. At low and high temperatures, however, we observed significant departures from idealized Arrhenius Law behavior. When we model multi-step reactions of idealized chemical networks, we are unable to generate comparable deviations from linearity. In contrast, we find the two enzymes GAPDH and β-galactosidase show non-linearity in the Arrhenius plot similar to our observations of embryonic development. Thus, we find that complex embryonic development can be well approximated by the simple Arrhenius equation regardless of non-uniform developmental scaling and propose that the observed departure from this law likely results more from non-idealized individual steps rather than from the complexity of the system.
Collapse
Affiliation(s)
- Joseph Crapse
- Undergraduate Integrated Science CurriculumPrinceton UniversityPrincetonNJUSA
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
| | - Nishant Pappireddi
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
| | - Meera Gupta
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
- Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonNJUSA
| | - Stanislav Y Shvartsman
- Undergraduate Integrated Science CurriculumPrinceton UniversityPrincetonNJUSA
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
- Center for Computational BiologyFlatiron InstituteSimons FoundationNew YorkNYUSA
| | - Eric Wieschaus
- Undergraduate Integrated Science CurriculumPrinceton UniversityPrincetonNJUSA
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
| | - Martin Wühr
- Undergraduate Integrated Science CurriculumPrinceton UniversityPrincetonNJUSA
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
| |
Collapse
|
7
|
Cha SW. Generating Nonmosaic Mutants in Xenopus Using CRISPR-Cas in Oocytes. Cold Spring Harb Protoc 2021; 2022:Pdb.prot106989. [PMID: 34244351 DOI: 10.1101/pdb.prot106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In CRISPR-Cas9 genome editing, double-strand DNA breaks (DSBs) primarily undergo repair through nonhomologous end joining (NHEJ), which produces insertion or deletion of random nucleotides within the targeted region (indels). As a result, frameshift mutation-mediated loss-of-function mutants are frequently produced. An alternative repair mechanism, homology-directed repair (HDR), can be used to fix DSBs at relatively low frequency. By injecting a DNA-homology repair construct with the CRISPR-Cas components, specific nucleotide sequences can be introduced within the target region by HDR. We have taken advantage of the fact that Xenopus oocytes have much higher levels of HDR than eggs to increase the effectiveness of creating precise mutations. We introduced the oocyte host transfer technique, well established for knockdown of maternal mRNA for loss-of-function experiments, to CRISPR-Cas9-mediated genome editing. The host-transfer technique is based on the ability of Xenopus oocytes to be isolated, injected with CRISPR-Cas components, and cultured in vitro for up to 5 d before fertilization. During these 5 d, CRISPR-Cas components degrade, preventing further alterations to the paternal or maternal genomes after fertilization and resulting in heterozygous, nonmosaic embryos. Treatment of oocytes with a DNA ligase IV inhibitor, which blocks the NHEJ repair pathway, before fertilization further improves the efficiency of HDR. This method allows straightforward generation of either nonmosaic F0 heterozygous indel mutant Xenopus or Xenopus with efficient, targeted insertion of small DNA fragments (73-104 nt). The germline transmission of mutations in these animals allows homozygous mutants to be obtained one generation (F1) sooner than previously reported.
Collapse
Affiliation(s)
- Sang-Wook Cha
- School of Natural Sciences, University of Central Missouri, Warrensburg, Missouri 64093, USA
| |
Collapse
|
8
|
Low-temperature incubation improves both knock-in and knock-down efficiencies by the CRISPR/Cas9 system in Xenopus laevis as revealed by quantitative analysis. Biochem Biophys Res Commun 2021; 543:50-55. [PMID: 33515912 DOI: 10.1016/j.bbrc.2020.11.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 11/24/2022]
Abstract
The recent development of the CRISPR/Cas9-mediated gene editing technique has provided various gene knock-down and knock-in methods for Xenopus laevis. Gene-edited F0 individuals created by these methods, however, are mosaics with both mutated/knocked-in and unedited wild-type cells, and therefore precise determination and higher efficiency of knock-down and knock-in methods are desirable, especially for analyses of F0 individuals. To clarify the ratio of cells that are gene-edited by CRISPR/Cas9 methods to the whole cells in F0 individuals, we subjected Inference of CRISPR Edits analysis for knock-down experiments and flow cytometry for knock-in experiments to the F0 individuals. With these quantitative methods, we showed that low-temperature incubation of X. laevis embryos after microinjection improved the mutation rate in the individuals. Moreover, we applied low-temperature incubation when using a knock-in method with long single-strand DNA and found improved knock-in efficiency. Our results provide a simple and useful way to evaluate and improve the efficiency of gene editing in X. laevis.
Collapse
|
9
|
Tokmakov AA, Stefanov VE, Sato KI. Dissection of the Ovulatory Process Using ex vivo Approaches. Front Cell Dev Biol 2020; 8:605379. [PMID: 33363163 PMCID: PMC7755606 DOI: 10.3389/fcell.2020.605379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Ovulation is a unique physiological phenomenon that is essential for sexual reproduction. It refers to the entire process of ovarian follicle responses to hormonal stimulation resulting in the release of mature fertilization-competent oocytes from the follicles and ovaries. Remarkably, ovulation in different species can be reproduced out-of-body with high fidelity. Moreover, most of the molecular mechanisms and signaling pathways engaged in this process have been delineated using in vitro ovulation models. Here, we provide an overview of the major molecular and cytological events of ovulation observed in frogs, primarily in the African clawed frog Xenopus laevis, using mainly ex vivo approaches, with the focus on meiotic oocyte maturation and follicle rupture. For the purpose of comparison and generalization, we also refer extensively to ovulation in other biological species, most notoriously, in mammals.
Collapse
Affiliation(s)
| | - Vasily E Stefanov
- Department of Biochemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Ken-Ichi Sato
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
10
|
Weir E, McLinden G, Alfandari D, Cousin H. Trim-Away mediated knock down uncovers a new function for Lbh during gastrulation of Xenopus laevis. Dev Biol 2020; 470:74-83. [PMID: 33159936 DOI: 10.1016/j.ydbio.2020.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/28/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
We previously identified the protein Lbh as necessary for cranial neural crest (CNC) cell migration in Xenopus through the use of morpholinos. However, Lbh is a maternally deposited protein and morpholinos achieve knockdowns through prevention of translation. In order to investigate the role of Lbh in earlier embryonic events, we employed the new technique "Trim-Away" to degrade this maternally deposited protein. Trim-Away utilizes the E3 ubiquitin ligase trim21 to degrade proteins targeted with an antibody and was developed in mammalian systems. Our results show that Xenopus is amenable to the Trim-Away technique. We also show that early knockdown of Lbh in Xenopus results in defects in gastrulation that present with a decrease in fibronectin matrix assembly, an increased in mesodermal cell migration and decrease in endodermal cell cohesion. We further show that the technique is also effective on a second abundant maternal protein PACSIN2. We discuss potential advantages and limit of the technique in Xenopus embryos as well as the mechanism of gastrulation inhibition.
Collapse
Affiliation(s)
- Emma Weir
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, USA
| | - Gretchen McLinden
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, USA
| | - Hélène Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, USA.
| |
Collapse
|
11
|
Wozniak KL, Bainbridge RE, Summerville DW, Tembo M, Phelps WA, Sauer ML, Wisner BW, Czekalski ME, Pasumarthy S, Hanson ML, Linderman MB, Luu CH, Boehm ME, Sanders SM, Buckley KM, Bain DJ, Nicotra ML, Lee MT, Carlson AE. Zinc protection of fertilized eggs is an ancient feature of sexual reproduction in animals. PLoS Biol 2020; 18:e3000811. [PMID: 32735558 PMCID: PMC7423145 DOI: 10.1371/journal.pbio.3000811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 08/12/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
One of the earliest and most prevalent barriers to successful reproduction is polyspermy, or fertilization of an egg by multiple sperm. To prevent these supernumerary fertilizations, eggs have evolved multiple mechanisms. It has recently been proposed that zinc released by mammalian eggs at fertilization may block additional sperm from entering. Here, we demonstrate that eggs from amphibia and teleost fish also release zinc. Using Xenopus laevis as a model, we document that zinc reversibly blocks fertilization. Finally, we demonstrate that extracellular zinc similarly disrupts early embryonic development in eggs from diverse phyla, including Cnidaria, Echinodermata, and Chordata. Our study reveals that a fundamental strategy protecting human eggs from fertilization by multiple sperm may have evolved more than 650 million years ago.
Collapse
Affiliation(s)
- Katherine L. Wozniak
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rachel E. Bainbridge
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Dominique W. Summerville
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Maiwase Tembo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wesley A. Phelps
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Monica L. Sauer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bennett W. Wisner
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Madelyn E. Czekalski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Srikavya Pasumarthy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Meghan L. Hanson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Melania B. Linderman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Catherine H. Luu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Madison E. Boehm
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Steven M. Sanders
- Department of Surgery and Immunology, Thomas E. Starzl Transplantation Institute, and Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, United States of America
| | - Katherine M. Buckley
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Daniel J. Bain
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew L. Nicotra
- Department of Surgery and Immunology, Thomas E. Starzl Transplantation Institute, and Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, United States of America
| | - Miler T. Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anne E. Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
12
|
Nakayama T, Grainger RM, Cha SW. Simple embryo injection of long single-stranded donor templates with the CRISPR/Cas9 system leads to homology-directed repair in Xenopus tropicalis and Xenopus laevis. Genesis 2020; 58:e23366. [PMID: 32277804 DOI: 10.1002/dvg.23366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 01/05/2023]
Abstract
We report model experiments in which simple microinjection of fertilized eggs has been used to effectively perform homology-directed repair (HDR)-mediated gene editing in the two Xenopus species used most frequently for research: X. tropicalis and X. laevis. We have used long single-stranded DNAs having phosphorothioate modifications as donor templates for HDR at targeted genomic sites using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system. First, X. tropicalis tyr mutant (i.e., albino) embryos were successfully rescued: partially pigmented tadpoles were seen in up to 35% of injected embryos, demonstrating the potential for efficient insertion of targeted point mutations. Second, in order to demonstrate the ability to tag genes with fluorescent proteins (FPs), we targeted the melanocyte-specific gene slc45a2.L of X. laevis to label it with the Superfolder green FP (sfGFP), seeing mosaic expression of sfGFP in melanophores in up to 20% of injected tadpoles. Tadpoles generated by these two approaches were raised to sexual maturity, and shown to successfully transmit HDR constructs through the germline with precise targeting and seamless recombination. F1 embryos showed rescue of the tyr mutation (X. tropicalis) and tagging in the appropriate pigment cell-specific manner of slc45a2.L with sfGFP (X. laevis).
Collapse
Affiliation(s)
- Takuya Nakayama
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Robert M Grainger
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Sang-Wook Cha
- School of Natural Sciences, University of Central Missouri, Warrensburg, Missouri
| |
Collapse
|
13
|
Tadjuidje E, Cha SW. How to Generate Non-Mosaic CRISPR/Cas9 Mediated Knock-In and Mutations in F0 Xenopus Through the Host-Transfer Technique. Methods Mol Biol 2018; 1865:105-117. [PMID: 30151762 DOI: 10.1007/978-1-4939-8784-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have taken advantage of the well-established oocyte host transfer technique to optimize a method for CRISPR editing of Xenopus that provides an efficient non-mosaic targeted insertion of small DNA fragment through homology-directed repair mechanism.
Collapse
Affiliation(s)
- Emmanuel Tadjuidje
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Sang-Wook Cha
- Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
- Department of Biology and Agriculture, School of Natural Sciences, University of Central Missouri, Warrensburg, MO, USA.
| |
Collapse
|
14
|
Tadjuidje E, Kofron M, Mir A, Wylie C, Heasman J, Cha SW. Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development. Open Biol 2017; 6:rsob.150187. [PMID: 27488374 PMCID: PMC5008007 DOI: 10.1098/rsob.150187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 07/01/2016] [Indexed: 01/05/2023] Open
Abstract
Nodal class TGF-β signalling molecules play essential roles in establishing the vertebrate body plan. In all vertebrates, nodal family members have specific waves of expression required for tissue specification and axis formation. In Xenopus laevis, six nodal genes are expressed before gastrulation, raising the question of whether they have specific roles or act redundantly with each other. Here, we examine the role of Xnr5. We find it acts at the late blastula stage as a mesoderm inducer and repressor of ectodermal gene expression, a role it shares with Vg1. However, unlike Vg1, Xnr5 depletion reduces the expression of the nodal family member xnr1 at the gastrula stage. It is also required for left/right laterality by controlling the expression of the laterality genes xnr1, antivin (lefty) and pitx2 at the tailbud stage. In Xnr5-depleted embryos, the heart field is established normally, but symmetrical reduction in Xnr5 levels causes a severely stunted midline heart, first evidenced by a reduction in cardiac troponin mRNA levels, while left-sided reduction leads to randomization of the left/right axis. This work identifies Xnr5 as the earliest step in the signalling pathway establishing normal heart laterality in Xenopus.
Collapse
Affiliation(s)
- Emmanuel Tadjuidje
- Department of Biological Sciences, Alabama State University, 1627 Hall Street, Montgomery, AL 36101, USA
| | - Matthew Kofron
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Adnan Mir
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Christopher Wylie
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Janet Heasman
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Sang-Wook Cha
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
15
|
Aguero T, Jin Z, Chorghade S, Kalsotra A, King ML, Yang J. Maternal Dead-end 1 promotes translation of nanos1 by binding the eIF3 complex. Development 2017; 144:3755-3765. [PMID: 28870987 DOI: 10.1242/dev.152611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022]
Abstract
In the developing embryo, primordial germ cells (PGCs) represent the exclusive progenitors of the gametes, and their loss results in adult infertility. During early development, PGCs are exposed to numerous signals that specify somatic cell fates. To prevent somatic differentiation, PGCs must transiently silence their genome, an early developmental process that requires Nanos activity. However, it is unclear how Nanos translation is regulated in developing embryos. We report here that translation of nanos1 after fertilization requires Dead-end 1 (Dnd1), a vertebrate-specific germline RNA-binding protein. We provide evidence that Dnd1 protein, expression of which is low in oocytes, but increases dramatically after fertilization, directly interacts with, and relieves the inhibitory function of eukaryotic initiation factor 3f, a repressive component in the 43S preinitiation complex. This work uncovers a novel translational regulatory mechanism that is fundamentally important for germline development.
Collapse
Affiliation(s)
- Tristan Aguero
- Department of Cell Biology, University of Miami, Miami, FL 33136, USA
| | - Zhigang Jin
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Sandip Chorghade
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami, Miami, FL 33136, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| |
Collapse
|
16
|
Aslan Y, Tadjuidje E, Zorn AM, Cha SW. High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0 Xenopus. Development 2017; 144:2852-2858. [PMID: 28694259 DOI: 10.1242/dev.152967] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/28/2017] [Indexed: 01/03/2023]
Abstract
The revolution in CRISPR-mediated genome editing has enabled the mutation and insertion of virtually any DNA sequence, particularly in cell culture where selection can be used to recover relatively rare homologous recombination events. The efficient use of this technology in animal models still presents a number of challenges, including the time to establish mutant lines, mosaic gene editing in founder animals, and low homologous recombination rates. Here we report a method for CRISPR-mediated genome editing in Xenopus oocytes with homology-directed repair (HDR) that provides efficient non-mosaic targeted insertion of small DNA fragments (40-50 nucleotides) in 4.4-25.7% of F0 tadpoles, with germline transmission. For both CRISPR/Cas9-mediated HDR gene editing and indel mutation, the gene-edited F0 embryos are uniformly heterozygous, consistent with a mutation in only the maternal genome. In addition to efficient tagging of proteins in vivo, this HDR methodology will allow researchers to create patient-specific mutations for human disease modeling in Xenopus.
Collapse
Affiliation(s)
- Yetki Aslan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Emmanuel Tadjuidje
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Sang-Wook Cha
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
17
|
Mathai BJ, Meijer AH, Simonsen A. Studying Autophagy in Zebrafish. Cells 2017; 6:E21. [PMID: 28698482 PMCID: PMC5617967 DOI: 10.3390/cells6030021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process which allows lysosomal degradation of complex cytoplasmic components into basic biomolecules that are recycled for further cellular use. Autophagy is critical for cellular homeostasis and for degradation of misfolded proteins and damaged organelles as well as intracellular pathogens. The role of autophagy in protection against age-related diseases and a plethora of other diseases is now coming to light; assisted by several divergent eukaryotic model systems ranging from yeast to mice. We here give an overview of different methods used to analyse autophagy in zebrafish-a relatively new model for studying autophagy-and briefly discuss what has been done so far and possible future directions.
Collapse
Affiliation(s)
- Benan John Mathai
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0317 Oslo, Norway.
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0317 Oslo, Norway.
| |
Collapse
|
18
|
Blum M, De Robertis EM, Wallingford JB, Niehrs C. Morpholinos: Antisense and Sensibility. Dev Cell 2016; 35:145-9. [PMID: 26506304 DOI: 10.1016/j.devcel.2015.09.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/16/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
For over 15 years, antisense morpholino oligonucleotides (MOs) have allowed developmental biologists to make key discoveries regarding developmental mechanisms in numerous model organisms. Recently, serious concerns have been raised as to the specificity of MO effects, and it has been recommended to discontinue their usage, despite the long experience of the scientific community with the MO tool in thousands of studies. Reviewing the many advantages afforded by MOs, we conclude that adequately controlled MOs should continue to be accepted as generic loss-of-function approach, as otherwise progress in developmental biology will greatly suffer.
Collapse
Affiliation(s)
- Martin Blum
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Edward M De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - John B Wallingford
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Christof Niehrs
- Institute of Molecular Biology, 55128 Mainz, Germany; DKFZ-ZMBH Alliance, Division of Molecular Embryology, 69120 Heidelberg, Germany.
| |
Collapse
|
19
|
Pauli A, Montague TG, Lennox KA, Behlke MA, Schier AF. Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish. PLoS One 2015; 10:e0139504. [PMID: 26436892 PMCID: PMC4593562 DOI: 10.1371/journal.pone.0139504] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/12/2015] [Indexed: 01/04/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are synthetic, single-strand RNA-DNA hybrids that induce catalytic degradation of complementary cellular RNAs via RNase H. ASOs are widely used as gene knockdown reagents in tissue culture and in Xenopus and mouse model systems. To test their effectiveness in zebrafish, we targeted 20 developmental genes and compared the morphological changes with mutant and morpholino (MO)-induced phenotypes. ASO-mediated transcript knockdown reproduced the published loss-of-function phenotypes for oep, chordin, dnd, ctnnb2, bmp7a, alk8, smad2 and smad5 in a dosage-sensitive manner. ASOs knocked down both maternal and zygotic transcripts, as well as the long noncoding RNA (lncRNA) MALAT1. ASOs were only effective within a narrow concentration range and were toxic at higher concentrations. Despite this drawback, quantitation of knockdown efficiency and the ability to degrade lncRNAs make ASOs a useful knockdown reagent in zebrafish.
Collapse
Affiliation(s)
- Andrea Pauli
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Masschusetts, United States of America
- * E-mail: (AP); (AFS)
| | - Tessa G. Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Masschusetts, United States of America
| | - Kim A. Lennox
- Integrated DNA Technologies, Inc., Coralville, Iowa, United States of America
| | - Mark A. Behlke
- Integrated DNA Technologies, Inc., Coralville, Iowa, United States of America
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Masschusetts, United States of America
- * E-mail: (AP); (AFS)
| |
Collapse
|
20
|
Wühr M, Güttler T, Peshkin L, McAlister GC, Sonnett M, Ishihara K, Groen AC, Presler M, Erickson BK, Mitchison TJ, Kirschner MW, Gygi SP. The Nuclear Proteome of a Vertebrate. Curr Biol 2015; 25:2663-71. [PMID: 26441354 DOI: 10.1016/j.cub.2015.08.047] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/15/2015] [Accepted: 08/20/2015] [Indexed: 12/31/2022]
Abstract
The composition of the nucleoplasm determines the behavior of key processes such as transcription, yet there is still no reliable and quantitative resource of nuclear proteins. Furthermore, it is still unclear how the distinct nuclear and cytoplasmic compositions are maintained. To describe the nuclear proteome quantitatively, we isolated the large nuclei of frog oocytes via microdissection and measured the nucleocytoplasmic partitioning of ∼9,000 proteins by mass spectrometry. Most proteins localize entirely to either nucleus or cytoplasm; only ∼17% partition equally. A protein's native size in a complex, but not polypeptide molecular weight, is predictive of localization: partitioned proteins exhibit native sizes larger than ∼100 kDa, whereas natively smaller proteins are equidistributed. To evaluate the role of nuclear export in maintaining localization, we inhibited Exportin 1. This resulted in the expected re-localization of proteins toward the nucleus, but only 3% of the proteome was affected. Thus, complex assembly and passive retention, rather than continuous active transport, is the dominant mechanism for the maintenance of nuclear and cytoplasmic proteomes.
Collapse
Affiliation(s)
- Martin Wühr
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Güttler
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Graeme C McAlister
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Sonnett
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Keisuke Ishihara
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron C Groen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marc Presler
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Brian K Erickson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Maternal Wnt/STOP signaling promotes cell division during early Xenopus embryogenesis. Proc Natl Acad Sci U S A 2015; 112:5732-7. [PMID: 25901317 DOI: 10.1073/pnas.1423533112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
During Xenopus development, Wnt signaling is thought to function first after midblastula transition to regulate axial patterning via β-catenin-mediated transcription. Here, we report that Wnt/glycogen synthase kinase 3 (GSK3) signaling functions posttranscriptionally already in mature oocytes via Wnt/stabilization of proteins (STOP) signaling. Wnt signaling is induced in oocytes after their entry into meiotic metaphase II and declines again upon exit into interphase. Wnt signaling inhibits Gsk3 and thereby protects proteins from polyubiquitination and degradation in mature oocytes. In a protein array screen, we identify a cluster of mitotic effector proteins that are polyubiquitinated in a Gsk3-dependent manner in Xenopus. Consequently inhibition of maternal Wnt/STOP signaling, but not β-catenin signaling, leads to early cleavage arrest after fertilization. The results support a novel role for Wnt signaling in cell cycle progression independent of β-catenin.
Collapse
|
22
|
Rozario T, Mead PE, DeSimone DW. Diverse functions of kindlin/fermitin proteins during embryonic development in Xenopus laevis. Mech Dev 2014; 133:203-17. [PMID: 25173804 DOI: 10.1016/j.mod.2014.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/03/2014] [Accepted: 07/30/2014] [Indexed: 12/11/2022]
Abstract
The kindlin/fermitin family includes three proteins involved in regulating integrin ligand-binding activity and adhesion. Loss-of-function mutations in kindlins1 and 3 have been implicated in Kindler Syndrome and Leukocyte Adhesion Deficiency III (LAD-III) respectively, whereas kindlin2 null mice are embryonic lethal. Post translational regulation of cell-cell and cell-ECM adhesion has long been presumed to be important for morphogenesis, however, few specific examples of activation-dependent changes in adhesion molecule function in normal development have been reported. In this study, antisense morpholinos were used to reduce expression of individual kindlins in Xenopus laevis embryos in order to investigate their roles in early development. Kindlin1 knockdown resulted in developmental delays, gross malformations of the gut and eventual lethality by tadpole stages. Kindlin2 morphant embryos displayed late stage defects in vascular maintenance and angiogenic branching consistent with kindlin2 loss of function in the mouse. Antisense morpholinos were also used to deplete maternal kindlin2 protein in oocytes and eggs. Embryos lacking maternal kindlin2 arrested at early cleavage stages due to failures in cytokinesis. Kindlin3 morphant phenotypes included defects in epidermal ciliary beating and partial paralysis at tailbud stages but these embryos recovered eventually as morpholino levels decayed. These results indicate a remarkably diverse range of kindlin functions in vertebrate development.
Collapse
Affiliation(s)
- Tania Rozario
- Department of Cell Biology and The Morphogenesis and Regenerative Medicine Institute, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| | - Paul E Mead
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Douglas W DeSimone
- Department of Cell Biology and The Morphogenesis and Regenerative Medicine Institute, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
23
|
Maternal syntabulin is required for dorsal axis formation and is a germ plasm component in Xenopus. Differentiation 2014; 88:17-26. [PMID: 24798204 DOI: 10.1016/j.diff.2014.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 11/23/2022]
Abstract
In amphibians and teleosts, early embryonic axial development is driven by maternally deposited mRNAs and proteins, called dorsal determinants, which migrate to the presumptive dorsal side of the embryo in a microtubule-dependent manner after fertilization. Syntabulin is an adapter protein that binds to kinesin KIF5B and to the transmembrane protein Syntaxin1. In zebrafish, a mutation in Syntabulin causes complete embryo ventralization. It is unknown whether Syntabulin plays an analogous role during early development of other species, a question addressed here in Xenopus laevis. in situ hybridization of syntabulin mRNA was carried out at different stages of Xenopus development. In oocytes, syntabulin transcripts were localized to the vegetal cortex of large oocytes and the mitochondrial cloud of very young oocytes. We extended the zebrafish data by finding that during cleavage Xenopus syntabulin mRNA localized to the germ plasm and was later expressed in primordial germ cells (PGCs). This new finding suggested a role for Syntabulin during germ cell differentiation. The functional role of maternal syntabulin mRNA was investigated by knock-down with phosphorothioate DNA antisense oligos followed by oocyte transfer. The results showed that syntabulin mRNA depletion caused the complete loss of dorso-anterior axis formation in frog embryos. Consistent with the ventralized phenotype, syntabulin-depleted embryos displayed severe reduction of dorsal markers and ubiquitous transcription of the ventral marker sizzled. Syntabulin was required for the maternal Wnt/β-Catenin signal, since ventralization could be completely rescued by injection of β-catenin (or syntabulin) mRNA. The data suggest an evolutionarily conserved role for Syntabulin, a protein that bridges microtubule motors and membrane vesicles, during dorso-ventral axis formation in the vertebrates.
Collapse
|
24
|
Heim AE, Hartung O, Rothhämel S, Ferreira E, Jenny A, Marlow FL. Oocyte polarity requires a Bucky ball-dependent feedback amplification loop. Development 2014; 141:842-54. [PMID: 24496621 DOI: 10.1242/dev.090449] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, the first asymmetries are established along the animal-vegetal axis during oogenesis, but the underlying molecular mechanisms are poorly understood. Bucky ball (Buc) was identified in zebrafish as a novel vertebrate-specific regulator of oocyte polarity, acting through unknown molecular interactions. Here we show that endogenous Buc protein localizes to the Balbiani body, a conserved, asymmetric structure in oocytes that requires Buc for its formation. Asymmetric distribution of Buc in oocytes precedes Balbiani body formation, defining Buc as the earliest marker of oocyte polarity in zebrafish. Through a transgenic strategy, we determined that excess Buc disrupts polarity and results in supernumerary Balbiani bodies in a 3'UTR-dependent manner, and we identified roles for the buc introns in regulating Buc activity. Analyses of mosaic ovaries indicate that oocyte pattern determines the number of animal pole-specific micropylar cells that are associated with an egg via a close-range signal or direct cell contact. We demonstrate interactions between Buc protein and buc mRNA with two conserved RNA-binding proteins (RNAbps) that are localized to the Balbiani body: RNA binding protein with multiple splice isoforms 2 (Rbpms2) and Deleted in azoospermia-like (Dazl). Buc protein and buc mRNA interact with Rbpms2; buc and dazl mRNAs interact with Dazl protein. Cumulatively, these studies indicate that oocyte polarization depends on tight regulation of buc: Buc establishes oocyte polarity through interactions with RNAbps, initiating a feedback amplification mechanism in which Buc protein recruits RNAbps that in turn recruit buc and other RNAs to the Balbiani body.
Collapse
Affiliation(s)
- Amanda E Heim
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
25
|
Nijjar S, Woodland HR. Protein interactions in Xenopus germ plasm RNP particles. PLoS One 2013; 8:e80077. [PMID: 24265795 PMCID: PMC3827131 DOI: 10.1371/journal.pone.0080077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022] Open
Abstract
Hermes is an RNA-binding protein that we have previously reported to be found in the ribonucleoprotein (RNP) particles of Xenopus germ plasm, where it is associated with various RNAs, including that encoding the germ line determinant Nanos1. To further define the composition of these RNPs, we performed a screen for Hermes-binding partners using the yeast two-hybrid system. We have identified and validated four proteins that interact with Hermes in germ plasm: two isoforms of Xvelo1 (a homologue of zebrafish Bucky ball) and Rbm24b and Rbm42b, both RNA-binding proteins containing the RRM motif. GFP-Xvelo fusion proteins and their endogenous counterparts, identified with antisera, were found to localize with Hermes in the germ plasm particles of large oocytes and eggs. Only the larger Xvelo isoform was naturally found in the Balbiani body of previtellogenic oocytes. Bimolecular fluorescence complementation (BiFC) experiments confirmed that Hermes and the Xvelo variants interact in germ plasm, as do Rbm24b and 42b. Depletion of the shorter Xvelo variant with antisense oligonucleotides caused a decrease in the size of germ plasm aggregates and loosening of associated mitochondria from these structures. This suggests that the short Xvelo variant, or less likely its RNA, has a role in organizing and maintaining the integrity of germ plasm in Xenopus oocytes. While GFP fusion proteins for Rbm24b and 42b did not localize into germ plasm as specifically as Hermes or Xvelo, BiFC analysis indicated that both interact with Hermes in germ plasm RNPs. They are very stable in the face of RNA depletion, but additive effects of combinations of antisense oligos suggest they may have a role in germ plasm structure and may influence the ability of Hermes protein to effectively enter RNP particles.
Collapse
Affiliation(s)
- Sarbjit Nijjar
- School of Life Sciences, University of Warwick, Coventry, Warwickshire, United Kingdom
| | - Hugh R. Woodland
- School of Life Sciences, University of Warwick, Coventry, Warwickshire, United Kingdom
| |
Collapse
|
26
|
Par6b regulates the dynamics of apicobasal polarity during development of the stratified Xenopus epidermis. PLoS One 2013; 8:e76854. [PMID: 24204686 PMCID: PMC3800127 DOI: 10.1371/journal.pone.0076854] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/28/2013] [Indexed: 11/30/2022] Open
Abstract
During early vertebrate development, epithelial cells establish and maintain apicobasal polarity, failure of which can cause developmental defects or cancer metastasis. This process has been mostly studied in simple epithelia that have only one layer of cells, but is poorly understood in stratified epithelia. In this paper we address the role of the polarity protein Partitioning defective-6 homolog beta (Par6b) in the developing stratified epidermis of Xenopus laevis. At the blastula stage, animal blastomeres divide perpendicularly to the apicobasal axis to generate partially polarized superficial cells and non-polarized deep cells. Both cell populations modify their apicobasal polarity during the gastrula stage, before differentiating into the superficial and deep layers of epidermis. Early differentiation of the epidermis is normal in Par6b-depleted embryos; however, epidermal cells dissociate and detach from embryos at the tailbud stage. Par6b-depleted epidermal cells exhibit a significant reduction in basolaterally localized E-cadherin. Examination of the apical marker Crumbs homolog 3 (Crb3) and the basolateral marker Lethal giant larvae 2 (Lgl2) after Par6b depletion reveals that Par6b cell-autonomously regulates the dynamics of apicobasal polarity in both superficial and deep epidermal layers. Par6b is required to maintain the “basolateral” state in both epidermal layers, which explains the reduction of basolateral adhesion complexes and epidermal cells shedding.
Collapse
|
27
|
Abstract
The evolutionary removal of the tadpole from the frog life history is a very successful strategy, particularly in the tropics. These direct developers form limbs and a frog-like head early in embryogenesis, and they have reduced or lost tadpole-specific structures, like gills, a long, coiled intestine, and tadpole teeth and jaws. Despite the apparently continuous development to the frog morphology, the direct developer, Eleutherodactylus coqui, undergoes a cryptic metamorphosis requiring thyroid hormone. As in Xenopus laevis, there is a stimulation by corticotrophin-releasing factor (CRF) and an upregulation of thyroid hormone receptor β (thrb). In addition to changes in skin and muscle, thyroid hormone stimulates yolk utilization for froglet growth from a novel tissue, the nutritional endoderm. The activities of CRF and corticosterone (CORT) in metamorphosis may provide the basis for the multiple evolutionary origins of direct development in anuran amphibians. Potential roles for maternally supplied thyroid hormone and its receptor and for deiodinases in regulating tissue sensitivity to thyroid hormone should be the subjects of future investigations.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
28
|
Maternal mRNA knock-down studies: antisense experiments using the host-transfer technique in Xenopus laevis and Xenopus tropicalis. Methods Mol Biol 2013; 917:167-82. [PMID: 22956088 DOI: 10.1007/978-1-61779-992-1_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The ability to inhibit the activity of maternally stored gene products in Xenopus has led to numerous insights into early developmental mechanisms. Oocytes can be cultured and manipulated in vitro and then implanted into the body cavity of a host female to make them competent for fertilization. Here, we summarize the methods for obtaining, culturing, and fertilizing Xenopus oocytes, with the goal of inhibiting maternal gene function through antisense oligonucleotide-mediated mRNA knock-down. We describe a simplified technique for implanting donor oocytes into host females using intraperitoneal injection. Also, we present optimized methods for performing the host-transfer procedure with Xenopus tropicalis oocytes.
Collapse
|
29
|
Nair S, Lindeman RE, Pelegri F. In vitro oocyte culture-based manipulation of zebrafish maternal genes. Dev Dyn 2012; 242:44-52. [PMID: 23074011 DOI: 10.1002/dvdy.23894] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2012] [Indexed: 12/12/2022] Open
Abstract
In animals, females deposit gene products into developing oocytes, which drive early cellular events in embryos immediately after fertilization. As maternal gene products are present before fertilization, the functional manipulation of maternal genes is often challenging to implement, requiring gene expression or targeting during oogenesis. Maternal expression can be achieved through transgenesis, but transgenic approaches are time consuming and subject to undesired epigenetic effects. Here, we have implemented in vitro culturing of experimentally manipulated immature oocytes to study maternal gene contribution to early embryonic development in the zebrafish. We demonstrate phenotypic rescue of a maternal-effect mutation by expressing wild-type product in cultured oocytes. We also generate loss-of-function phenotypes in embryos through either the expression of a dominant-negative transcript or injection of translation-blocking morpholino oligonucleotides. Finally, we demonstrate subcellular localization during the early cell divisions immediately after fertilization of an exogenously provided maternal product fused to a fluorescent protein. These manipulations extend the potential to carry out genetic and imaging studies of zebrafish maternal genes during the egg-to-embryo transition.
Collapse
Affiliation(s)
- Sreelaja Nair
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, USA
| | | | | |
Collapse
|
30
|
Gu F, Shi H, Gao L, Zhang H, Tao Q. Maternal Mga is required for Wnt signaling and organizer formation in the early Xenopus embryo. Acta Biochim Biophys Sin (Shanghai) 2012; 44:939-47. [PMID: 23070227 DOI: 10.1093/abbs/gms083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maternal Wnt11 is both necessary and sufficient for the formation of Spemann organizer in Xenopus embryo. Xnr3 and Siamois have been identified as the direct target genes of maternal Wnt11/β-catenin during organizer induction. The depletion of maternal XTcf3 resulted in the ectopic expression of Xnr3 and Siamois, suggesting the activity of β-catenin/XTcf3 is strictly regulated in the early Xenopus embryos. Here, we show that Xenopus mga (Xmga) is a maternal gene required for dorsal axis formation. Overexpression experiments indicate that mouse Mga potentiates the activity of β-catenin in the induction of organizer-specific genes. Depletion of maternal Xmga results in the dramatic decrease of the expression of organizer genes and ventralization phenotype, indicating that Xmga is required for β-catenin function and organizer formation. Depletion of XTcf3 cannot rescue organizer gene expression and axis formation in Xmga-depleted embryos, suggesting Xmga is downstream of XTcf3 during organizer induction. We conclude that maternal Xmga is critical for the function of β-catenin during organizer formation and dorsal development of Xenopus embryo. To our knowledge, this is a report for the first time to implicate Mga in regulating Wnt signaling.
Collapse
Affiliation(s)
- Fei Gu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
31
|
Cha SW, McAdams M, Kormish J, Wylie C, Kofron M. Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e. PLoS One 2012; 7:e41782. [PMID: 22848601 PMCID: PMC3407068 DOI: 10.1371/journal.pone.0041782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/25/2012] [Indexed: 01/27/2023] Open
Abstract
Foxi1e is a zygotic transcription factor that is essential for the expression of early ectodermal genes. It is expressed in a highly specific pattern, only in the deep cell layers of the animal hemisphere, and in a mosaic pattern in which expressing cells are interspersed with non-expressing cells. Previous work has shown that several signals in the blastula control this expression pattern, including nodals, the TGFβ family member Vg1, and Notch. However, these are all inhibitory, which raises the question of what activates Foxi1e. In this work, we show that a related Forkhead family protein, Foxi2, is a maternal activator of Foxi1e. Foxi2 mRNA is maternally encoded, and highly enriched in animal hemisphere cells of the blastula. ChIP assays show that it acts directly on upstream regulatory elements of Foxi1e. Its effect is specific, since animal cells depleted of Foxi2 are able to respond normally to mesoderm inducing signals from vegetal cells. Foxi2 thus acts as a link between the oocyte and the early pathway to ectoderm, in a similar fashion to the vegetally localized VegT acts to initiate endoderm and mesoderm formation.
Collapse
Affiliation(s)
- Sang-Wook Cha
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Meredith McAdams
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jay Kormish
- University of Calgary, Calgary, Alberta, Canada
| | - Christopher Wylie
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Matthew Kofron
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
32
|
Cha SW, Tadjuidje E, Wylie C, Heasman J. The roles of maternal Vangl2 and aPKC in Xenopus oocyte and embryo patterning. Development 2011; 138:3989-4000. [PMID: 21813572 DOI: 10.1242/dev.068866] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Xenopus oocyte contains components of both the planar cell polarity and apical-basal polarity pathways, but their roles are not known. Here, we examine the distribution, interactions and functions of the maternal planar cell polarity core protein Vangl2 and the apical-basal complex component aPKC. We show that Vangl2 is distributed in animally enriched islands in the subcortical cytoplasm in full-grown oocytes, where it interacts with a post-Golgi v-SNARE protein, VAMP1, and acetylated microtubules. We find that Vangl2 is required for the stability of VAMP1 as well as for the maintenance of the stable microtubule architecture of the oocyte. We show that Vangl2 interacts with atypical PKC, and that both the acetylated microtubule cytoskeleton and the Vangl2-VAMP1 distribution are dependent on the presence of aPKC. We also demonstrate that aPKC and Vangl2 are required for the cell membrane asymmetry that is established during oocyte maturation, and for the asymmetrical distribution of maternal transcripts for the germ layer and dorsal/ventral determinants VegT and Wnt11. This study demonstrates the interaction and interdependence of Vangl2, VAMP1, aPKC and the stable microtubule cytoskeleton in the oocyte, shows that maternal Vangl2 and aPKC are required for specific oocyte asymmetries and vertebrate embryonic patterning, and points to the usefulness of the oocyte as a model to study the polarity problem.
Collapse
Affiliation(s)
- Sang-Wook Cha
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
33
|
Tadjuidje E, Cha SW, Louza M, Wylie C, Heasman J. The functions of maternal Dishevelled 2 and 3 in the early Xenopus embryo. Dev Dyn 2011; 240:1727-36. [PMID: 21618643 DOI: 10.1002/dvdy.22671] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2011] [Indexed: 02/03/2023] Open
Abstract
Of the three Dishevelled (Dvl) genes, only Dvl2 and Dvl3 are maternally encoded in the frog, Xenopus laevis. We show here by loss of function analysis that single depletion of either Dvl2 or Dvl3 from the oocyte causes the same embryonic phenotype. We find that the effects of loss of function of Dvl2 and 3 together are additive, and that the proteins physically interact, suggesting that both are required in the same complex. We show that maternal Dvl2 and 3 are required for convergence extension movements downstream of the dorsally localized signaling pathway activated by Xnr3, but not downstream of the pathway activated by activin. Also, depletion of maternal Dvl2 and 3 mRNAs causes the up-regulation of a subset of zygotic ectodermal genes, including Foxi1e, with surprisingly no significant effect on the canonical Wnt direct target genes Siamois and Xnr3. We suggest that the likely reason for continued expression of the Wnt target genes in Dvl2/3-depleted embryos is that maternal Dvl mRNA depletion is insufficient to deplete stored punctae of Dvl protein in the oocyte cortex, which may transduce dorsal signaling after fertilization.
Collapse
Affiliation(s)
- Emmanuel Tadjuidje
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
34
|
Luo X, Nerlick S, An W, King ML. Xenopus germline nanos1 is translationally repressed by a novel structure-based mechanism. Development 2011; 138:589-98. [PMID: 21205802 DOI: 10.1242/dev.056705] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The translational repressor Nanos is expressed in the germline and stem cell populations of jellyfish as well as humans. Surprisingly, we observed that unlike other mRNAs, synthetic nanos1 RNA translates very poorly if at all after injection into Xenopus oocytes. The current model of simple sequestration of nanos1 within germinal granules is insufficient to explain this observation and suggests that a second level of repression must be operating. We find that an RNA secondary structural element immediately downstream of the AUG start site is both necessary and sufficient to prevent ribosome scanning in the absence of a repressor. Accordingly, repression is relieved by small in-frame insertions before this secondary structure, or translational control element (TCE), that provide the 15 nucleotides required for ribosome entry. nanos1 is translated shortly after fertilization, pointing to the existence of a developmentally regulated activator. Oocyte extracts were rendered fully competent for nanos1 translation after the addition of a small amount of embryo extract, confirming the presence of an activator. Misexpression of Nanos1 in oocytes from unlocalized RNA results in abnormal development, highlighting the importance of TCE-mediated translational repression. Although found in prokaryotes, steric hindrance as a mechanism for negatively regulating translation is novel for a eukaryotic RNA. These observations unravel a new mode of nanos1 regulation at the post-transcriptional level that is essential for normal development.
Collapse
Affiliation(s)
- Xueting Luo
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
35
|
Lai F, Zhou Y, Luo X, Fox J, King ML. Nanos1 functions as a translational repressor in the Xenopus germline. Mech Dev 2010; 128:153-63. [PMID: 21195170 DOI: 10.1016/j.mod.2010.12.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/08/2010] [Accepted: 12/13/2010] [Indexed: 02/01/2023]
Abstract
Nanos family members have been shown to act as translational repressors in the Drosophila and Caenorhabditis elegans germline, but direct evidence is missing for a similar function in vertebrates. Using a tethered function assay, we show that Xenopus Nanos1 is a translational repressor and that association with the RNA is required for this repression. We identified a 14 amino acid region within the N-terminal domain of Nanos1 that is conserved in organisms as diverse as sponge and Human. The region is found in all vertebrates but notably lacking in Drosophila and C. elegans. Deletion and substitution analysis revealed that this conserved region was required for Nanos1 repressive activity. Consistent with this observation, deletion of this region was sufficient to prevent abnormal development that results from ectopic expression of Nanos1 in oocytes. Although Nanos1 can repress capped and polyadenylated RNAs, Nanos1 mediated repression did not require the targeted RNA to have a cap or to be polyadenylated. These results suggest that Nanos1 is capable of repressing translation by several different mechanisms. We found that Nanos1, like Drosophila Nanos, associates with cyclin B1 RNA in vivo indicating that some Nanos targets may be evolutionarily conserved. Nanos1 protein was detected and thus available to repress mRNAs while PGCs were in the endoderm, but was not observed in PGCs after this stage.
Collapse
Affiliation(s)
- Fangfang Lai
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, 1011 NW 15th St., Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
36
|
Schneider PN, Hulstrand AM, Houston DW. Fertilization of Xenopus oocytes using the host transfer method. J Vis Exp 2010:1864. [PMID: 21085101 PMCID: PMC3048584 DOI: 10.3791/1864] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Studying the contribution of maternally inherited molecules to vertebrate early development is often hampered by the time and expense necessary to generate maternal-effect mutant animals. Additionally, many of the techniques to overexpress or inhibit gene function in organisms such as Xenopus and zebrafish fail to sufficiently target critical maternal signaling pathways, such as Wnt signaling. In Xenopus, manipulating gene function in cultured oocytes and subsequently fertilizing them can ameliorate these problems to some extent. Oocytes are manually defolliculated from donor ovary tissue, injected or treated in culture as desired, and then stimulated with progesterone to induce maturation. Next, the oocytes are introduced into the body cavity of an ovulating host female frog, whereupon they will be translocated through the host's oviduct and acquire modifications and jelly coats necessary for fertilization. The resulting embryos can then be raised to the desired stage and analyzed for the effects of any experimental perturbations. This host-transfer method has been highly effective in uncovering basic mechanisms of early development and allows a wide range of experimental possibilities not available in any other vertebrate model organism.
Collapse
|
37
|
Blythe SA, Cha SW, Tadjuidje E, Heasman J, Klein PS. beta-Catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. Dev Cell 2010; 19:220-31. [PMID: 20708585 PMCID: PMC2923644 DOI: 10.1016/j.devcel.2010.07.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/28/2010] [Accepted: 05/19/2010] [Indexed: 12/31/2022]
Abstract
An emerging concept in development is that transcriptional poising presets patterns of gene expression in a manner that reflects a cell's developmental potential. However, it is not known how certain loci are specified in the embryo to establish poised chromatin architecture as the developmental program unfolds. We find that, in the context of transcriptional quiescence prior to the midblastula transition in Xenopus, dorsal specification by the Wnt/beta-catenin pathway is temporally uncoupled from the onset of dorsal target gene expression, and that beta-catenin establishes poised chromatin architecture at target promoters. beta-catenin recruits the arginine methyltransferase Prmt2 to target promoters, thereby establishing asymmetrically dimethylated H3 arginine 8 (R8). Recruitment of Prmt2 to beta-catenin target genes is necessary and sufficient to establish the dorsal developmental program, indicating that Prmt2-mediated histone H3(R8) methylation plays a critical role downstream of beta-catenin in establishing poised chromatin architecture and marking key organizer genes for later expression.
Collapse
Affiliation(s)
| | - Sang-Wook Cha
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Emmanuel Tadjuidje
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Janet Heasman
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Peter S. Klein
- Cell and Molecular Biology Graduate Group
- Department of Medicine (Hematology/Oncology), University of Pennsylvania, 364 Clinical Research Building, 415 Curie Blvd, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
38
|
Kennedy MW, Cha SW, Tadjuidje E, Andrews PG, Heasman J, Kao KR. A co-dependent requirement of xBcl9 and Pygopus for embryonic body axis development in Xenopus. Dev Dyn 2010; 239:271-83. [PMID: 19877304 DOI: 10.1002/dvdy.22133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Wnt/beta-catenin transcriptional activation complex requires the adapter protein Pygopus (Pygo), which links the basal transcription machinery to beta-catenin, by its association with legless (Lgs)/ B-cell lymphoma-9 (Bcl9). Pygo was shown to be required for development in vertebrates, but the role of Lgs/Bcl9 is unknown. We identified an amphibian orthologue of Lgs/Bcl9, XBcl9, which interacted biochemically with Xbeta-catenin and XPygo2. The body axis promoting ability of Xbeta-catenin was diminished when residues required for its interaction with XBcl9 were mutated. In blastula embryos, XBcl9 was transiently preferentially expressed in nuclei of dorsoanterior cells and ectopically expressed XBcl9 required XPygo2 to localize to nuclei. Furthermore, while neither XBcl9 nor XPygo2 alone affected development when ectopically expressed, both were required to induce supernumerary axis and dorsal gene activation. Like XPygo2, depletion of maternal XBcl9 alone caused dorsal defects. These results indicated an essential role of the Pygo-Bcl9 duet in vertebrate body axis formation.
Collapse
Affiliation(s)
- Mark W Kennedy
- The Terry Fox Cancer Research Labs, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Hulstrand AM, Schneider PN, Houston DW. The use of antisense oligonucleotides in Xenopus oocytes. Methods 2010; 51:75-81. [PMID: 20045732 DOI: 10.1016/j.ymeth.2009.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Accepted: 12/30/2009] [Indexed: 11/18/2022] Open
Abstract
The ability to manipulate gene expression in Xenopus oocytes and then generate fertilized embryos by transfer into host females has made it possible to rapidly characterize maternal signaling pathways in vertebrate development. Maternal mRNAs in particular can be efficiently depleted using antisense deoxyoligonucleotides (oligos), mediated by endogenous RNase-H activity. Since the microinjection of antisense reagents or mRNAs into eggs after fertilization often fails to affect maternal signaling pathways, mRNA depletion in the Xenopus oocyte is uniquely suited to assessing maternal functions. In this review, we highlight the advantages of using antisense in Xenopus oocytes and describe basic methods for designing and choosing effective oligos. We also summarize the procedures for fertilizing cultured oocytes by host-transfer and interpreting the specificity of antisense effects. Although these methods can be technically demanding, the use of antisense in oocytes can be used to address biological questions that are intractable in other experimental settings.
Collapse
Affiliation(s)
- Alissa M Hulstrand
- The University of Iowa, Department of Biology, 257 BB, Iowa City, IA 52242-1324, USA
| | | | | |
Collapse
|
40
|
|
41
|
Wnt11/5a complex formation caused by tyrosine sulfation increases canonical signaling activity. Curr Biol 2009; 19:1573-80. [PMID: 19747829 DOI: 10.1016/j.cub.2009.07.062] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/16/2009] [Accepted: 07/22/2009] [Indexed: 11/23/2022]
Abstract
Wnt signaling plays important roles in embryonic development, tissue differentiation, and cancer. In both normal and malignant tissue, Wnt family members are often expressed combinatorially, although the significance of this is not understood. We recently showed that Wnt11 and Wnt5a are both required for the initiation of embryonic axis formation and that the two proteins physically interact with each other. However, little is known about the mechanism or biological significance of Wnt-Wnt protein interaction. Here we show in three assays, with Xenopus oocytes, mouse L cells, and human embryonic stem cells, that secreted Xenopus Wnt11/5a complexes have more canonical Wnt signaling activity than secreted Wnt11 or Wnt5a acting alone. We demonstrate that the sulfation activity of tyrosylprotein sulfotransferase-1 (TPST-1) is required for Xenopus dorsal axis formation and that O-sulfation of specific tyrosine residues is necessary for the interaction of Wnt11 with Wnt5a and for enhanced canonical signaling activity. These findings demonstrate a novel aspect of Wnt biology-Wnt family member interaction that depends on tyrosyl sulfation.
Collapse
|