1
|
Popović M, Gavrović-Jankulović M. Yeast Surface Display Methodology for the Characterization of Food Allergens In Situ. Methods Mol Biol 2024; 2717:41-63. [PMID: 37737977 DOI: 10.1007/978-1-0716-3453-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
High throughput allergen characterization is often based on phage display technique which is limited by the constraints of a prokaryotic expression system such as potential loss of conformational epitopes and lack of post-translational modifications. Replacing the phage display platform with a yeast surface display system could accelerate the immunological characterization of complex structured allergens. Yeast surface display is a powerful technique that allows faster immunochemical characterization of allergens in situ without the need for protein purification. Yeast surface display offers an alternative that could lead to the improvement of standard immunodiagnostic and immunotherapeutic approaches. In this chapter, we describe a protocol on yeast surface display for the characterization of plant-derived food allergens using actinidin (Act d 1), a major kiwifruit allergen, as a model system.
Collapse
Affiliation(s)
- Milica Popović
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia.
| | | |
Collapse
|
2
|
Heslop R, Gao M, Brito Lira A, Sternlieb T, Loock M, Sanghi SR, Cestari I. Genome-Wide Libraries for Protozoan Pathogen Drug Target Screening Using Yeast Surface Display. ACS Infect Dis 2023; 9:1078-1091. [PMID: 37083339 PMCID: PMC10187560 DOI: 10.1021/acsinfecdis.2c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 04/22/2023]
Abstract
The lack of genetic tools to manipulate protozoan pathogens has limited the use of genome-wide approaches to identify drug or vaccine targets and understand these organisms' biology. We have developed an efficient method to construct genome-wide libraries for yeast surface display (YSD) and developed a YSD fitness screen (YSD-FS) to identify drug targets. We show the efficacy of our method by generating genome-wide libraries for Trypanosoma brucei, Trypanosoma cruzi, and Giardia lamblia parasites. Each library has a diversity of ∼105 to 106 clones, representing ∼6- to 30-fold of the parasite's genome. Nanopore sequencing confirmed the libraries' genome coverage with multiple clones for each parasite gene. Western blot and imaging analysis confirmed surface expression of the G. lamblia library proteins in yeast. Using the YSD-FS assay, we identified bonafide interactors of metronidazole, a drug used to treat protozoan and bacterial infections. We also found enrichment in nucleotide-binding domain sequences associated with yeast increased fitness to metronidazole, indicating that this drug might target multiple enzymes containing nucleotide-binding domains. The libraries are valuable biological resources for discovering drug or vaccine targets, ligand receptors, protein-protein interactions, and pathogen-host interactions. The library assembly approach can be applied to other organisms or expression systems, and the YSD-FS assay might help identify new drug targets in protozoan pathogens.
Collapse
Affiliation(s)
- Rhiannon Heslop
- Institute
of Parasitology, McGill University, Ste Anne de Bellevue, Montreal, QC H9X 3V9, Canada
- Faculté
de Pharmacie de Tours, 31, Avenue Monge, 37200 Tours, France
| | - Mengjin Gao
- Institute
of Parasitology, McGill University, Ste Anne de Bellevue, Montreal, QC H9X 3V9, Canada
| | - Andressa Brito Lira
- Institute
of Parasitology, McGill University, Ste Anne de Bellevue, Montreal, QC H9X 3V9, Canada
| | - Tamara Sternlieb
- Institute
of Parasitology, McGill University, Ste Anne de Bellevue, Montreal, QC H9X 3V9, Canada
| | - Mira Loock
- Institute
of Parasitology, McGill University, Ste Anne de Bellevue, Montreal, QC H9X 3V9, Canada
| | - Sahil Rao Sanghi
- Institute
of Parasitology, McGill University, Ste Anne de Bellevue, Montreal, QC H9X 3V9, Canada
| | - Igor Cestari
- Institute
of Parasitology, McGill University, Ste Anne de Bellevue, Montreal, QC H9X 3V9, Canada
- Division
of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
3
|
Sternlieb T, Loock M, Gao M, Cestari I. Efficient Generation of Genome-wide Libraries for Protein-ligand Screens Using Gibson Assembly. Bio Protoc 2022; 12:e4558. [PMID: 36532687 PMCID: PMC9724014 DOI: 10.21769/bioprotoc.4558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Genome-wide screens using yeast or phage displays are powerful tools for identifying protein-ligand interactions, including drug or vaccine targets, ligand receptors, or protein-protein interactions. However, assembling libraries for genome-wide screens can be challenging and often requires unbiased cloning of 10 5 -10 7 DNA fragments for a complete representation of a eukaryote genome. A sub-optimal genomic library can miss key genomic sequences and thus result in biased screens. Here, we describe an efficient method to generate genome-wide libraries for yeast surface display using Gibson assembly. The protocol entails genome fragmentation, ligation of adapters, library cloning using Gibson assembly, library transformation, library DNA recovery, and a streamlined Oxford nanopore library sequencing procedure that covers the length of the cloned DNA fragments. We also describe a computational pipeline to analyze the library coverage of the genome and predict the proportion of expressed proteins. The method allows seamless library transfer among multiple vectors and can be easily adapted to any expression system.
Collapse
Affiliation(s)
- Tamara Sternlieb
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada
| | - Mira Loock
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada
| | - Mengjin Gao
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada
| | - Igor Cestari
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada
,
Division of Experimental Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
,
*For correspondence:
| |
Collapse
|
4
|
Raeeszadeh-Sarmazdeh M, Boder ET. Yeast Surface Display: New Opportunities for a Time-Tested Protein Engineering System. Methods Mol Biol 2022; 2491:3-25. [PMID: 35482182 DOI: 10.1007/978-1-0716-2285-8_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yeast surface display has proven to be a powerful tool for the discovery of antibodies and other novel binding proteins and for engineering the affinity and selectivity of existing proteins for their targets. In the decades since the first demonstrations of the approach, the range of yeast display applications has greatly expanded to include many different protein targets and has grown to encompass methods for rapid protein characterization. Here, we briefly summarize the development of yeast display methodologies and highlight several selected examples of recent applications to timely and challenging protein engineering and characterization problems.
Collapse
Affiliation(s)
| | - Eric T Boder
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
5
|
Abstract
Alphaviruses are transmitted to humans via bites of infected mosquitoes. Although alphaviruses have caused a wide range of outbreaks and crippling disease, the availability of licensed vaccines or antiviral therapies remains limited. Mosquito vectors such as Aedes and Culex are the main culprits in the transmission of alphaviruses. This review explores how mosquito saliva may promote alphavirus infection. Identifying the roles of mosquito-derived factors in alphavirus pathogenesis will generate novel tools to circumvent and control mosquito-borne alphavirus infections in humans.
Collapse
|
6
|
Bidlingmaier S, Ha K, Lee NK, Su Y, Liu B. Proteome-wide Identification of Novel Ceramide-binding Proteins by Yeast Surface cDNA Display and Deep Sequencing. Mol Cell Proteomics 2016; 15:1232-45. [PMID: 26729710 DOI: 10.1074/mcp.m115.055954] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/06/2022] Open
Abstract
Although the bioactive sphingolipid ceramide is an important cell signaling molecule, relatively few direct ceramide-interacting proteins are known. We used an approach combining yeast surface cDNA display and deep sequencing technology to identify novel proteins binding directly to ceramide. We identified 234 candidate ceramide-binding protein fragments and validated binding for 20. Most (17) bound selectively to ceramide, although a few (3) bound to other lipids as well. Several novel ceramide-binding domains were discovered, including the EF-hand calcium-binding motif, the heat shock chaperonin-binding motif STI1, the SCP2 sterol-binding domain, and the tetratricopeptide repeat region motif. Interestingly, four of the verified ceramide-binding proteins (HPCA, HPCAL1, NCS1, and VSNL1) and an additional three candidate ceramide-binding proteins (NCALD, HPCAL4, and KCNIP3) belong to the neuronal calcium sensor family of EF hand-containing proteins. We used mutagenesis to map the ceramide-binding site in HPCA and to create a mutant HPCA that does not bind to ceramide. We demonstrated selective binding to ceramide by mammalian cell-produced wild type but not mutant HPCA. Intriguingly, we also identified a fragment from prostaglandin D2synthase that binds preferentially to ceramide 1-phosphate. The wide variety of proteins and domains capable of binding to ceramide suggests that many of the signaling functions of ceramide may be regulated by direct binding to these proteins. Based on the deep sequencing data, we estimate that our yeast surface cDNA display library covers ∼60% of the human proteome and our selection/deep sequencing protocol can identify target-interacting protein fragments that are present at extremely low frequency in the starting library. Thus, the yeast surface cDNA display/deep sequencing approach is a rapid, comprehensive, and flexible method for the analysis of protein-ligand interactions, particularly for the study of non-protein ligands.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| | - Kevin Ha
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| | - Nam-Kyung Lee
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| | - Yang Su
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| | - Bin Liu
- From the Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110
| |
Collapse
|
7
|
Bidlingmaier S, Liu B. Identification of Novel Protein-Ligand Interactions by Exon Microarray Analysis of Yeast Surface Displayed cDNA Library Selection Outputs. Methods Mol Biol 2015; 1319:179-192. [PMID: 26060075 PMCID: PMC4842228 DOI: 10.1007/978-1-4939-2748-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Yeast surface display is widely utilized to screen large libraries for proteins or protein fragments with specific binding properties. We have previously constructed and utilized yeast surface displayed human cDNA libraries to identify protein fragments that bind to various target ligands. Conventional approaches employ monoclonal screening and sequencing of polyclonal outputs that have been enriched for binding to a target molecule by several rounds of affinity-based selection. Frequently, a small number of clones will dominate the selection output, making it difficult to comprehensively identify potentially important interactions due to low representation in the selection output. We have developed a novel method to address this problem. By analyzing selection outputs using high-density human exon microarrays, the full potential of selection output diversity can be revealed in one experiment. FACS-based selection using yeast surface displayed human cDNA libraries combined with exon microarray analysis of the selection outputs is a powerful way of rapidly identifying protein fragments with affinity for any soluble ligand that can be fluorescently detected, including small biological molecules and drugs. In this report we present protocols for exon microarray-based analysis of yeast surface display human cDNA library selection outputs.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | | |
Collapse
|
8
|
Bidlingmaier S, Su Y, Liu B. Combining Phage and Yeast Cell Surface Antibody Display to Identify Novel Cell Type-Selective Internalizing Human Monoclonal Antibodies. Methods Mol Biol 2015; 1319:51-63. [PMID: 26060069 DOI: 10.1007/978-1-4939-2748-7_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | | | | |
Collapse
|
9
|
Bidlingmaier S, Liu B. Utilizing Yeast Surface Human Proteome Display Libraries to Identify Small Molecule-Protein Interactions. Methods Mol Biol 2015; 1319:203-14. [PMID: 26060077 PMCID: PMC4838597 DOI: 10.1007/978-1-4939-2748-7_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The identification of proteins that interact with small bioactive molecules is a critical but often difficult and time-consuming step in understanding cellular signaling pathways or molecular mechanisms of drug action. Numerous methods for identifying small molecule-interacting proteins have been developed and utilized, including affinity-based purification followed by mass spectrometry analysis, protein microarrays, phage display, and three-hybrid approaches. Although all these methods have been used successfully, there remains a need for additional techniques for analyzing small molecule-protein interactions. A promising method for identifying small molecule-protein interactions is affinity-based selection of yeast surface-displayed human proteome libraries. Large and diverse libraries displaying human protein fragments on the surface of yeast cells have been constructed and subjected to FACS-based enrichment followed by comprehensive exon microarray-based output analysis to identify protein fragments with affinity for small molecule ligands. In a recent example, a proteome-wide search has been successfully carried out to identify cellular proteins binding to the signaling lipids PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Known phosphatidylinositide-binding proteins such as pleckstrin homology domains were identified, as well as many novel interactions. Intriguingly, many novel nuclear phosphatidylinositide-binding proteins were discovered. Although the existence of an independent pool of nuclear phosphatidylinositides has been known about for some time, their functions and mechanism of action remain obscure. Thus, the identification and subsequent study of nuclear phosphatidylinositide-binding proteins is expected to bring new insights to this important biological question. Based on the success with phosphatidylinositides, it is expected that the screening of yeast surface-displayed human proteome libraries will be of general use for the discovery of novel small molecule-protein interactions, thus facilitating the study of cellular signaling pathways and mechanisms of drug action or toxicity.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1001 Potrero Avenue, Box 1305, San Francisco, CA, 94110, USA
| | | |
Collapse
|
10
|
Bidlingmaier S, Liu B. Identification of Posttranslational Modification-Dependent Protein Interactions Using Yeast Surface Displayed Human Proteome Libraries. Methods Mol Biol 2015; 1319:193-202. [PMID: 26060076 DOI: 10.1007/978-1-4939-2748-7_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The identification of proteins that interact specifically with posttranslational modifications such as phosphorylation is often necessary to understand cellular signaling pathways. Numerous methods for identifying proteins that interact with posttranslational modifications have been utilized, including affinity-based purification and analysis, protein microarrays, phage display, and tethered catalysis. Although these techniques have been used successfully, each has limitations. Recently, yeast surface-displayed human proteome libraries have been utilized to identify protein fragments with affinity for various target molecules, including phosphorylated peptides. When coupled with fluorescently activated cell sorting and high throughput methods for the analysis of selection outputs, yeast surface-displayed human proteome libraries can rapidly and efficiently identify protein fragments with affinity for any soluble ligand that can be fluorescently detected, including posttranslational modifications. In this review we compare the use of yeast surface display libraries to other methods for the identification of interactions between proteins and posttranslational modifications and discuss future applications of the technology.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | | |
Collapse
|
11
|
Yeast surface display is a novel tool for the rapid immunological characterization of plant-derived food allergens. Immunol Res 2014; 61:230-9. [DOI: 10.1007/s12026-014-8614-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Khoshnan A, Ou S, Ko J, Patterson PH. Antibodies and intrabodies against huntingtin: production and screening of monoclonals and single-chain recombinant forms. Methods Mol Biol 2013; 1010:231-251. [PMID: 23754229 DOI: 10.1007/978-1-62703-411-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Antibodies can be extremely useful tools for the field of triplet repeats diseases. These reagents are important for localizing proteins in tissues and they can be used in the isolation and characterization of the components of protein complexes. In the context of huntingtin (Htt), antibodies can distinguish Htt with normal or an expanded polyglutamine (polyQ) repeats, and they can identify distinct conformations of Htt. Htt is the protein that, when mutated to contain an expanded polyQ motif, causes Huntington's disease (HD). Our group has produced monoclonal and recombinant single-chain antibodies (intrabodies) that can be used for these purposes and to perturb the function of Htt in living cells. Studies with anti-Htt intrabodies have led to identification of novel pathogenic epitopes. Moreover, some of the isolated intrabodies can reduce the neurotoxicity of mutant Htt in cell culture and animal models of HD. Thus, the production of antibodies and intrabodies has made a significant contribution to the understanding of HD pathogenesis and has introduced a novel strategy to treat this debilitating neurodegenerative disorder.
Collapse
Affiliation(s)
- Ali Khoshnan
- Biology Division, California Institute of Technology, Pasadena, CA, USA
| | | | | | | |
Collapse
|