1
|
Lainšček D, Forstnerič V, Miroševič Š. CTNNB1 syndrome mouse models. Mamm Genome 2025:10.1007/s00335-025-10105-3. [PMID: 39833474 DOI: 10.1007/s00335-025-10105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
CTNNB1 syndrome is a rare neurodevelopmental disorder, affecting children worldwide with a prevalence of 2.6-3.2 per 100,000 births and often misdiagnosed as cerebral palsy. De novo loss-of-function mutations in the Ctnnb1 gene result in dysfunction of the β-catenin protein, disrupting the canonical Wnt signaling pathway, which plays a key role in cell proliferation, differentiation, and tissue homeostasis. Additionally, these mutations impair the formation of cell junctions, adversely affecting tissue architecture. Motor and speech deficits, cognitive impairment, cardiovascular and visual problems are just some of the key symptoms that occur in CTNNB1 syndrome patients. There is currently no effective treatment option available for patients with CTNNB1 syndrome, with support largely focused on the management of symptoms and physiotherapy, yet recently some therapeutic approaches are being developed. Animal testing is still crucial in the process of new drug development, and mouse models are particularly important. These models provide researchers with new understanding of the disease mechanisms and are invaluable for testing the efficacy and safety of potential treatments. The development of various mouse models with β-catenin loss- and gain-of-function mutations successfully replicates key features of intellectual disability, autism-like behaviors, motor deficits, and more. These models provide a valuable platform for studying disease mechanisms and offer a powerful tool for testing the therapeutic potential and effectiveness of new drug candidates, paving the way for future clinical trials.
Collapse
Affiliation(s)
- Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, 1000, Slovenia.
- Centre for Technologies of Gene and Cell Therapy, Ljubljana, 1000, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, 1000, Slovenia.
| | - Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, 1000, Slovenia.
| | - Špela Miroševič
- The Gene Therapy Research Institute, CTNNB1 Foundation, Ljubljana, 1000, Slovenia.
- Department of Family Medicine, Faculty of Medicine Ljubljana, University of Ljubljana, Ljubljana, 1000, Slovenia.
| |
Collapse
|
2
|
Shiozaki M, Kanno K, Yonezawa S, Otani Y, Shigenobu Y, Haratake D, Murakami E, Oka S, Ito M. Integrator complex subunit 6 promotes hepatocellular steatosis via β-catenin-PPARγ axis. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159532. [PMID: 38981571 DOI: 10.1016/j.bbalip.2024.159532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/21/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Hepatic adipogenesis has common mechanisms with adipocyte differentiation such as PPARγ involvement and the induction of adipose tissue-specific molecules. A previous report demonstrated that integrator complex subunit 6 (INTS6) is required for adipocyte differentiation. This study aimed to investigate INTS6 expression and its role in hepatic steatosis progression. The expression of INTS6 and PPARγ was examined in the liver of a mouse model of steatohepatitis and in paired liver biopsy samples from 11 patients with severe obesity and histologically proven metabolic dysfunction associated steatohepatitis (MASH) before and one year after bariatric surgery. To induce hepatocellular steatosis in vitro, an immortalized human hepatocyte cell line Hc3716 was treated with free fatty acids. In the steatohepatitis mouse model, we observed hepatic induction of INTS6, PPARγ, and adipocyte-specific genes. In contrast, β-catenin which negatively regulates PPARγ was reduced. Biopsied human livers demonstrated a strong positive correlation (r2 = 0.8755) between INTS6 and PPARγ mRNA levels. After bariatric surgery, gene expressions of PPARγ, FABP4, and CD36 were mostly downregulated. In our in vitro experiments, we observed a concentration-dependent increase in Oil Red O staining in Hc3716 cells after treatment with the free fatty acids. Alongside this change, the expression of INTS6, PPARγ, and adipocyte-specific genes was induced. INTS6 knockdown using siRNA significantly suppressed cellular lipid accumulation together with induction of β-catenin and PPARγ downregulation. Collectively, INTS6 expression closely correlates with PPARγ. INTS6 suppression significantly reduced hepatocyte steatosis via β-catenin-PPARγ axis, indicating that INTS6 could be a novel therapeutic target for treating MASH.
Collapse
Affiliation(s)
- Minami Shiozaki
- Department of General Internal Medicine, Hiroshima University Hospital, Japan
| | - Keishi Kanno
- Department of General Internal Medicine, Hiroshima University Hospital, Japan.
| | - Sayaka Yonezawa
- Department of General Internal Medicine, Hiroshima University Hospital, Japan
| | - Yuichiro Otani
- Department of General Internal Medicine, Hiroshima University Hospital, Japan
| | - Yuya Shigenobu
- Department of General Internal Medicine, Hiroshima University Hospital, Japan
| | - Daisuke Haratake
- Department of General Internal Medicine, Hiroshima University Hospital, Japan
| | - Eisuke Murakami
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Masanori Ito
- Department of General Internal Medicine, Hiroshima University Hospital, Japan
| |
Collapse
|
3
|
Grunert M, Dorn C, Dopazo A, Sánchez-Cabo F, Vázquez J, Rickert-Sperling S, Lara-Pezzi E. Technologies to Study Genetics and Molecular Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:435-458. [PMID: 38884724 DOI: 10.1007/978-3-031-44087-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.
Collapse
Affiliation(s)
- Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DiNAQOR AG, Schlieren, Switzerland
| | - Cornelia Dorn
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jésus Vázquez
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Enrique Lara-Pezzi
- Myocardial Homeostasis and Cardiac Injury Programme, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| |
Collapse
|
4
|
Oizumi H, Miyamoto Y, Seiwa C, Yamamoto M, Yoshioka N, Iizuka S, Torii T, Ohbuchi K, Mizoguchi K, Yamauchi J, Asou H. Lethal adulthood myelin breakdown by oligodendrocyte-specific Ddx54 knockout. iScience 2023; 26:107448. [PMID: 37720086 PMCID: PMC10502337 DOI: 10.1016/j.isci.2023.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis (MS) is a leading disease that causes disability in young adults. We have previously shown that a DEAD-box RNA helicase Ddx54 binds to mRNA and protein isoforms of myelin basic protein (MBP) and that Ddx54 siRNA blocking abrogates oligodendrocyte migration and myelination. Herein, we show that MBP-driven Ddx54 knockout mice (Ddx54 fl/fl;MBP-Cre), after the completion of normal postnatal myelination, gradually develop abnormalities in behavioral profiles and learning ability, inner myelin sheath breakdown, loss of myelinated axons, apoptosis of oligodendrocytes, astrocyte and microglia activation, and they die within 7 months but show minimal peripheral immune cell infiltration. Myelin in Ddx54fl/fl;MBP-Cre is highly vulnerable to the neurotoxicant cuprizone and Ddx54 knockdown greatly impairs myelination in vitro. Ddx54 expression in oligodendrocyte-lineage cells decreased in corpus callosum of MS patients. Our results demonstrate that Ddx54 is indispensable for myelin homeostasis, and they provide a demyelinating disease model based on intrinsic disintegration of adult myelin.
Collapse
Affiliation(s)
- Hiroaki Oizumi
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chika Seiwa
- Glovia Myelin Research Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Masahiro Yamamoto
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Seiichi Iizuka
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Katsuya Ohbuchi
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | | | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroaki Asou
- Glovia Myelin Research Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| |
Collapse
|
5
|
Wulf S, Mizko L, Herrmann KH, Sánchez-Carbonell M, Urbach A, Lemke C, Berndt A, Loeffler I, Wolf G. Targeted Disruption of the MORG1 Gene in Mice Causes Embryonic Resorption in Early Phase of Development. Biomolecules 2023; 13:1037. [PMID: 37509073 PMCID: PMC10377003 DOI: 10.3390/biom13071037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The mitogen-activated protein kinase organizer 1 (MORG1) is a scaffold molecule for the ERK signaling pathway, but also binds to prolyl-hydroxylase 3 and modulates HIFα expression. To obtain further insight into the role of MORG1, knockout-mice were generated by homologous recombination. While Morg1+/- mice developed normally without any apparent phenotype, there were no live-born Morg1-/- knockout offspring, indicating embryonic lethality. The intrauterine death of Morg1-/- embryos is caused by a severe failure to develop brain and other neuronal structures such as the spinal cord and a failure of chorioallantoic fusion. On E8.5, Morg1-/- embryos showed severe underdevelopment and proliferative arrest as indicated by absence of Ki67 expression, impaired placental vascularization and altered phenotype of trophoblast giant cells. On E9.5, the malformed Morg1-/- embryos showed defective turning into the final fetal position and widespread apoptosis in many structures. In the subsequent days, apoptosis and decomposition of embryonic tissue progressed, accompanied by a massive infiltration of inflammatory cells. Developmental aberrancies were accompanied by altered expression of HIF-1/2α and VEGF-A and caspase-3 activation in embryos and extraembryonic tissues. In conclusion, the results suggest a multifactorial process that causes embryonic death in homozygous Morg1 mutant mice, described here, to the best of our knowledge, for the first time.
Collapse
Affiliation(s)
- Sophie Wulf
- Department of Internal Medicine III, Jena University Hospital, 07747 Jena, Germany
| | - Luisa Mizko
- Department of Internal Medicine III, Jena University Hospital, 07747 Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, 07747 Jena, Germany
| | | | - Anja Urbach
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Cornelius Lemke
- Institute for Anatomy I, Jena University Hospital, 07743 Jena, Germany
| | - Alexander Berndt
- Institute of Forensic Medicine, Section Pathology, Jena University Hospital, 07743 Jena, Germany
| | - Ivonne Loeffler
- Department of Internal Medicine III, Jena University Hospital, 07747 Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
6
|
Legrand JMD, Hobbs RM. Defining Gene Function in Spermatogonial Stem Cells Through Conditional Knockout Approaches. Methods Mol Biol 2023; 2656:261-307. [PMID: 37249877 DOI: 10.1007/978-1-0716-3139-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian male fertility is maintained throughout life by a population of self-renewing mitotic germ cells known as spermatogonial stem cells (SSCs). Much of our current understanding regarding the molecular mechanisms underlying SSC activity is derived from studies using conditional knockout mouse models. Here, we provide a guide for the selection and use of mouse strains to develop conditional knockout models for the study of SSCs, as well as their precursors and differentiation-committed progeny. We describe Cre recombinase-expressing strains, breeding strategies to generate experimental groups, and treatment regimens for inducible knockout models and provide advice for verifying and improving conditional knockout efficiency. This resource can be beneficial to those aiming to develop conditional knockout models for the study of SSC development and postnatal function.
Collapse
Affiliation(s)
- Julien M D Legrand
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Robin M Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
7
|
Knockout of the Complex III subunit Uqcrh causes bioenergetic impairment and cardiac contractile dysfunction. Mamm Genome 2022:10.1007/s00335-022-09973-w. [PMID: 36565314 DOI: 10.1007/s00335-022-09973-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/03/2022] [Indexed: 12/25/2022]
Abstract
Ubiquinol cytochrome c reductase hinge protein (UQCRH) is required for the electron transfer between cytochrome c1 and c of the mitochondrial cytochrome bc1 Complex (CIII). A two-exon deletion in the human UQCRH gene has recently been identified as the cause for a rare familial mitochondrial disorder. Deletion of the corresponding gene in the mouse (Uqcrh-KO) resulted in striking biochemical and clinical similarities including impairment of CIII, failure to thrive, elevated blood glucose levels, and early death. Here, we set out to test how global ablation of the murine Uqcrh affects cardiac morphology and contractility, and bioenergetics. Hearts from Uqcrh-KO mutant mice appeared macroscopically considerably smaller compared to wildtype littermate controls despite similar geometries as confirmed by transthoracic echocardiography (TTE). Relating TTE-assessed heart to body mass revealed the development of subtle cardiac enlargement, but histopathological analysis showed no excess collagen deposition. Nonetheless, Uqcrh-KO hearts developed pronounced contractile dysfunction. To assess mitochondrial functions, we used the high-resolution respirometer NextGen-O2k allowing measurement of mitochondrial respiratory capacity through the electron transfer system (ETS) simultaneously with the redox state of ETS-reactive coenzyme Q (Q), or production of reactive oxygen species (ROS). Compared to wildtype littermate controls, we found decreased mitochondrial respiratory capacity and more reduced Q in Uqcrh-KO, indicative for an impaired ETS. Yet, mitochondrial ROS production was not generally increased. Taken together, our data suggest that Uqcrh-KO leads to cardiac contractile dysfunction at 9 weeks of age, which is associated with impaired bioenergetics but not with mitochondrial ROS production. Global ablation of the Uqcrh gene results in functional impairment of CIII associated with metabolic dysfunction and postnatal developmental arrest immediately after weaning from the mother. Uqcrh-KO mice show dramatically elevated blood glucose levels and decreased ability of isolated cardiac mitochondria to consume oxygen (O2). Impaired development (failure to thrive) after weaning manifests as a deficiency in the gain of body mass and growth of internal organ including the heart. The relative heart mass seemingly increases when organ mass calculated from transthoracic echocardiography (TTE) is normalized to body mass. Notably, the heart shows no signs of collagen deposition, yet does develop a contractile dysfunction reflected by a decrease in ejection fraction and fractional shortening.
Collapse
|
8
|
Leak RK, Schreiber JB. Mechanistic Research for the Student or Educator (Part II of II). Front Pharmacol 2022; 13:741492. [PMID: 35903332 PMCID: PMC9315264 DOI: 10.3389/fphar.2022.741492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/17/2022] [Indexed: 12/05/2022] Open
Abstract
This two-part series describes how to test hypotheses on molecular mechanisms that underlie biological phenomena, using preclinical drug testing as a simplified example. While pursuing drug testing in preclinical research, students will need to understand the limitations of descriptive as well as mechanistic studies. The former does not identify any causal links between two or more variables; it identifies the presence or absence of correlations. Parts I and II of this educational series encourage the student to 1) ensure the sensitivity and specificity of their measurements, 2) establish or optimize an appropriate disease model, 3) find pharmaceutical drug doses/concentrations that interfere with experimental disease processes, 4) leverage the literature and exploratory datasets to craft a mechanism-oriented hypothesis on drug binding and downstream effects, 5) and design a full-factorial experiment to test the hypothesis after sketching potential outcomes and imagining their interpretations. These creative goals facilitate the choice of the appropriate positive and negative controls to avoid false data interpretations. Here, Part II describes in detail how to test for a causal link between drug-induced activation of biological targets and therapeutic outcomes. Upon completion of this two-part series, the new student will have some of the tools in hand to design mechanistic studies, interpret the outcomes of their research, and avoid technical and theoretical pitfalls, which can otherwise decelerate scientific progress and squander human and financial resources.
Collapse
Affiliation(s)
- Rehana K. Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh,, PA, United States
- *Correspondence: Rehana K. Leak,
| | | |
Collapse
|
9
|
Vidali S, Gerlini R, Thompson K, Urquhart JE, Meisterknecht J, Aguilar‐Pimentel JA, Amarie OV, Becker L, Breen C, Calzada‐Wack J, Chhabra NF, Cho Y, da Silva‐Buttkus P, Feichtinger RG, Gampe K, Garrett L, Hoefig KP, Hölter SM, Jameson E, Klein‐Rodewald T, Leuchtenberger S, Marschall S, Mayer‐Kuckuk P, Miller G, Oestereicher MA, Pfannes K, Rathkolb B, Rozman J, Sanders C, Spielmann N, Stoeger C, Szibor M, Treise I, Walter JH, Wurst W, Mayr JA, Fuchs H, Gärtner U, Wittig I, Taylor RW, Newman WG, Prokisch H, Gailus‐Durner V, Hrabě de Angelis M. Characterising a homozygous two-exon deletion in UQCRH: comparing human and mouse phenotypes. EMBO Mol Med 2021; 13:e14397. [PMID: 34750991 PMCID: PMC8649870 DOI: 10.15252/emmm.202114397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial disorders are clinically and genetically diverse, with isolated complex III (CIII) deficiency being relatively rare. Here, we describe two affected cousins, presenting with recurrent episodes of severe lactic acidosis, hyperammonaemia, hypoglycaemia and encephalopathy. Genetic investigations in both cases identified a homozygous deletion of exons 2 and 3 of UQCRH, which encodes a structural complex III (CIII) subunit. We generated a mouse model with the equivalent homozygous Uqcrh deletion (Uqcrh-/- ), which also presented with lactic acidosis and hyperammonaemia, but had a more severe, non-episodic phenotype, resulting in failure to thrive and early death. The biochemical phenotypes observed in patient and Uqcrh-/- mouse tissues were remarkably similar, displaying impaired CIII activity, decreased molecular weight of fully assembled holoenzyme and an increase of an unexpected large supercomplex (SXL ), comprising mostly of one complex I (CI) dimer and one CIII dimer. This phenotypic similarity along with lentiviral rescue experiments in patient fibroblasts verifies the pathogenicity of the shared genetic defect, demonstrating that the Uqcrh-/- mouse is a valuable model for future studies of human CIII deficiency.
Collapse
|
10
|
Sherstyuk VV, Zakian SM. Generation of Transgenic Rat Embryonic Stem Cells Using the CRISPR/Cpf1 System for Inducible Gene Knockout. BIOCHEMISTRY (MOSCOW) 2021; 86:843-851. [PMID: 34284709 DOI: 10.1134/s0006297921070051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rat embryonic stem cells (ESCs) play an important role in the studies of genes involved in maintaining of pluripotent state and early development of this model organism. To study functions of the essential genes, as well as the processes of cell differentiation, the method of induced knockout is widely used. The CreERT2/loxP system allows obtaining an inducible knockout in cells expressing tamoxifen-inducible Cre recombinase (CreERT2) and containing loxP sites flanking the target gene by adding 4-hydroxy tamoxifen to the culture medium. However, the rat ESC lines expressing CreERT2 are absent. In this work, we tested three CRISPR/Cas systems for introduction of double-strand breaks into the Rosa26 locus in the rat ESCs and inserted tamoxifen-dependent Cre recombinase into this locus using the CRISPR/Cpf1 system. It was shown that the obtained transgenic rat ESC lines retained the characteristics of pluripotent cells. Tamoxifen-inducible Cre recombinase activity was analyzed using a reporter vector.
Collapse
Affiliation(s)
- Vladimir V Sherstyuk
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Suren M Zakian
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
11
|
Brosh R, Laurent JM, Ordoñez R, Huang E, Hogan MS, Hitchcock AM, Mitchell LA, Pinglay S, Cadley JA, Luther RD, Truong DM, Boeke JD, Maurano MT. A versatile platform for locus-scale genome rewriting and verification. Proc Natl Acad Sci U S A 2021; 118:e2023952118. [PMID: 33649239 PMCID: PMC7958457 DOI: 10.1073/pnas.2023952118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Routine rewriting of loci associated with human traits and diseases would facilitate their functional analysis. However, existing DNA integration approaches are limited in terms of scalability and portability across genomic loci and cellular contexts. We describe Big-IN, a versatile platform for targeted integration of large DNAs into mammalian cells. CRISPR/Cas9-mediated targeting of a landing pad enables subsequent recombinase-mediated delivery of variant payloads and efficient positive/negative selection for correct clones in mammalian stem cells. We demonstrate integration of constructs up to 143 kb, and an approach for one-step scarless delivery. We developed a staged pipeline combining PCR genotyping and targeted capture sequencing for economical and comprehensive verification of engineered stem cells. Our approach should enable combinatorial interrogation of genomic functional elements and systematic locus-scale analysis of genome function.
Collapse
Affiliation(s)
- Ran Brosh
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Jon M Laurent
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Raquel Ordoñez
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Emily Huang
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Megan S Hogan
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | | | - Leslie A Mitchell
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Sudarshan Pinglay
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - John A Cadley
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Raven D Luther
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - David M Truong
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016;
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn 11201, NY
| | - Matthew T Maurano
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
- Department of Pathology, NYU Langone Health, New York, NY 10016
| |
Collapse
|
12
|
Fagiani F, Govoni S, Racchi M, Lanni C. The Peptidyl-prolyl Isomerase Pin1 in Neuronal Signaling: from Neurodevelopment to Neurodegeneration. Mol Neurobiol 2020; 58:1062-1073. [PMID: 33083964 PMCID: PMC7878263 DOI: 10.1007/s12035-020-02179-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022]
Abstract
The peptidyl-prolyl isomerase Pin1 is a unique enzyme catalyzing the isomerization of the peptide bond between phosphorylated serine-proline or threonine-proline motifs in proteins, thereby regulating a wide spectrum of protein functions, including folding, intracellular signaling, transcription, cell cycle progression, and apoptosis. Pin1 has been reported to act as a key molecular switch inducing cell-type-specific effects, critically depending on the different phosphorylation patterns of its targets within different biological contexts. While its implication in proliferating cells, and, in particular, in the field of cancer, has been widely characterized, less is known about Pin1 biological functions in terminally differentiated and post-mitotic neurons. Notably, Pin1 is widely expressed in the central and peripheral nervous system, where it regulates a variety of neuronal processes, including neuronal development, apoptosis, and synaptic activity. However, despite studies reporting the interaction of Pin1 with neuronal substrates or its involvement in specific signaling pathways, a more comprehensive understanding of its biological functions at neuronal level is still lacking. Besides its implication in physiological processes, a growing body of evidence suggests the crucial involvement of Pin1 in aging and age-related and neurodegenerative diseases, including Alzheimer's disease, Parkinson disease, frontotemporal dementias, Huntington disease, and amyotrophic lateral sclerosis, where it mediates profoundly different effects, ranging from neuroprotective to neurotoxic. Therefore, a more detailed understanding of Pin1 neuronal functions may provide relevant information on the consequences of Pin1 deregulation in age-related and neurodegenerative disorders.
Collapse
Affiliation(s)
- Francesca Fagiani
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, P.zza Vittoria, 15, 27100, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100, Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100, Pavia, Italy.
| |
Collapse
|
13
|
Metabolic Effects of Selective Deletion of Group VIA Phospholipase A 2 from Macrophages or Pancreatic Islet Beta-Cells. Biomolecules 2020; 10:biom10101455. [PMID: 33080873 PMCID: PMC7602969 DOI: 10.3390/biom10101455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
To examine the role of group VIA phospholipase A2 (iPLA2β) in specific cell lineages in insulin secretion and insulin action, we prepared mice with a selective iPLA2β deficiency in cells of myelomonocytic lineage, including macrophages (MØ-iPLA2β-KO), or in insulin-secreting β-cells (β-Cell-iPLA2β-KO), respectively. MØ-iPLA2β-KO mice exhibited normal glucose tolerance when fed standard chow and better glucose tolerance than floxed-iPLA2β control mice after consuming a high-fat diet (HFD). MØ-iPLA2β-KO mice exhibited normal glucose-stimulated insulin secretion (GSIS) in vivo and from isolated islets ex vivo compared to controls. Male MØ-iPLA2β-KO mice exhibited enhanced insulin responsivity vs. controls after a prolonged HFD. In contrast, β-cell-iPLA2β-KO mice exhibited impaired glucose tolerance when fed standard chow, and glucose tolerance deteriorated further when introduced to a HFD. β-Cell-iPLA2β-KO mice exhibited impaired GSIS in vivo and from isolated islets ex vivo vs. controls. β-Cell-iPLA2β-KO mice also exhibited an enhanced insulin responsivity compared to controls. These findings suggest that MØ iPLA2β participates in HFD-induced deterioration in glucose tolerance and that this mainly reflects an effect on insulin responsivity rather than on insulin secretion. In contrast, β-cell iPLA2β plays a role in GSIS and also appears to confer some protection against deterioration in β-cell functions induced by a HFD.
Collapse
|
14
|
McLeod VM, Cuic B, Chiam MDF, Lau CL, Turner BJ. Exploring germline recombination in Nestin-Cre transgenic mice using floxed androgen receptor. Genesis 2020; 58:e23390. [PMID: 32744751 DOI: 10.1002/dvg.23390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/11/2022]
Abstract
The Cre-loxP strategy for tissue selective gene deletion has become a widely employed tool in neuroscience research. The validity of these models is largely underpinned by the temporal and spatial selectivity of recombinase expression under the promoter of the Cre driver line. Ectopic Cre-recombinase expression gives rise to off-target effects which can confound results and is especially detrimental if this occurs in germline cells. The Nestin-Cre transgenic mouse is broadly used for selective gene deletion in neurons of the central and peripheral nervous systems. Here we have crossed this mouse with a floxed androgen receptor (AR) transgenic to generate double transgenic neuronal ARKO mice (ARflox ::NesCre) to study germline deletion in male and female transgenic breeders. In male ARflox ::NesCre breeders, a null AR allele was passed on to 86% of progeny regardless of the inheritance of the NesCre transgene. In female ARflox/wt ::NesCre breeders, a null AR allele was passed on to 100% of progeny where ARflox was expected to be transmitted. This surprisingly high incidence of germline recombination in the Nestin-Cre driver line warrants caution in devising suitable breeding strategies, consideration of accurate genotyping approaches and highlights the need for thorough characterization of tissue-specific gene deletion in this model.
Collapse
Affiliation(s)
- Victoria M McLeod
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Brittany Cuic
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Mathew D F Chiam
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Chew L Lau
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Perron Institute for Neurological and Translational Science, Queen Elizabeth Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
15
|
Noble JN, Mishra A. Development and Significance of Mouse Models in Lymphoma Research. Curr Hematol Malig Rep 2020; 14:119-126. [PMID: 30848424 DOI: 10.1007/s11899-019-00504-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Animal models have played an indispensable role in interpreting cancer gene functions, pathogenesis of disease, and in the development of innovative therapeutic approaches targeting aberrant biological pathways in human cancers. RECENT FINDINGS These models have guided the therapeutic targeting of cancer-causing mutations and paved the way for assessing anti-cancer drug responses and the preclinical development of immunotherapies. The mammalian models of cancer utilize genetically edited or transplanted mice that develop fairly accurate disease histopathology. The mouse model also allows us to study the effect of tumor microenvironment in the development of lymphoma. The emergence of patient-derived xenografts provides a better opportunity for recapitulating primary lymphoma characteristics and researching personalized drug therapy. In conclusion, the refinement and advancement of available mouse models in lymphoma significantly minimize the therapeutic translational failures in patients.
Collapse
Affiliation(s)
- Jordan N Noble
- College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Anjali Mishra
- College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA. .,Division of Dermatology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA. .,Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadephia, PA, 19107, USA.
| |
Collapse
|
16
|
Kubinyecz O, Vikhe PP, Purnell T, Brown SDM, Tateossian H. The Jeff Mouse Mutant Model for Chronic Otitis Media Manifests Gain-of-Function as Well as Loss-of-Function Effects. Front Genet 2020; 11:498. [PMID: 32508883 PMCID: PMC7248398 DOI: 10.3389/fgene.2020.00498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/22/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic otitis media (OM) is the most common cause of hearing loss worldwide, yet the underlying genetics and molecular pathology are poorly understood. The mouse mutant Jeff is a single gene mouse model for OM identified from a deafness screen as part of an ENU mutagenesis program at MRC Harwell. Jeff carries a missense mutation in the Fbxo11 gene. Jeff heterozygotes (Fbxo11 Jf/+ ) develop chronic OM at weaning and have reduced hearing. Homozygotes (Fbxo11 Jf/Jf ) display perinatal lethality due to developmental epithelial abnormalities. In order to investigate the role of FBXO11 and the type of mutation responsible for the phenotype of the Jeff mice, a knock-out mouse model was created and compared to Jeff. Surprisingly, the heterozygote knock-outs (Fbxo11 tm2b/+ ) show a much milder phenotype: they do not display any auditory deficit and only some of them have thickened middle ear epithelial lining with no fluid in the ear. In addition, the knock-out homozygote embryos (Fbxo11 tm2b/tm2b ), as well as the compound heterozygotes (Fbxo11 tm2b/Jf ) show only mild abnormalities compared to Jeff homozygotes (Fbxo11 Jf/Jf ). Interestingly, 3 days after intranasal inoculation of the Fbxo11 tm2b/+ mice with non-typeable Haemophilus influenzae (NTHi) a proportion of them have inflamed middle ear mucosa and fluid accumulation in the ear suggesting that the Fbxo11 knock-out mice are predisposed to NTHi induced middle ear inflammation. In conclusion, the finding that the phenotype of the Jeff mutant is much more severe than the knock-out indicates that the mutation in Jeff manifests gain-of-function as well as loss-of-function effects at both embryonic and adult stages.
Collapse
Affiliation(s)
| | | | | | | | - Hilda Tateossian
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, United Kingdom
| |
Collapse
|
17
|
Andrews MG, Nowakowski TJ. Human brain development through the lens of cerebral organoid models. Brain Res 2019; 1725:146470. [PMID: 31542572 PMCID: PMC6887101 DOI: 10.1016/j.brainres.2019.146470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/21/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023]
Abstract
The brain is one of the most complex organs in the body, which emerges from a relatively simple set of basic 'building blocks' during early development according to complex cellular and molecular events orchestrated through a set of inherited instructions. Innovations in stem cell technologies have enabled modelling of neural cells using two- and three-dimensional cultures. In particular, cerebral ('brain') organoids have taken the center stage of brain development models that have the potential for providing meaningful insight into human neurodevelopmental and neurological disorders. We review the current understanding of cellular events during human brain organogenesis, and the events occurring during cerebral organoid differentiation. We highlight the strengths and weaknesses of this experimental model system. In particular, we explain evidence that organoids can mimic many aspects of early neural development, including neural induction, patterning, and broad neurogenesis and gliogenesis programs, offering the opportunity to study genetic regulation of these processes in a human context. Several shortcomings of the current culture methods limit the utility of cerebral organoids to spontaneously give rise to many important cell types, and to model higher order features of tissue organization. We suggest that future studies aim to improve these features in order to make them better models for the study of laminar organization, circuit formation and how disruptions of these processes relate to disease.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurology, University of California, San Francisco, CA, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA.
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
18
|
Genetically Engineered Mouse Models of Gliomas: Technological Developments for Translational Discoveries. Cancers (Basel) 2019; 11:cancers11091335. [PMID: 31505839 PMCID: PMC6770673 DOI: 10.3390/cancers11091335] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 01/25/2023] Open
Abstract
The most common brain tumours, gliomas, have significant morbidity. Detailed biological and genetic understanding of these tumours is needed in order to devise effective, rational therapies. In an era generating unprecedented quantities of genomic sequencing data from human cancers, complementary methods of deciphering the underlying functional cancer genes and mechanisms are becoming even more important. Genetically engineered mouse models of gliomas have provided a platform for investigating the molecular underpinning of this complex disease, and new tools for such models are emerging that are enabling us to answer the most important questions in the field. Here, I discuss improvements to genome engineering technologies that have led to more faithful mouse models resembling human gliomas, including new cre/LoxP transgenic lines that allow more accurate cell targeting of genetic recombination, Sleeping Beauty and piggyBac transposons for the integration of transgenes and genetic screens, and CRISPR-cas9 for generating genetic knockout and functional screens. Applications of these technologies are providing novel insights into the functional genetic drivers of gliomagenesis, how these genes cooperate with one another, and the potential cells-of-origin of gliomas, knowledge of which is critical to the development of targeted treatments for patients in the clinic.
Collapse
|
19
|
Xu JJ, Smeets MF, Tan SY, Wall M, Purton LE, Walkley CR. Modeling human RNA spliceosome mutations in the mouse: not all mice were created equal. Exp Hematol 2018; 70:10-23. [PMID: 30408513 DOI: 10.1016/j.exphem.2018.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 01/23/2023]
Abstract
Myelodysplastic syndromes (MDS) and related myelodysplastic/myeloproliferative neoplasms (MDS/MPNs) are clonal stem cell disorders, primarily affecting patients over 65 years of age. Mapping of the MDS and MDS/MPN genome identified recurrent heterozygous mutations in the RNA splicing machinery, with the SF3B1, SRSF2, and U2AF1 genes being frequently mutated. To better understand how spliceosomal mutations contribute to MDS pathogenesis in vivo, numerous groups have sought to establish conditional murine models of SF3B1, SRSF2, and U2AF1 mutations. The high degree of conservation of hematopoiesis between mice and human and the well-established phenotyping and genetic modification approaches make murine models an effective tool with which to study how a gene mutation contributes to disease pathogenesis. The murine models of spliceosomal mutations described to date recapitulate human MDS or MDS/MPN to varying extents. Reasons for the differences in phenotypes reported between alleles of the same mutation are varied, but the nature of the genetic modification itself and subsequent analysis methods are important to consider. In this review, we summarize recently reported murine models of SF3B1, SRSF2, and U2AF1 mutations, with a particular focus on the genetically engineered modifications underlying the models and the experimental approaches applied.
Collapse
Affiliation(s)
- Jane Jialu Xu
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Monique F Smeets
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Shuh Ying Tan
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Hematology, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Meaghan Wall
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia; Victorian Cancer Cytogenetics Service, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Louise E Purton
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Carl R Walkley
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
20
|
Liput DJ. Cre-Recombinase Dependent Germline Deletion of a Conditional Allele in the Rgs9cre Mouse Line. Front Neural Circuits 2018; 12:68. [PMID: 30254571 PMCID: PMC6141680 DOI: 10.3389/fncir.2018.00068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022] Open
Abstract
Cre-LoxP conditional knockout animals have become a prominent tool to understand gene function in discrete cell-types and neural circuits. However, this technology has significant limitations including off target cre-dependent recombination. The Rgs9cre strain has been used to generate a conditional knockout in striatal medium spiny neurons, but, as presented in the current study, off target recombination in the germline results in nonconditional deletion of LoxP alleles. Using a Rem2 conditional allele, germline deletion (GD) was observed in a sex dependent manner. When Cre and LoxP alleles were co-inherited from the female parent, 27 of 29 LoxP alleles were recombined, but when co-inherited from the male parent, 5 of 36 LoxP alleles were recombined. Rem2 expression measured by RT-qPCR confirmed nonconditional recombination in extrastriatal nuclei. Cre-LoxP is a powerful technique to modify genomic DNA (gDNA), however careful characterization of these mice is required to confirm control of conditional recombination.
Collapse
Affiliation(s)
- Daniel J Liput
- Laboratory for Integrated Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
21
|
Vancamp P, Darras VM. From zebrafish to human: A comparative approach to elucidate the role of the thyroid hormone transporter MCT8 during brain development. Gen Comp Endocrinol 2018; 265:219-229. [PMID: 29183795 DOI: 10.1016/j.ygcen.2017.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023]
Abstract
Monocarboxylate transporter 8 (MCT8) facilitates transmembrane transport of thyroid hormones (THs) ensuring their action on gene expression during vertebrate neurodevelopment. A loss of MCT8 in humans results in severe psychomotor deficits associated with the Allan-Herndon-Dudley Syndrome (AHDS). However, where and when exactly a lack of MCT8 causes the neurological manifestations remains unclear because of the varying expression pattern of MCT8 between specific brain regions and cells. Here, we elaborate on the animal models that have been generated to elucidate the mechanisms underlying MCT8-deficient brain development. The absence of a clear neurological phenotype in Mct8 knockout mice made it clear that a single species would not suffice. The evolutionary conservation of TH action on neurodevelopment as well as the components regulating TH signalling however offers the opportunity to answer different aspects of MCT8 function in brain development using different vertebrate species. Moreover, the plethora of tools for genome editing available today facilitates gene silencing in these animals as well. Studies in the recently generated mct8-deficient zebrafish and Mct8/Oatp1c1 double knockout mice have put forward the current paradigm of impaired TH uptake at the level of the blood-brain barrier during peri- and postnatal development as being the main pathophysiological mechanism of AHDS. RNAi vector-based, cell-specific induction of MCT8 knockdown in the chicken embryo points to an additional function of MCT8 at the level of the neural progenitors during early brain development. Future studies including also additional in vivo models like Xenopus or in vitro approaches such as induced pluripotent stem cells will continue to help unravelling the exact role of MCT8 in developmental events. In the end, this multispecies approach will lead to a unifying thesis regarding the cellular and molecular mechanisms responsible for the neurological phenotype in AHDS patients.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium.
| |
Collapse
|
22
|
Abstract
Alcoholic hepatitis is the most severe and acute form of alcoholic liver disease. The mortality rate associated with alcoholic hepatitis is high, largely due to the lack of suitable pharmacological interventions. While there has been substantial research in the area, generating pharmacological interventions has been plagued by the lack of a robust mouse model both for testing and for understanding the underlying pathology. A number of major notable advances have been made in this area recently, with the goal of generating a mouse model of alcoholic hepatitis. The purpose of this article is to review recent advances in modeling alcoholic liver disease both in vitro and in vivo in the mouse, and place them in the context of the greater spectrum of alcoholic liver disease, with a focus on how we can translate current advances into a high-fidelity model of alcoholic hepatitis. In addition, we will review the basic mechanisms of alcoholic hepatitis as it is currently understood, focusing on recent advancements in diagnosis, prognosis and current pathophysiology, especially as it relates to the profound immune dysfunction present during alcoholic hepatitis.
Collapse
Affiliation(s)
- Benjamin L. Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
23
|
Kondrashov A, Duc Hoang M, Smith JGW, Bhagwan JR, Duncan G, Mosqueira D, Munoz MB, Vo NTN, Denning C. Simplified Footprint-Free Cas9/CRISPR Editing of Cardiac-Associated Genes in Human Pluripotent Stem Cells. Stem Cells Dev 2018; 27:391-404. [PMID: 29402189 PMCID: PMC5882176 DOI: 10.1089/scd.2017.0268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Modeling disease with human pluripotent stem cells (hPSCs) is hindered because the impact on cell phenotype from genetic variability between individuals can be greater than from the pathogenic mutation. While “footprint-free” Cas9/CRISPR editing solves this issue, existing approaches are inefficient or lengthy. In this study, a simplified PiggyBac strategy shortened hPSC editing by 2 weeks and required one round of clonal expansion and genotyping rather than two, with similar efficiencies to the longer conventional process. Success was shown across four cardiac-associated loci (ADRB2, GRK5, RYR2, and ACTC1) by genomic cleavage and editing efficiencies of 8%–93% and 8%–67%, respectively, including mono- and/or biallelic events. Pluripotency was retained, as was differentiation into high-purity cardiomyocytes (CMs; 88%–99%). Using the GRK5 isogenic lines as an exemplar, chronic stimulation with the β-adrenoceptor agonist, isoprenaline, reduced beat rate in hPSC-CMs expressing GRK5-Q41 but not GRK5-L41; this was reversed by the β-blocker, propranolol. This shortened, footprint-free approach will be useful for mechanistic studies.
Collapse
Affiliation(s)
- Alexander Kondrashov
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Minh Duc Hoang
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - James G W Smith
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Jamie R Bhagwan
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Gary Duncan
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Diogo Mosqueira
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Maria Barbadillo Munoz
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Nguyen T N Vo
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Chris Denning
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| |
Collapse
|
24
|
Zorzi V, Paciello F, Ziraldo G, Peres C, Mazzarda F, Nardin C, Pasquini M, Chiani F, Raspa M, Scavizzi F, Carrer A, Crispino G, Ciubotaru CD, Monyer H, Fetoni AR, M Salvatore A, Mammano F. Mouse Panx1 Is Dispensable for Hearing Acquisition and Auditory Function. Front Mol Neurosci 2017; 10:379. [PMID: 29234270 PMCID: PMC5712377 DOI: 10.3389/fnmol.2017.00379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/30/2017] [Indexed: 11/13/2022] Open
Abstract
Panx1 forms plasma membrane channels in brain and several other organs, including the inner ear. Biophysical properties, activation mechanisms and modulators of Panx1 channels have been characterized in detail, however the impact of Panx1 on auditory function is unclear due to conflicts in published results. To address this issue, hearing performance and cochlear function of the Panx1−/− mouse strain, the first with a reported global ablation of Panx1, were scrutinized. Male and female homozygous (Panx1−/−), hemizygous (Panx1+/−) and their wild type (WT) siblings (Panx1+/+) were used for this study. Successful ablation of Panx1 was confirmed by RT-PCR and Western immunoblotting in the cochlea and brain of Panx1−/− mice. Furthermore, a previously validated Panx1-selective antibody revealed strong immunoreactivity in WT but not in Panx1−/− cochleae. Hearing sensitivity, outer hair cell-based “cochlear amplifier” and cochlear nerve function, analyzed by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recordings, were normal in Panx1+/− and Panx1−/− mice. In addition, we determined that global deletion of Panx1 impacts neither on connexin expression, nor on gap-junction coupling in the developing organ of Corti. Finally, spontaneous intercellular Ca2+ signal (ICS) activity in organotypic cochlear cultures, which is key to postnatal development of the organ of Corti and essential for hearing acquisition, was not affected by Panx1 ablation. Therefore, our results provide strong evidence that, in mice, Panx1 is dispensable for hearing acquisition and auditory function.
Collapse
Affiliation(s)
- Veronica Zorzi
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.,School of Medicine, Institute of Otolaryngology, Catholic University, Rome, Italy
| | - Fabiola Paciello
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Gaia Ziraldo
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.,School of Medicine, Institute of Otolaryngology, Catholic University, Rome, Italy
| | - Chiara Peres
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Flavia Mazzarda
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.,Department of Science, Roma Tre University, Rome, Italy
| | - Chiara Nardin
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.,Department of Science, Roma Tre University, Rome, Italy
| | - Miriam Pasquini
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.,Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Francesco Chiani
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Marcello Raspa
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | | | - Andrea Carrer
- Department of Physics and Astronomy G. Galilei, University of Padua, Padua, Italy
| | - Giulia Crispino
- Department of Physics and Astronomy G. Galilei, University of Padua, Padua, Italy
| | | | - Hannah Monyer
- Department of Clinical Neurobiology, Deutches Krebforschungzentrum, University of Heidelberg, Heidelberg, Germany
| | - Anna R Fetoni
- School of Medicine, Institute of Otolaryngology, Catholic University, Rome, Italy
| | - Anna M Salvatore
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Fabio Mammano
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.,Department of Physics and Astronomy G. Galilei, University of Padua, Padua, Italy.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
25
|
DNA-binding of the Tet-transactivator curtails antigen-induced lymphocyte activation in mice. Nat Commun 2017; 8:1028. [PMID: 29044097 PMCID: PMC5647323 DOI: 10.1038/s41467-017-01022-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 08/14/2017] [Indexed: 12/31/2022] Open
Abstract
The Tet-On/Off system for conditional transgene expression constitutes state-of-the-art technology to study gene function by facilitating inducible expression in a timed and reversible manner. Several studies documented the suitability and versatility of this system to trace lymphocyte fate and to conditionally express oncogenes or silence tumour suppressor genes in vivo. Here, we show that expression of the tetracycline/doxycycline-controlled Tet-transactivator, while tolerated well during development and in immunologically unchallenged animals, impairs the expansion of antigen-stimulated T and B cells and thereby curtails adaptive immune responses in vivo. Transactivator-mediated cytotoxicity depends on DNA binding, but can be overcome by BCL2 overexpression, suggesting that apoptosis induction upon lymphocyte activation limits cellular and humoral immune responses. Our findings suggest a possible system-intrinsic biological bias of the Tet-On/Off system in vivo that will favour the outgrowth of apoptosis resistant clones, thus possibly confounding data published using such systems. Tet-transactivators are used for direct regulation of gene expression, RNA interference and for CRISPR/Cas9-based systems. Here the authors show that DNA-bound Tet-transactivators can induce cell death in antigen-activated lymphocytes in vivo, putting into question the use of, and in vivo data generated with, these molecular tools.
Collapse
|
26
|
Eppig JT. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse. ILAR J 2017; 58:17-41. [PMID: 28838066 PMCID: PMC5886341 DOI: 10.1093/ilar/ilx013] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided.
Collapse
Affiliation(s)
- Janan T. Eppig
- Janan T. Eppig, PhD, is Professor Emeritus at The Jackson Laboratory in Bar Harbor, Maine
| |
Collapse
|
27
|
Cole TJ, Young MJ. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Mineralocorticoid receptor null mice: informing cell-type-specific roles. J Endocrinol 2017; 234:T83-T92. [PMID: 28550025 DOI: 10.1530/joe-17-0155] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022]
Abstract
The mineralocorticoid receptor (MR) mediates the actions of two important adrenal corticosteroid hormones, aldosterone and cortisol. The cell signalling roles of the MR in vivo have expanded enormously since the cloning of human MR gene 30 years ago and the first MR gene knockout in mice nearly 20 years ago. Complete ablation of the MR revealed important roles postnatally for regulation of kidney epithelial functions, with MR-null mice dying 1-2 weeks postnatally from renal salt wasting and hyperkalaemia, with elevated plasma renin and aldosterone. Generation of tissue-selective MR-deficient mice using Cre recombinase-LoxP gene targeting has made it possible to analyse mice lacking MR only in specific cell types. Targeting renal-specific MR has differentiated roles in specific compartments of the kidney. Ablating MR in neurons of the forebrain reinforced important roles of the MR in response to stress, behaviour and anxiety, but suggested a minimal role in maintaining basal HPA axis tone. Deletion of the MR in macrophages and other cell types of the cardiovascular system clearly defined important roles for the regulation of cardiovascular physiology and pathophysiology. Knockdown of MR mRNA in vivo using antisense/siRNA approaches, and similarly MR overexpression, has provided useful rodent models to study physiological roles of MR signalling in vivo More recently, targeted mutation of specific domains of the MR such as the DBD has defined genomic vs non-genomic roles in vivo New tissue-selective MR-null models are required to define roles of MR signalling in other regions of the brain, the eye, gastrointestinal tract, lung, skin, breast and gonadal organs.
Collapse
Affiliation(s)
- Timothy J Cole
- Department of Biochemistry and Molecular BiologyMonash University, Melbourne, Victoria, Australia
- Centre for Endocrinology and MetabolismHudson Institute of Medical Research, Monash Medical Centre, Clayton, Victoria, Australia
| | - Morag J Young
- Centre for Endocrinology and MetabolismHudson Institute of Medical Research, Monash Medical Centre, Clayton, Victoria, Australia
- Department of Molecular and Translational ResearchMonash University, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Nacken W, Wixler V, Ehrhardt C, Ludwig S. Influenza A virus NS1 protein-induced JNK activation and apoptosis are not functionally linked. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Wolfgang Nacken
- Institute of Virology (IVM), University Hospital Münster; WWU; Germany
| | - Viktor Wixler
- Institute of Virology (IVM), University Hospital Münster; WWU; Germany
| | - Christina Ehrhardt
- Institute of Virology (IVM), University Hospital Münster; WWU; Germany
- Cluster of Excellence “Cells in Motion”; University of Muenster; Germany
- Interdisciplinary Center of Clinical Research (IZKF), UKM; WWU; Germany
| | - Stephan Ludwig
- Institute of Virology (IVM), University Hospital Münster; WWU; Germany
- Cluster of Excellence “Cells in Motion”; University of Muenster; Germany
- Interdisciplinary Center of Clinical Research (IZKF), UKM; WWU; Germany
| |
Collapse
|
29
|
Design and Analysis of CCN Gene Activity Using CCN Knockout Mice Containing LacZ Reporters. Methods Mol Biol 2017; 1489:325-345. [PMID: 27734387 DOI: 10.1007/978-1-4939-6430-7_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two developments have greatly facilitated the construction of CCN mutant mouse strains. The first is the availability of modified embryonic stem (ES) cells and mice developed through several large-scale government-sponsored research programs. The second is the advent of CRISPR/Cas9 technology. In this chapter, we describe the available mouse strains generated by gene targeting techniques and the CCN targeting vectors and genetically modified ES cells that are available for the generation of CCN mutant mice. Many of these mutant mouse lines and ES cells carry a β-galactosidase reporter that can be used to track CCN expression, facilitating phenotypic analysis and revealing new sites of CCN action. Therefore, we also describe a method for β-galactosidase staining.
Collapse
|
30
|
The control of male fertility by spermatid-specific factors: searching for contraceptive targets from spermatozoon's head to tail. Cell Death Dis 2016; 7:e2472. [PMID: 27831554 PMCID: PMC5260884 DOI: 10.1038/cddis.2016.344] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Male infertility due to abnormal spermatozoa has been reported in both animals and humans, but its pathogenic causes, including genetic abnormalities, remain largely unknown. On the other hand, contraceptive options for men are limited, and a specific, reversible and safe method of male contraception has been a long-standing quest in medicine. Some progress has recently been made in exploring the effects of spermatid-specifical genetic factors in controlling male fertility. A comprehensive search of PubMed for articles and reviews published in English before July 2016 was carried out using the search terms 'spermiogenesis failure', 'globozoospermia', 'spermatid-specific', 'acrosome', 'infertile', 'manchette', 'sperm connecting piece', 'sperm annulus', 'sperm ADAMs', 'flagellar abnormalities', 'sperm motility loss', 'sperm ion exchanger' and 'contraceptive targets'. Importantly, we have opted to focus on articles regarding spermatid-specific factors. Genetic studies to define the structure and physiology of sperm have shown that spermatozoa appear to be one of the most promising contraceptive targets. Here we summarize how these spermatid-specific factors regulate spermiogenesis and categorize them according to their localization and function from spermatid head to tail (e.g., acrosome, manchette, head-tail conjunction, annulus, principal piece of tail). In addition, we emphatically introduce small-molecule contraceptives, such as BRDT and PPP3CC/PPP3R2, which are currently being developed to target spermatogenic-specific proteins. We suggest that blocking the differentiation of haploid germ cells, which rarely affects early spermatogenic cell types and the testicular microenvironment, is a better choice than spermatogenic-specific proteins. The studies described here provide valuable information regarding the genetic and molecular defects causing male mouse infertility to improve our understanding of the importance of spermatid-specific factors in controlling fertility. Although a male contraceptive 'pill' is still many years away, research into the production of new small-molecule contraceptives targeting spermatid-specific proteins is the right avenue.
Collapse
|
31
|
Homology Requirements for Efficient, Footprintless Gene Editing at the CFTR Locus in Human iPSCs with Helper-dependent Adenoviral Vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e372. [PMID: 27727248 PMCID: PMC5095686 DOI: 10.1038/mtna.2016.83] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/20/2016] [Indexed: 01/24/2023]
Abstract
Helper-dependent adenoviral vectors mediate high efficiency gene editing in induced pluripotent stem cells without needing a designer nuclease thereby avoiding off-target cleavage. Because of their large cloning capacity of 37 kb, helper-dependent adenoviral vectors with long homology arms are used for gene editing. However, this makes vector construction and recombinant analysis difficult. Conversely, insufficient homology may compromise targeting efficiency. Thus, we investigated the effect of homology length on helper-dependent adenoviral vector targeting efficiency at the cystic fibrosis transmembrane conductance regulator locus in induced pluripotent stem cells and found a positive correlation. With 23.8 and 21.4 kb of homology, the frequencies of targeted recombinants were 50–64.6% after positive selection for vector integration, and 97.4–100% after negative selection against random integrations. With 14.8 kb, the frequencies were 26.9–57.1% after positive selection and 87.5–100% after negative selection. With 9.6 kb, the frequencies were 21.4 and 75% after positive and negative selection, respectively. With only 5.6 kb, the frequencies were 5.6–16.7% after positive selection and 50% after negative selection, but these were more than high enough for efficient identification and isolation of targeted clones. Furthermore, we demonstrate helper-dependent adenoviral vector-mediated footprintless correction of cystic fibrosis transmembrane conductance regulator mutations through piggyBac excision of the selectable marker. However, low frequencies (≤ 1 × 10−3) necessitated negative selection for piggyBac-excision product isolation.
Collapse
|
32
|
Flaherty K, Singh N, Richtsmeier JT. Understanding craniosynostosis as a growth disorder. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:429-59. [PMID: 27002187 PMCID: PMC4911263 DOI: 10.1002/wdev.227] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/06/2015] [Accepted: 12/24/2015] [Indexed: 12/15/2022]
Abstract
Craniosynostosis is a condition of complex etiology that always involves the premature fusion of one or multiple cranial sutures and includes various anomalies of the soft and hard tissues of the head. Steady progress in the field has resulted in identifying gene mutations that recurrently cause craniosynostosis. There are now scores of mutations on many genes causally related to craniosynostosis syndromes, though the genetic basis for the majority of nonsyndromic cases is unknown. Identification of these genetic mutations has allowed significant progress in understanding the intrinsic properties of cranial sutures, including mechanisms responsible for normal suture patency and for pathogenesis of premature suture closure. An understanding of morphogenesis of cranial vault sutures is critical to understanding the pathophysiology of craniosynostosis conditions, but the field is now poised to recognize the repeated changes in additional skeletal and soft tissues of the head that typically accompany premature suture closure. We review the research that has brought an understanding of premature suture closure within our reach. We then enumerate the less well-studied, but equally challenging, nonsutural phenotypes of craniosynostosis conditions that are well characterized in available mouse models. We consider craniosynostosis as a complex growth disorder of multiple tissues of the developing head, whose growth is also targeted by identified mutations in ways that are poorly understood. Knowledge gained from studies of humans and mouse models for these conditions underscores the diverse, associated developmental anomalies of the head that contribute to the complex phenotypes of craniosynostosis conditions presenting novel challenges for future research. WIREs Dev Biol 2016, 5:429-459. doi: 10.1002/wdev.227 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kevin Flaherty
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| | - Nandini Singh
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| | - Joan T. Richtsmeier
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| |
Collapse
|
33
|
Nishihama R, Ishida S, Urawa H, Kamei Y, Kohchi T. Conditional Gene Expression/Deletion Systems for Marchantia polymorpha Using its Own Heat-Shock Promoter and Cre/loxP-Mediated Site-Specific Recombination. PLANT & CELL PHYSIOLOGY 2016; 57:271-280. [PMID: 26148498 DOI: 10.1093/pcp/pcv102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
The liverwort Marchantia polymorpha is an emerging model plant suitable for addressing, using genetic approaches, various evolutionary questions in the land plant lineage. Haploid dominancy in its life cycle facilitates genetic analyses, but conversely limits the ability to isolate mutants of essential genes. To overcome this issue and to be employed in cell lineage, mosaic and cell autonomy analyses, we developed a system that allows conditional gene expression and deletion using a promoter of a heat-shock protein (HSP) gene and the Cre/loxP site-specific recombination system. Because the widely used promoter of the Arabidopsis HSP18.2 gene did not operate in M. polymorpha, we identified a promoter of an endogenous HSP gene, MpHSP17.8A1, which exhibited a highly inducible transient expression level upon heat shock with a low basal activity level. Reporter genes fused to this promoter were induced globally in thalli under whole-plant heat treatment and also locally using a laser-assisted targeted heating technique. By expressing Cre fused to the glucocorticoid receptor under the control of the MpHSP17.8A1 promoter, a low background, sufficiently inducible control for loxP-mediated recombination could be achieved in M. polymorpha. Based on these findings, we developed a Gateway technology-based binary vector for the conditional induction of gene deletions.
Collapse
Affiliation(s)
- Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Hiroko Urawa
- Faculty of Education, Gifu Shotoku Gakuen University, Gifu, 501-6194 Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, NIBB Core Facilities, National Institute for Basic Biology, Okazaki, Aichi, 444-8585 Japan Department of Basic Biology in the School of Life Science, SOKENDAI (the Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
34
|
Hanke-Gogokhia C, Wu Z, Gerstner CD, Frederick JM, Zhang H, Baehr W. Arf-like Protein 3 (ARL3) Regulates Protein Trafficking and Ciliogenesis in Mouse Photoreceptors. J Biol Chem 2016; 291:7142-55. [PMID: 26814127 DOI: 10.1074/jbc.m115.710954] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 12/22/2022] Open
Abstract
Arf-like protein 3 (ARL3) is a ubiquitous small GTPase expressed in ciliated cells of plants and animals. Germline deletion ofArl3in mice causes multiorgan ciliopathy reminiscent of Bardet-Biedl or Joubert syndromes. As photoreceptors are elegantly compartmentalized and have cilia, we probed the function of ARL3 (ADP-ribosylation factor (Arf)-like 3 protein) by generating rod photoreceptor-specific (prefix(rod)) and retina-specific (prefix(ret))Arl3deletions. In predegenerate(rod)Arl3(-/-)mice, lipidated phototransduction proteins showed trafficking deficiencies, consistent with the role of ARL3 as a cargo displacement factor for lipid-binding proteins. By contrast,(ret)Arl3(-/-)rods and cones expressing Cre recombinase during embryonic development formed neither connecting cilia nor outer segments and degenerated rapidly. Absence of cilia infers participation of ARL3 in ciliogenesis and axoneme formation. Ciliogenesis was rescued, and degeneration was reversed in part by subretinal injection of adeno-associated virus particles expressing ARL3-EGFP. The conditional knock-out phenotypes permitted identification of two ARL3 functions, both in the GTP-bound form as follows: one as a regulator of intraflagellar transport participating in photoreceptor ciliogenesis and the other as a cargo displacement factor transporting lipidated protein to the outer segment. Surprisingly, a farnesylated inositol polyphosphate phosphatase only trafficked from the endoplasmic reticulum to the Golgi, thereby excluding it from a role in photoreceptor cilia physiology.
Collapse
Affiliation(s)
- Christin Hanke-Gogokhia
- From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and the Department of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Zhijian Wu
- the NEI, National Institutes of Health, Bethesda, Maryland 20892
| | - Cecilia D Gerstner
- From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and
| | - Jeanne M Frederick
- From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and
| | - Houbin Zhang
- the Sichuan Provincial Key Laboratory for Human Disease Gene Study, Institute of Laboratory Medicine, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, 610072 Sichuan, China, the School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan, China, and
| | - Wolfgang Baehr
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132, From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and the Department of Biology, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
35
|
Abstract
PTEN plays an important role in diabetes pathogenesis not only as a key negative regulator of the PI3K/Akt pathway required for insulin action, but also via its role in other cell processes required to maintain metabolic homeostasis. We describe the generation of tissue-specific PTEN knockout mice and models of both type 1 and type 2 diabetes, which we have found useful for the study of diabetes pathogenesis. We also outline common methods suitable for the characterization of glucose homeostasis in rodent models, including techniques to measure beta cell function and insulin sensitivity.
Collapse
Affiliation(s)
- Cynthia T Luk
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada, M5G 2C4
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada, M5G 2C4
| | - Stephanie A Schroer
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada, M5G 2C4
| | - Minna Woo
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada, M5G 2C4.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada, M5G 2C4.
- Division of Endocrinology, Department of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada, M5G 2C4.
- Toronto General Research Institute, 101 College Street, MaRS Centre/TMDT, Room 10-363, Toronto, ON, Canada, M5G 1L7.
| |
Collapse
|
36
|
Kawaharada K, Kawamata M, Ochiya T. Rat embryonic stem cells create new era in development of genetically manipulated rat models. World J Stem Cells 2015; 7:1054-1063. [PMID: 26328021 PMCID: PMC4550629 DOI: 10.4252/wjsc.v7.i7.1054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/15/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Embryonic stem (ES) cells are isolated from the inner cell mass of a blastocyst, and are used for the generation of gene-modified animals. In mice, the transplantation of gene-modified ES cells into recipient blastocysts leads to the creation of gene-targeted mice such as knock-in and knock-out mice; these gene-targeted mice contribute greatly to scientific development. Although the rat is considered a useful laboratory animal alongside the mouse, fewer gene-modified rats have been produced due to the lack of robust establishment methods for rat ES cells. A new method for establishing rat ES cells using signaling inhibitors was reported in 2008. By considering the characteristics of rat ES cells, recent research has made progress in improving conditions for the stable culture of rat ES cells in order to generate gene-modified rats efficiently. In this review, we summarize several advanced methods to maintain rat ES cells and generate gene-targeted rats.
Collapse
|
37
|
Flemr M, Bühler M. Single-Step Generation of Conditional Knockout Mouse Embryonic Stem Cells. Cell Rep 2015; 12:709-16. [PMID: 26190102 DOI: 10.1016/j.celrep.2015.06.051] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/02/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022] Open
Abstract
Induction of double-strand DNA breaks (DSBs) by engineered nucleases, such as CRISPR/Cas9 or transcription activator-like effector nucleases (TALENs), stimulates knockin of exogenous DNA fragments via homologous recombination (HR). However, the knockin efficiencies reported so far have not allowed more complex in vitro genome modifications such as, for instance, simultaneous integration of a DNA fragment at two distinct genomic sites. We developed a reporter system to enrich for cells with engineered nuclease-assisted HR events. Using this system in mouse embryonic stem cells (mESCs), we achieve single-step biallelic and seamless integration of two loxP sites for Cre recombinase-mediated inducible gene knockout, as well as biallelic endogenous gene tagging with high efficiency. Our approach reduces the time and resources required for conditional knockout mESC generation dramatically.
Collapse
Affiliation(s)
- Matyas Flemr
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland.
| |
Collapse
|
38
|
Guna A, Butcher NJ, Bassett AS. Comparative mapping of the 22q11.2 deletion region and the potential of simple model organisms. J Neurodev Disord 2015; 7:18. [PMID: 26137170 PMCID: PMC4487986 DOI: 10.1186/s11689-015-9113-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/26/2015] [Indexed: 01/18/2023] Open
Abstract
Background 22q11.2 deletion syndrome (22q11.2DS) is the most common micro-deletion syndrome. The associated 22q11.2 deletion conveys the strongest known molecular risk for schizophrenia. Neurodevelopmental phenotypes, including intellectual disability, are also prominent though variable in severity. Other developmental features include congenital cardiac and craniofacial anomalies. Whereas existing mouse models have been helpful in determining the role of some genes overlapped by the hemizygous 22q11.2 deletion in phenotypic expression, much remains unknown. Simple model organisms remain largely unexploited in exploring these genotype-phenotype relationships. Methods We first developed a comprehensive map of the human 22q11.2 deletion region, delineating gene content, and brain expression. To identify putative orthologs, standard methods were used to interrogate the proteomes of the zebrafish (D. rerio), fruit fly (D. melanogaster), and worm (C. elegans), in addition to the mouse. Spatial locations of conserved homologues were mapped to examine syntenic relationships. We systematically cataloged available knockout and knockdown models of all conserved genes across these organisms, including a comprehensive review of associated phenotypes. Results There are 90 genes overlapped by the typical 2.5 Mb deletion 22q11.2 region. Of the 46 protein-coding genes, 41 (89.1 %) have documented expression in the human brain. Identified homologues in the zebrafish (n = 37, 80.4 %) were comparable to those in the mouse (n = 40, 86.9 %) and included some conserved gene cluster structures. There were 22 (47.8 %) putative homologues in the fruit fly and 17 (37.0 %) in the worm involving multiple chromosomes. Individual gene knockdown mutants were available for the simple model organisms, but not for mouse. Although phenotypic data were relatively limited for knockout and knockdown models of the 17 genes conserved across all species, there was some evidence for roles in neurodevelopmental phenotypes, including four of the six mitochondrial genes in the 22q11.2 deletion region. Conclusions Simple model organisms represent a powerful but underutilized means of investigating the molecular mechanisms underlying the elevated risk for neurodevelopmental disorders in 22q11.2DS. This comparative multi-species study provides novel resources and support for the potential utility of non-mouse models in expression studies and high-throughput drug screening. The approach has implications for other recurrent copy number variations associated with neurodevelopmental phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s11689-015-9113-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alina Guna
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Nancy J Butcher
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada ; Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Anne S Bassett
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada ; Institute of Medical Science, University of Toronto, Toronto, ON Canada ; Dalglish Family Hearts and Minds Clinic for Adults with 22q11.2 Deletion Syndrome, Division of Cardiology, Department of Medicine, Department of Psychiatry, and Toronto General Research Institute, University Health Network, Toronto, ON Canada ; Department of Psychiatry, University of Toronto, Toronto, ON Canada ; Centre for Addiction and Mental Health, 33 Russell Street, Room 1100, M5S 2S1 Toronto, ON Canada
| |
Collapse
|
39
|
Spinelli V, Martin C, Dorchies E, Vallez E, Dehondt H, Trabelsi MS, Tailleux A, Caron S, Staels B. Screening strategy to generate cell specific recombination: a case report with the RIP-Cre mice. Transgenic Res 2015; 24:803-12. [DOI: 10.1007/s11248-015-9889-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/11/2015] [Indexed: 12/25/2022]
|
40
|
Menezes ME, Das SK, Emdad L, Windle JJ, Wang XY, Sarkar D, Fisher PB. Genetically engineered mice as experimental tools to dissect the critical events in breast cancer. Adv Cancer Res 2014; 121:331-382. [PMID: 24889535 PMCID: PMC4349377 DOI: 10.1016/b978-0-12-800249-0.00008-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elucidating the mechanism of pathogenesis of breast cancer has greatly benefited from breakthrough advances in both genetically engineered mouse (GEM) models and xenograft transplantation technologies. The vast array of breast cancer mouse models currently available is testimony to the complexity of mammary tumorigenesis and attempts by investigators to accurately portray the heterogeneity and intricacies of this disease. Distinct molecular changes that drive various aspects of tumorigenesis, such as alterations in tumor cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and drug resistance have been evaluated using the currently available GEM breast cancer models. GEM breast cancer models are also being exploited to evaluate and validate the efficacy of novel therapeutics, vaccines, and imaging modalities for potential use in the clinic. This review provides a synopsis of the various GEM models that are expanding our knowledge of the nuances of breast cancer development and progression and can be instrumental in the development of novel prevention and therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Mitchell E Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
41
|
Genetic inducible fate mapping in adult mice using tamoxifen-dependent Cre recombinases. Methods Mol Biol 2014; 1194:113-39. [PMID: 25064100 DOI: 10.1007/978-1-4939-1215-5_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Cre/lox site-specific recombination system allows the control of gene activity in space and time in almost any tissue of the mouse. A major technical advance was the development of tamoxifen-dependent Cre recombinases, such as CreER(T2), that can be activated by administration of tamoxifen to the animal. This powerful tool greatly facilitates the study of gene functions and the generation of more realistic animal models of sporadic human diseases. Another important application of tamoxifen-dependent Cre recombinases is genetic inducible fate mapping (GIFM). In GIFM studies, the inducible Cre/lox system is used to genetically label a defined cell population at a selected time by irreversible activation of the expression of a Cre-responsive reporter transgene. Then, marked cells are detected at later time points to determine how the originally labeled progenitors contribute to specific structures and cell types during pre- and postnatal development. GIFM was initially applied during mouse embryogenesis, but is now increasingly used for cell lineage tracing in adult mice under physiological and pathophysiological conditions. Here we describe the design of GIFM experiments in adult mice as exemplified by CreER(T2)-assisted tracing of vascular smooth muscle cells during the development of atherosclerotic lesions. First, we give an overview of reporter transgenes available for genetic cell marking that are expressed from the Rosa26 locus, such as β-galactosidase and fluorescent proteins. Then we present detailed protocols for the generation of experimental mice for GIFM studies, the induction of cell labeling by tamoxifen treatment, and the detection of marked cells in fixed and live tissues. Each section also provides a discussion of limitations and common pitfalls of GIFM experiments. Most of the protocols can be easily adapted to other developmental stages, cell types, Cre recombinases, and reporter transgenes and, thus, can be used as general guidelines for GIFM studies in mice.
Collapse
|
42
|
Kobayashi Y, Hensch TK. Germline recombination by conditional gene targeting with Parvalbumin-Cre lines. Front Neural Circuits 2013; 7:168. [PMID: 24137112 PMCID: PMC3797395 DOI: 10.3389/fncir.2013.00168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/26/2013] [Indexed: 01/05/2023] Open
Affiliation(s)
- Yohei Kobayashi
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University Cambridge, MA, USA ; Department of Neurology, F. M. Kirby Neurobiology Center, Harvard Medical School, Boston Children's Hospital MA, USA
| | | |
Collapse
|
43
|
Yusa K. Seamless genome editing in human pluripotent stem cells using custom endonuclease-based gene targeting and the piggyBac transposon. Nat Protoc 2013. [PMID: 24071911 DOI: 10.1038/nprot.2013.126.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
I report here a detailed protocol for seamless genome editing using the piggyBac transposon in human pluripotent stem cells (hPSCs). Recent advances in custom endonucleases have enabled us to routinely perform genome editing in hPSCs. Conventional approaches use the Cre/loxP system that leaves behind residual sequences in the targeted genome. I used the piggyBac transposon to seamlessly remove a drug selection cassette and demonstrated safe genetic correction of a mutation causing α-1 antitrypsin deficiency in patient-derived hPSCs. An alternative approach to using the piggyBac transposon to correct mutations involves using single-stranded oligonucleotides, which is a faster process to complete. However, this experimental procedure is rather complicated and it may be hard to achieve homozygous modifications. In contrast, using the piggyBac transposon with drug selection-based enrichment of genetic modifications, as described here, is simple and can yield multiple correctly targeted clones, including homozygotes. Although two rounds of genetic manipulation are required to achieve homozygote modifications, the entire process takes ∼3 months to complete.
Collapse
Affiliation(s)
- Kosuke Yusa
- Wellcome Trust Sanger Institute, Cambridge, UK.
| |
Collapse
|
44
|
Yusa K. Seamless genome editing in human pluripotent stem cells using custom endonuclease-based gene targeting and the piggyBac transposon. Nat Protoc 2013; 8:2061-78. [PMID: 24071911 DOI: 10.1038/nprot.2013.126] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
I report here a detailed protocol for seamless genome editing using the piggyBac transposon in human pluripotent stem cells (hPSCs). Recent advances in custom endonucleases have enabled us to routinely perform genome editing in hPSCs. Conventional approaches use the Cre/loxP system that leaves behind residual sequences in the targeted genome. I used the piggyBac transposon to seamlessly remove a drug selection cassette and demonstrated safe genetic correction of a mutation causing α-1 antitrypsin deficiency in patient-derived hPSCs. An alternative approach to using the piggyBac transposon to correct mutations involves using single-stranded oligonucleotides, which is a faster process to complete. However, this experimental procedure is rather complicated and it may be hard to achieve homozygous modifications. In contrast, using the piggyBac transposon with drug selection-based enrichment of genetic modifications, as described here, is simple and can yield multiple correctly targeted clones, including homozygotes. Although two rounds of genetic manipulation are required to achieve homozygote modifications, the entire process takes ∼3 months to complete.
Collapse
Affiliation(s)
- Kosuke Yusa
- Wellcome Trust Sanger Institute, Cambridge, UK.
| |
Collapse
|
45
|
Bräutigam C, Raggioli A, Winter J. The Wnt/β-catenin pathway regulates the expression of the miR-302 cluster in mouse ESCs and P19 cells. PLoS One 2013; 8:e75315. [PMID: 24040406 PMCID: PMC3769259 DOI: 10.1371/journal.pone.0075315] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/12/2013] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs of the miR-302 cluster are involved in early embryonic development and somatic cell reprogramming. Expression of the miR-302 gene is regulated by the binding of the pluripotency factors Oct4, Sox2 and Nanog to the miR-302 promoter. The specific expression pattern of the miR-302 gene suggested that additional transcription factors might be involved in its regulation. Here, we show that the miR-302 promoter is a direct target of the Wnt/β-catenin signaling pathway. We found that the miR-302 promoter contains three different functional Tcf/Lef binding sites. Two of the three sites were located within the cluster of Oct4/Sox2/Nanog binding sites and were essential for Wnt/β-catenin-mediated regulation of the miR-302 gene. Tcf3, the only Tcf/Lef factor that bound to the miR-302 promoter, acted as a repressor of miR-302 transcription. Interestingly, mutations in the two Tcf/Lef binding sites and the Oct4/Nanog binding sites abolished miR-302 promoter responsiveness to Wnt signaling, suggesting that the Tcf/Lef and the Oct4/Nanog sites interact genetically.
Collapse
Affiliation(s)
- Christien Bräutigam
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- University of Freiburg Faculty of Biology, Freiburg, Germany
| | - Angelo Raggioli
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- University of Freiburg Faculty of Biology, Freiburg, Germany
| | - Jennifer Winter
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Institute of Human Genetics, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
- * E-mail:
| |
Collapse
|
46
|
Sandoz G, Levitz J. Optogenetic techniques for the study of native potassium channels. Front Mol Neurosci 2013; 6:6. [PMID: 23596388 PMCID: PMC3622882 DOI: 10.3389/fnmol.2013.00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/07/2013] [Indexed: 11/13/2022] Open
Abstract
Optogenetic tools were originally designed to target specific neurons for remote control of their activity by light and have largely been built around opsin-based channels and pumps. These naturally photosensitive opsins are microbial in origin and are unable to mimic the properties of native neuronal receptors and channels. Over the last 8 years, photoswitchable tethered ligands (PTLs) have enabled fast and reversible control of mammalian ion channels, allowing optical control of neuronal activity. One such PTL, maleimide-azobenzene-quaternary ammonium (MAQ), contains a maleimide (M) to tether the molecule to a genetically engineered cysteine, a photoisomerizable azobenzene (A) linker and a pore-blocking quaternary ammonium group (Q). MAQ was originally used to photocontrol SPARK, an engineered light-gated potassium channel derived from Shaker. Potassium channel photoblock by MAQ has recently been extended to a diverse set of mammalian potassium channels including channels in the voltage-gated and K2P families. Photoswitchable potassium channels, which maintain native properties, pave the way for the optical control of specific aspects of neuronal function and for high precision probing of a specific channel’s physiological functions. To extend optical control to natively expressed channels, without overexpression, one possibility is to develop a knock-in mouse in which the wild-type channel gene is replaced by its light-gated version. Alternatively, the recently developed photoswitchable conditional subunit technique provides photocontrol of the channel of interest by molecular replacement of wild-type complexes. Finally, photochromic ligands also allow photocontrol of potassium channels without genetic manipulation using soluble compounds. In this review we discuss different techniques for optical control of native potassium channels and their associated advantages and disadvantages.
Collapse
Affiliation(s)
- Guillaume Sandoz
- Institute of Biology Valrose, CNRS UMR 7707, INSERM UMR 1091, Université Nice-Sophia Antipolis Nice, France ; Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, and Université de Nice Sophia-Antipolis Sophia-Antipolis, Valbonne, France ; Laboratories of Excellence, Ion Channel Science and Therapeutics Nice, France
| | | |
Collapse
|
47
|
Wu X, Northcott PA, Croul S, Taylor MD. Mouse models of medulloblastoma. CHINESE JOURNAL OF CANCER 2013; 30:442-9. [PMID: 21718590 PMCID: PMC4013419 DOI: 10.5732/cjc.011.10040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Medulloblastoma is the most common malignant pediatric brain tumor. Despite its prevalence and importance in pediatric neuro-oncology, the genes and pathways responsible for its initiation, maintenance, and progression remain poorly understood. Genetically engineered mouse models are an essential tool for uncovering the molecular and cellular basis of human diseases, including cancer, and serve a valuable role as preclinical models for testing targeted therapies. In this review, we summarize how such models have been successfully applied to the study of medulloblastoma over the past decade and what we might expect in the coming years.
Collapse
Affiliation(s)
- Xiaochong Wu
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Ontario, M5G 1L7, Canada
| | | | | | | |
Collapse
|
48
|
Miao X. Recent advances in the development of new transgenic animal technology. Cell Mol Life Sci 2013; 70:815-28. [PMID: 22833168 PMCID: PMC11113483 DOI: 10.1007/s00018-012-1081-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/30/2012] [Accepted: 07/03/2012] [Indexed: 12/14/2022]
Abstract
Transgenic animal technology is one of the fastest growing biotechnology areas. It is used to integrate exogenous genes into the animal genome by genetic engineering technology so that these genes can be inherited and expressed by offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors in the production of transgenic animals. A variety of transgenic technologies are available. Each has its own advantages and disadvantages and needs further study because of unresolved technical and safety issues. Further studies will allow transgenic technology to explore gene function, animal genetic improvement, bioreactors, animal disease models, and organ transplantation. This article reviews the recently developed animal transgenic technologies, including the germ line stem cell-mediated method to improve efficiency, gene targeting to improve accuracy, RNA interference-mediated gene silencing technology, zinc-finger nuclease gene targeting technology and induced pluripotent stem cell technology. These new transgenic techniques can provide a better platform to develop transgenic animals for breeding new animal varieties and promote the development of medical sciences, livestock production, and other fields.
Collapse
Affiliation(s)
- Xiangyang Miao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
49
|
Abstract
Mouse genetic engineering has revolutionized our understanding of the molecular and genetic basis of heart development and disease. This technology involves conditional tissue-specific and temporal transgenic and gene targeting approaches, as well as introduction of polymorphisms into the mouse genome. These approaches are increasingly used to elucidate the genetic pathways underlying tissue homeostasis, physiology, and pathophysiology of adult heart. They have also led to the development of clinically relevant models of human cardiac diseases. Here, we review the technologies and their limitations in general and the cardiovascular research community in particular.
Collapse
Affiliation(s)
- Thomas Doetschman
- BIO5 Institute and Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
50
|
Modeling disease mutations by gene targeting in one-cell mouse embryos. Proc Natl Acad Sci U S A 2012; 109:9354-9. [PMID: 22660928 DOI: 10.1073/pnas.1121203109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene targeting by zinc-finger nucleases in one-cell embryos provides an expedite mutagenesis approach in mice, rats, and rabbits. This technology has been recently used to create knockout and knockin mutants through the deletion or insertion of nucleotides. Here we apply zinc-finger nucleases in one-cell mouse embryos to generate disease-related mutants harboring single nucleotide or codon replacements. Using a gene-targeting vector or a synthetic oligodesoxynucleotide as template for homologous recombination, we introduced missense and silent mutations into the Rab38 gene, encoding a small GTPase that regulates intracellular vesicle trafficking. These results demonstrate the feasibility of seamless gene editing in one-cell embryos to create genetic disease models and establish synthetic oligodesoxynucleotides as a simplified mutagenesis tool.
Collapse
|