1
|
Hennig M, Bhattacharjee RB, Agarwal I, Alfaifi A, Casillas JE, Chavez S, Ishimaru D, Liston D, Mohapatra S, Molla T, Pathare S, Sidhu MS, Wang P, Wang Z, Lombana TN, Kharitonov VG, Couch JA, Lockhart DJ, Wustman BA. Inhaled DNAI1 mRNA therapy for treatment of primary ciliary dyskinesia. Proc Natl Acad Sci U S A 2025; 122:e2421915122. [PMID: 40294271 PMCID: PMC12067232 DOI: 10.1073/pnas.2421915122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder caused by mutations in one of at least 50 different genes that encode proteins involved in the biogenesis, structure, or function of motile cilia. Genetically inherited defects in motile cilia cause PCD, a debilitating respiratory disease for which there is no approved therapy. The dynein axonemal intermediate chain 1 (DNAI1) protein is a key structural element of the ciliary outer dynein arm (ODA) critical for normal ciliary activity and subsequent clearance of mucus from the conducting airways in humans. Loss-of-function mutations in DNAI1 account for up to 10% of all PCD cases, with functional abnormalities in patients presenting at or near birth and leading to a life-long course of disability, including progressive loss of lung function and bronchiectasis by adulthood. This underscores the significant unmet need for disease-modifying treatments that restore ciliary activity and mucociliary clearance in PCD patients. In this work, we demonstrate that lipid nanoparticle (LNP)-formulated human DNAI1 mRNA can be delivered as an aerosol to primary human bronchial epithelial cell models and to nonhuman primate (NHP) lungs. Additionally, we show that delivery of aerosolized LNP-DNAI1 mRNA to NHPs leads to detectable levels of newly translated human DNAI1 protein, at doses that overlap with exposures in an in vitro cell-based PCD model enabling rescue of ciliary function. Therefore, these data support further development of the inhaled DNAI1 mRNA therapy in clinical studies as a potential disease-modifying treatment for PCD.
Collapse
Affiliation(s)
- Mirko Hennig
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | | | - Ishita Agarwal
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Ali Alfaifi
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Jade E. Casillas
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Sofia Chavez
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Daniella Ishimaru
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - David Liston
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Sakya Mohapatra
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Touhidul Molla
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Suyog Pathare
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Maninder S. Sidhu
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Peng Wang
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Zechen Wang
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - T. Noelle Lombana
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | | | - Jessica A. Couch
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - David J. Lockhart
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Brandon A. Wustman
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| |
Collapse
|
2
|
Roth D, Şahin AT, Ling F, Tepho N, Senger CN, Quiroz EJ, Calvert BA, van der Does AM, Güney TG, Glasl S, van Schadewijk A, von Schledorn L, Olmer R, Kanso E, Nawroth JC, Ryan AL. Structure and function relationships of mucociliary clearance in human and rat airways. Nat Commun 2025; 16:2446. [PMID: 40069153 PMCID: PMC11897160 DOI: 10.1038/s41467-025-57667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
Mucociliary clearance is a vital defense mechanism of the human airways, protecting against harmful particles and infections. When this process fails, it contributes to respiratory diseases like chronic obstructive pulmonary disease (COPD) and asthma. While advances in single-cell transcriptomics have revealed the complexity of airway composition, much of what we know about how airway structure impacts clearance relies on animal studies. This limits our ability to create accurate human-based models of airway diseases. Here we show that the airways in female rats and in humans exhibit species-specific differences in the distribution of ciliated and secretory cells as well as in ciliary beat, resulting in significantly higher clearance effectiveness in humans. We further reveal that standard lab-grown cultures exhibit lower clearance effectiveness compared to human airways, and we identify the underlying structural differences. By combining diverse experiments and physics-based modeling, we establish universal benchmarks to assess human airway function, interpret preclinical models, and better understand disease-specific impairments in mucociliary clearance.
Collapse
Affiliation(s)
- Doris Roth
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Ayşe Tuğçe Şahin
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Feng Ling
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, German Center for Lung Research (DZL), Munich, Germany
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Niels Tepho
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Christiana N Senger
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Erik J Quiroz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ben A Calvert
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anne M van der Does
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tankut G Güney
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Sarah Glasl
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Annemarie van Schadewijk
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laura von Schledorn
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
- Biomedical Research in End stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Ruth Olmer
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
- Biomedical Research in End stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Eva Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Janna C Nawroth
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany.
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Comprehensive Pneumology Center Munich, German Center for Lung Research (DZL), Munich, Germany.
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA.
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA.
| | - Amy L Ryan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA.
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Roth D, Şahin AT, Ling F, Tepho N, Senger CN, Quiroz EJ, Calvert BA, van der Does AM, Güney TG, Glasl S, van Schadewijk A, von Schledorn L, Olmer R, Kanso E, Nawroth JC, Ryan AL. Structure and Function Relationships of Mucociliary Clearance in Human and Rat Airways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.24.572054. [PMID: 38187619 PMCID: PMC10769450 DOI: 10.1101/2023.12.24.572054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mucociliary clearance is a vital defense mechanism of the human airways, protecting against harmful particles and infections. When this process fails, it contributes to respiratory diseases like chronic obstructive pulmonary disease (COPD) and asthma. While advances in single-cell transcriptomics have revealed the complexity of airway composition, much of what we know about how airway structure impacts clearance relies on animal studies. This limits our ability to create accurate human-based models of airway diseases. Here we show that the airways in female rats and in humans exhibit species-specific differences in the distribution of ciliated and secretory cells as well as in ciliary beat, resulting in significantly higher clearance effectiveness in humans. We further reveal that standard lab-grown cultures exhibit lower clearance effectiveness compared to human airways, and we identify the underlying structural differences. By combining diverse experiments and physics-based modeling, we establish universal benchmarks to assess human airway function, interpret preclinical models, and better understand disease-specific impairments in mucociliary clearance.
Collapse
Affiliation(s)
- Doris Roth
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Munich, D-81675, Germany
- Comprehensive Pneumology Center Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Ayşe Tuğçe Şahin
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Munich, D-81675, Germany
- Comprehensive Pneumology Center Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Feng Ling
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Munich, D-81675, Germany
- Comprehensive Pneumology Center Munich, German Center for Lung Research (DZL), Munich, Germany
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Niels Tepho
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Munich, D-81675, Germany
- Comprehensive Pneumology Center Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Christiana N. Senger
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Erik J. Quiroz
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ben A. Calvert
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Anne M. van der Does
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tankut G. Güney
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Munich, D-81675, Germany
- Comprehensive Pneumology Center Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Sarah Glasl
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg D-85764, Germany
- Comprehensive Pneumology Center Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Annemarie van Schadewijk
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laura von Schledorn
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Hannover, D-30625, Germany
- Biomedical Research in End stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, D-30625, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, D-30625, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Hannover, D-30625, Germany
- Biomedical Research in End stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, D-30625, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, D-30625, Germany
| | - Eva Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Janna C. Nawroth
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Munich, D-81675, Germany
- Comprehensive Pneumology Center Munich, German Center for Lung Research (DZL), Munich, Germany
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA 52242, USA
| |
Collapse
|
4
|
Wang X, Tse C, Singh A. Discovery and Development of CFTR Modulators for the Treatment of Cystic Fibrosis. J Med Chem 2025; 68:2255-2300. [PMID: 39882833 DOI: 10.1021/acs.jmedchem.4c02547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which regulates ion and fluid transport across epithelial cells. Mutations lead to complications, with life-limiting lung disease being the most severe manifestation. Traditional treatments focused on managing symptoms, but advances in understanding CF's molecular basis led to small-molecule CFTR modulators. Ivacaftor, which is a potentiator, was approved for gating mutations. Dual combinations like ivacaftor/lumacaftor and ivacaftor/tezacaftor brought together a potentiator and a class 1 corrector for F508del homozygous patients. Triple-combination CFTR modulators, including ivacaftor/tezacaftor/elexacaftor with an additional class 2 corrector, are now the standard of care for most CF patients, transforming the outlook for this disease. These drugs stabilize and potentiate the CFTR protein, improving lung function, sweat chloride levels, quality of life, and survival. This Perspective discusses CFTR structure and mutations, biological assays, medicinal chemistry research in identifying CFTR modulators, and clinical data of these agents.
Collapse
Affiliation(s)
- Xueqing Wang
- AbbVie Inc., 1000 Gateway Blvd, South San Francisco, California 94080, United States
| | - Chris Tse
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ashvani Singh
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
5
|
Otuya DO, Liu Z, Joseph R, Hanafy MA, Vijaykumar K, Stanford D, Raju SV, Baker EH, Rowe SM, Tearney GJ, Solomon GM. Toward in vivo bronchoscopic functional CFTR assessment using a short circuit current measurement probe. Am J Physiol Lung Cell Mol Physiol 2025; 328:L313-L320. [PMID: 39601216 DOI: 10.1152/ajplung.00137.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
The epithelial lining of luminal organs provides an immune barrier against external factors and regulates the transport of nutrients, ions, and water into the body. Several conditions are associated with the breakdown or dysfunction of the epithelial lining. Short circuit current (Isc) measurement using a bulky, expensive, and hard-to-deploy system known as the Ussing chamber is the gold standard for evaluation of epithelial transport function but requires tissue excision. We demonstrated the ability of the Isc probe to measure Isc in normal wild type (WT) versus reduced cystic fibrosis transmembrane conductance regulator (CFTR) function knockout (KO) rats as a relevant animal model for testing ion channel function.NEW & NOTEWORTHY We have conducted short circuit current measurements in animal models in vivo for studying cystic fibrosis transmembrane conductance regulator (CFTR) and ion channel restoration.
Collapse
Affiliation(s)
- David O Otuya
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Zhongyu Liu
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Reny Joseph
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mohammed A Hanafy
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kadambari Vijaykumar
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Denise Stanford
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - S Vamsee Raju
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Elizabeth H Baker
- Department of Sociology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Cystic Fibrosis Foundation, Bethesda, Maryland, United States
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Boston, Massachusetts, United States
| | - George M Solomon
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
6
|
Tabasi M, Markward T, Sajjan U. Culturing of Airway Stem Cells Obtained from COPD Patients to Assess the Effects of Rhinovirus Infection. Methods Mol Biol 2025; 2903:97-111. [PMID: 40016461 DOI: 10.1007/978-1-0716-4410-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Rhinovirus primarily infects airway epithelial cells lining the conductive airways. Mucociliary-differentiated airway epithelial cell cultures, established from airway basal cells, are relevant in vitro model systems to examine the rhinovirus-stimulated innate immune responses and changes in barrier function. The airway epithelium in patients with chronic respiratory diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease often shows remodeling, such as goblet cell metaplasia, squamous metaplasia, and basal cell hyperplasia. Such changes profoundly affect the airway epithelial responses to rhinovirus infection. Previously, we have demonstrated that mucociliary-differentiated cell cultures, established from airway basal cells isolated from COPD patients, show goblet cell and basal cell hyperplasia similar to that observed in patients. These cultures also show a pro-inflammatory phenotype and abnormal innate immune responses to rhinovirus infection. We describe a culturing method that maintains these in vivo features.
Collapse
Affiliation(s)
- Mohsen Tabasi
- Centre for Inflammation and Lung Research, Lewis Katz Medical School, Temple University, Philadelphia, PA, USA
| | - Tyler Markward
- Centre for Inflammation and Lung Research, Lewis Katz Medical School, Temple University, Philadelphia, PA, USA
| | - Umadevi Sajjan
- Centre for Inflammation and Lung Research, Lewis Katz Medical School, Temple University, Philadelphia, PA, USA.
- Department of Microbiology, Immunology and Inflammation, Lewis Katz Medical School, Temple University, Philadelphia, PA, USA.
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Amaral MD, Pankonien I. Theranostics vs theratyping or theranostics plus theratyping? J Cyst Fibros 2025; 24:10-15. [PMID: 39327193 DOI: 10.1016/j.jcf.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Treating all people with Cystic Fibrosis (pwCF) to the level of benefit achieved by highly efficient CFTR modulator therapies (HEMT) remains a significant challenge. Theratyping and theranostics are two distinct approaches to advance CF treatment. Both theratyping in cell lines and pwCF-derived biomaterials theranostics have unique strengths and limitations in the context of studying and treating CF. The challenges, advantages and disadvantages of both approaches are discussed here. While theratyping in cell lines offers ease of use, cost-effectiveness, and standardized platforms for experimentation, it misses physiological relevance and patient-specificity. Theranostics, on the other hand, provides a more human-relevant model for personalized medicine approaches but requires specialized expertise, resources, and access to patient samples. Integrating these two approaches in parallel and leveraging their respective strengths may enhance our understanding of CF and facilitate the development of more effective therapies for all pwCF.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal.
| | - Ines Pankonien
- BioISI- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
8
|
Sun L, Walls SA, Dang H, Quinney NL, Sears PR, Sadritabrizi T, Hasegawa K, Okuda K, Asakura T, Chang X, Zheng M, Mikami Y, Dizmond FU, Danilova D, Zhou L, Deshmukh A, Cholon DM, Radicioni G, Rogers TD, Kissner WJ, Markovetz MR, Guhr Lee TN, Gutay MI, Esther CR, Chua M, Grubb BR, Ehre C, Kesimer M, Hill DB, Ostrowski LE, Button B, Gentzsch M, Robinson C, Olivier KN, Freeman AF, Randell SH, O'Neal WK, Boucher RC, Chen G. Dysregulated Airway Host Defense in Hyper IgE Syndrome due to STAT3 Mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607930. [PMID: 39211176 PMCID: PMC11361074 DOI: 10.1101/2024.08.14.607930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Rationale Hyper IgE syndrome (STAT3-HIES), also known as Job's syndrome, is a rare immunodeficiency disease typically caused by dominant-negative STAT3 mutations. STAT3-HIES syndrome is characterized by chronic pulmonary infection and inflammation, suggesting impairment of pulmonary innate host defense. Objectives To identify airway epithelial host defense defects consequent to STAT3 mutations that, in addition to reported mutant STAT3 immunologic abnormalities, produce pulmonary infection. Methods STAT3-HIES sputum was evaluated for biochemical/biophysical properties. STAT3-HIES excised lungs were harvested for histology; bronchial brush samples were collected for RNA sequencing and in vitro culture. A STAT3-HIES-specific mutation (R382W), expressed by lentiviruses, and a STAT3 knockout, generated by CRISPR/Cas9, were maintained in normal human bronchial epithelia under basal or inflammatory (IL1β) conditions. Effects of STAT3 deficiency on transcriptomics, and epithelial ion channel, secretory, antimicrobial, and ciliary functions were assessed. Measurements and Main Results Mucus concentrations and viscoelasticity were increased in STAT3-HIES sputum. STAT3-HIES excised lungs exhibited mucus obstruction and elevated IL1β expression. STAT3 deficiency impaired CFTR-dependent fluid and mucin secretion, inhibited expression of antimicrobial peptides, cytokines, and chemokines, and acidified airway surface liquid at baseline and post-IL1β exposure in vitro. Notably, mutant STAT3 suppressed IL1R1 expression. STAT3 mutations also inhibited ciliogenesis in vivo and impaired mucociliary transport in vitro, a process mediated via HES6 suppression. Administration of a γ-secretase inhibitor increased HES6 expression and improved ciliogenesis in STAT3 R382W mutant cells. Conclusions STAT3 dysfunction leads to multi-component defects in airway epithelial innate defense, which, in conjunction with STAT3-HIES immune deficiency, contributes to chronic pulmonary infection.
Collapse
|
9
|
Kolski-Andreaco A, Taiclet S, Myerburg MM, Sembrat J, Bridges RJ, Straub AC, Wills ZP, Butterworth MB, Devor DC. Potentiation of BKCa channels by cystic fibrosis transmembrane conductance regulator correctors VX-445 and VX-121. J Clin Invest 2024; 134:e176328. [PMID: 38954478 PMCID: PMC11324306 DOI: 10.1172/jci176328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, ultimately leading to diminished transepithelial anion secretion and mucociliary clearance. CFTR correctors are therapeutics that restore the folding/trafficking of mutated CFTR to the plasma membrane. The large-conductance calcium-activated potassium channel (BKCa, KCa1.1) is also critical for maintaining lung airway surface liquid (ASL) volume. Here, we show that the class 2 (C2) CFTR corrector VX-445 (elexacaftor) induces K+ secretion across WT and F508del CFTR primary human bronchial epithelial cells (HBEs), which was entirely inhibited by the BKCa antagonist paxilline. Similar results were observed with VX-121, a corrector under clinical evaluation. Whole-cell patch-clamp recordings verified that CFTR correctors potentiated BKCa activity from both primary HBEs and HEK cells stably expressing the α subunit (HEK-BK cells). Furthermore, excised patch-clamp recordings from HEK-BK cells verified direct action on the channel and demonstrated a significant increase in open probability. In mouse mesenteric artery, VX-445 induced a paxilline-sensitive vasorelaxation of preconstricted arteries. VX-445 also reduced firing frequency in primary rat hippocampal and cortical neurons. We raise the possibilities that C2 CFTR correctors gain additional clinical benefit by activation of BKCa in the lung yet may lead to adverse events through BKCa activation elsewhere.
Collapse
Affiliation(s)
| | | | - Michael M. Myerburg
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Sembrat
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert J. Bridges
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, Illinois, USA
| | | | - Zachary P. Wills
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
10
|
Roth D, Şahin AT, Ling F, Senger CN, Quiroz EJ, Calvert BA, van der Does AM, Güney TG, Tepho N, Glasl S, van Schadewijk A, von Schledorn L, Olmer R, Kanso E, Nawroth JC, Ryan AL. STRUCTURE-FUNCTION RELATIONSHIPS OF MUCOCILIARY CLEARANCE IN HUMAN AIRWAYS. RESEARCH SQUARE 2024:rs.3.rs-4164522. [PMID: 38746209 PMCID: PMC11092836 DOI: 10.21203/rs.3.rs-4164522/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Our study focuses on the intricate connection between tissue-level organization and ciliated organ function in humans, particularly in understanding the morphological organization of airways and their role in mucociliary clearance. Mucociliary clearance is a key mechanical defense mechanism of human airways, and clearance failure is associated with many respiratory diseases, including chronic obstructive pulmonary disease (COPD) and asthma. While single-cell transcriptomics have unveiled the cellular complexity of the human airway epithelium, our understanding of the mechanics that link epithelial structure to clearance function mainly stem from animal models. This reliance on animal data limits crucial insights into human airway barrier function and hampers the human-relevant in vitro modeling of airway diseases. This study, for the first time, maps the distribution of ciliated and secretory cell types along the airway tree in both rats and humans, noting species-specific differences in ciliary function and elucidates structural parameters of airway epithelia that predict clearance function in both native and in vitro tissues alike. By uncovering how tissue organization influences ciliary function, we can better understand disruptions in mucociliary clearance, which could have implications for various ciliated organs beyond the airways.
Collapse
Affiliation(s)
- Doris Roth
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
| | - Ayşe Tuğçe Şahin
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
| | - Feng Ling
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Christiana N. Senger
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Erik J. Quiroz
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ben A. Calvert
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Anne M. van der Does
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tankut G. Güney
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
| | - Niels Tepho
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
| | - Sarah Glasl
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
| | - Annemarie van Schadewijk
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laura von Schledorn
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Hannover, D-30625, Germany
- Biomedical Research in End stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, D-30625, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, D-30625, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Hannover, D-30625, Germany
- Biomedical Research in End stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, D-30625, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, D-30625, Germany
| | - Eva Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Janna C. Nawroth
- Helmholtz Pioneer Campus, Institute of Biological and Medical Imaging, and Member of the German Lung Research Center (DZL CPC-M), Helmholtz Zentrum München, Neuherberg, D-85764, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, D-81675, Germany
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA 52242, USA
| |
Collapse
|
11
|
Quiroz EJ, Kim S, Gautam LK, Borok Z, Kintner C, Ryan AL. RBL2 represses the transcriptional activity of Multicilin to inhibit multiciliogenesis. Cell Death Dis 2024; 15:81. [PMID: 38253523 PMCID: PMC10803754 DOI: 10.1038/s41419-024-06440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
A core pathophysiologic feature underlying many respiratory diseases is multiciliated cell dysfunction, leading to inadequate mucociliary clearance. Due to the prevalence and highly variable etiology of mucociliary dysfunction in respiratory diseases, it is critical to understand the mechanisms controlling multiciliogenesis that may be targeted to restore functional mucociliary clearance. Multicilin, in a complex with E2F4, is necessary and sufficient to drive multiciliogenesis in airway epithelia, however this does not apply to all cell types, nor does it occur evenly across all cells in the same cell population. In this study we further investigated how co-factors regulate the ability of Multicilin to drive multiciliogenesis. Combining data in mouse embryonic fibroblasts and human bronchial epithelial cells, we identify RBL2 as a repressor of the transcriptional activity of Multicilin. Knockdown of RBL2 in submerged cultures or phosphorylation of RBL2 in response to apical air exposure, in the presence of Multicilin, allows multiciliogenesis to progress. These data demonstrate a dynamic interaction between RBL2 and Multicilin that regulates the capacity of cells to differentiate and multiciliate. Identification of this mechanism has important implications for facilitating MCC differentiation in diseases with impaired mucociliary clearance.
Collapse
Affiliation(s)
- Erik J Quiroz
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52240, USA
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Seongjae Kim
- The Salk Institute of Biological Studies, La Jolla, CA, 92093, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA, 92037, USA
| | - Lalit K Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52240, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA, 92037, USA
| | | | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52240, USA.
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
12
|
Quiroz EJ, Kim S, Gautam LK, Borok Z, Kintner C, Ryan AL. RBL2 represses the transcriptional activity of Multicilin to inhibit multiciliogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551992. [PMID: 37577572 PMCID: PMC10418160 DOI: 10.1101/2023.08.04.551992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A core pathophysiologic feature underlying many respiratory diseases is multiciliated cell dysfunction, leading to inadequate mucociliary clearance. Due to the prevalence and highly variable etiology of mucociliary dysfunction in respiratory diseases, it is critical to understand the mechanisms controlling multiciliogenesis that may be targeted to restore functional mucociliary clearance. Multicilin, in a complex with E2F4, is necessary and sufficient to drive multiciliogenesis in airway epithelia, however this does not apply to all cell types, nor does it occur evenly across all cells in the same cell population. In this study we further investigated how co-factors regulate the ability of Multicilin to drive multiciliogenesis. Combining data in mouse embryonic fibroblasts and human bronchial epithelial cells, we identify RBL2 as a repressor of the transcriptional activity of Multicilin. Knockdown of RBL2 in submerged cultures or phosphorylation of RBL2 in response to apical air exposure, in the presence of Multicilin, allows multiciliogenesis to progress. These data demonstrate a dynamic interaction between RBL2 and Multicilin that regulates the capacity of cells to differentiate and multiciliate. Identification of this mechanism has important implications for facilitating MCC differentiation in diseases with impaired mucociliary clearance.
Collapse
Affiliation(s)
- Erik J. Quiroz
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033
| | - Seongjae Kim
- The Salk Institute of Biological Studies, La Jolla, CA 92093
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA 92037
| | - Lalit K. Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA 92037
| | | | - Amy L. Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
13
|
Wu T, Wrennall JA, Dang H, Baines DL, Tarran R. Passaging Primary Human Bronchial Epithelia Reduces CFTR-Mediated Fluid Transport and Alters mRNA Expression. Cells 2023; 12:997. [PMID: 37048070 PMCID: PMC10092965 DOI: 10.3390/cells12070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Primary human bronchial epithelial cultures (HBECs) are used to study airway physiology, disease, and drug development. HBECs often replicate human airway physiology/pathophysiology. Indeed, in the search for cystic fibrosis (CF) transmembrane conductance regulator (CFTR) therapies, HBECs were seen as the "gold standard" in preclinical studies. However, HBECs are not without their limitations: they are non-immortalized and the requirement for human donors, especially those with rare genetic mutations, can make HBECs expensive and/or difficult to source. For these reasons, researchers may opt to expand HBECs by passaging. This practice is common, but to date, there has not been a robust analysis of the impact of expanding HBECs on their phenotype. Here, we used functional studies of airway surface liquid (ASL) homeostasis, epithelial barrier properties, and RNA-seq and Western blotting to investigate HBEC changes over two passage cycles. We found that passaging impaired CFTR-mediated ASL secretion and led to a reduction in the plasma membrane expression of the epithelial sodium channel (ENaC) and CFTR. Passaging also resulted in an increase in transepithelial resistance and a decrease in epithelial water permeability. We then looked for changes at the mRNA level and found that passaging significantly affected 323 genes, including genes involved in inflammation, cell growth, and extracellular matrix remodeling. Collectively, these data highlight the potential for HBEC expansion to impact research findings.
Collapse
Affiliation(s)
- Tongde Wu
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joe A. Wrennall
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Deborah L. Baines
- Institute for Infection and Immunity, St George’s, University of London, Tooting, London SW17 0RE, UK
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Vijaykumar K, Rowe SM. Lessons from other fields of medicine, Part 2: Cystic fibrosis. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:119-130. [PMID: 36796937 DOI: 10.1016/b978-0-323-85538-9.00006-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Cystic fibrosis (CF), first described in 1938, is a common, life-limiting monogenetic disease. The discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989 was crucial in advancing our understanding of disease pathogenesis and paving the road for treatment aimed at the fundamental molecular defect. With the delineation of over 2000 variations in the CFTR gene, a sound understanding of the individual variations in cell biology, and electrophysiological abnormalities conferred by the most common defects propelled the advent of targeted disease-modifying therapeutics beginning in 2012. Since then, CF care has transformed beyond just symptomatic treatment to include a variety of small-molecule therapies that address the basic electrophysiologic defect and cause profound improvements in physiology, clinical manifestations, and long-term outcomes, designed to differentially address six genetic/molecular subtypes. This chapter illustrates the progress made toward how fundamental science and translational initiatives enabled personalized, mutation specific treatment. We highlight the importance of preclinical assays and mechanistically-driven development strategies that were coupled with sensitive biomarkers and a clinical trial cooperative to provide a platform for successful drug development. This convergence of academic and private partnerships, and formation of multidisciplinary care teams directed by evidence-based initiatives provide a seminal example of addressing the needs of individuals with a rare, but fatal genetic disease.
Collapse
Affiliation(s)
- Kadambari Vijaykumar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
15
|
Livnat G, Meeker JD, Ostmann AJ, Strecker LM, Clancy JP, Brewington JJ. Phenotypic Alteration of an Established Human Airway Cell Line by Media Selection. Int J Mol Sci 2023; 24:ijms24021246. [PMID: 36674762 PMCID: PMC9862772 DOI: 10.3390/ijms24021246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Cystic Fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), a chloride/bicarbonate channel. Many studies utilize human airway cell models (cell lines and primary cells) to study different aspects of CFTR biology. Media selection can alter the growth and differentiation of primary cells, yet the impact on stable airway cell lines is unclear. To determine the impact of media and growth conditions on CFBE41o- cells stably transduced with wild-type or F508del CFTR, we examined four commonly used growth media, measuring epithelial and mesenchymal markers, as well as CFTR expression, maturation, and function. The selection of growth media altered the expression of epithelial and mesenchymal markers in the cell lines, and significantly impacted CFTR expression and subsequent function. These results highlight the importance of media selection to CFTR and cell line behavior and should be considered in both studies of primary human airway cells and stable cell lines.
Collapse
Affiliation(s)
- Galit Livnat
- Pediatric Pulmonology and CF Center, Carmel Medical Center, Haifa 3100000, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Jessica D. Meeker
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45299, USA
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45299, USA
| | - Alicia J. Ostmann
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45299, USA
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45299, USA
| | - Lauren M. Strecker
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45299, USA
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45299, USA
| | | | - John J. Brewington
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45299, USA
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45299, USA
- Correspondence: ; Tel.: +1-(513)-803-1548
| |
Collapse
|
16
|
Guimbellot JS, Nichols DP, Brewington JJ. Novel Applications of Biomarkers and Personalized Medicine in Cystic Fibrosis. Clin Chest Med 2022; 43:617-630. [PMID: 36344070 DOI: 10.1016/j.ccm.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As routine care in cystic fibrosis (CF) becomes increasingly personalized, new opportunities to further focus care on the individual have emerged. These opportunities are increasingly filled through research in tools aiding drug selection, drug monitoring and titration, disease-relevant biomarkers, and evaluation of therapeutic benefits. Herein, we will discuss such research tools presently being translated into the clinic to improve the personalization of care in CF.
Collapse
Affiliation(s)
- Jennifer S Guimbellot
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham; 1600 7th Avenue South, ACC 620, Birmingham, AL 35233, USA
| | - David P Nichols
- Department of Pediatrics, Division of Pulmonary Medicine, Seattle Children's Hospital, University of Washington School of Medicine, Building Cure, 1920 Terry Avenue, Office 4-209, Seattle, WA 98109, USA
| | - John J Brewington
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2021, Cincinnati, OH 45229, USA.
| |
Collapse
|
17
|
Ludovico A, Moran O, Baroni D. Modulator Combination Improves In Vitro the Microrheological Properties of the Airway Surface Liquid of Cystic Fibrosis Airway Epithelia. Int J Mol Sci 2022; 23:ijms231911396. [PMID: 36232697 PMCID: PMC9569604 DOI: 10.3390/ijms231911396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a plasma membrane protein expressed on the apical surface of secretory epithelia of the airways. In the airways, defective or absent function of the CFTR protein determines abnormalities of chloride and bicarbonate secretion and, in general, of the transepithelial homeostasis that lead to alterations of airway surface liquid (ASL) composition and properties. The reduction of ASL volume impairs ciliary beating with the consequent accumulation of a sticky mucus. This situation prevents normal mucociliary clearance, favoring the survival and proliferation of bacteria and contributing to the genesis of the CF pulmonary disease. We explored the potential of some CFTR modulators, namely ivacaftor, tezacaftor, elexacaftor and their combination KaftrioTM, capable of partially recovering the basic defects of the CFTR protein, to ameliorate the transepithelial fluid transport and the viscoelastic properties of the mucus when used singly or in combination. Primary human bronchial epithelial cells obtained from CF and non-CF patients were differentiated into a mucociliated epithelia in order to assess the effects of correctors tezacaftor, elexacaftor and their combination with potentiator ivacaftor on the key properties of ASL, such as fluid reabsorption, viscosity, protein content and pH. The treatment of airway epithelia bearing the deletion of a phenylalanine at position 508 (F508del) in the CFTR gene with tezacaftor and elexacaftor significantly improved the pericilial fluid composition, reducing the fluid reabsorption, correcting the ASL pH and reducing the viscosity of the mucus. KaftrioTM was more effective than single modulators in improving all the evaluated parameters, demonstrating once more that this combination recently approved for patients 6 years and older with cystic fibrosis who have at least one F508del mutation in the CFTR gene represents a valuable tool to defeat CF.
Collapse
Affiliation(s)
| | | | - Debora Baroni
- Correspondence: ; Tel.: +39-010-647-5559; Fax: +39-010-647-5500
| |
Collapse
|
18
|
Bai H, Ingber DE. What Can an Organ-on-a-Chip Teach Us About Human Lung Pathophysiology? Physiology (Bethesda) 2022; 37:0. [PMID: 35658627 PMCID: PMC9394778 DOI: 10.1152/physiol.00012.2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022] Open
Abstract
The intertwined relationship between structure and function has been key to understanding human organ physiology and disease pathogenesis. An organ-on-a-chip (organ chip) is a bioengineered microfluidic cell culture device lined by living cells and tissues that recapitulates organ-level functions in vitro. This is accomplished by recreating organ-specific tissue-tissue interfaces and microenvironmental biochemical and mechanical cues while providing dynamic perfusion through endothelium-lined vascular channels. In this review, we discuss how this emerging technology has contributed to the understanding of human lung structure-function relationships at the cell, tissue, and organ levels.
Collapse
Affiliation(s)
- Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts
| |
Collapse
|
19
|
Lee RE, Lewis CA, He L, Bulik-Sullivan EC, Gallant SC, Mascenik TM, Dang H, Cholon DM, Gentzsch M, Morton LC, Minges JT, Theile JW, Castle NA, Knowles MR, Kimple AJ, Randell SH. Small molecule eRF3a degraders rescue CFTR nonsense mutations by promoting premature termination codon readthrough. J Clin Invest 2022; 132:154571. [PMID: 35900863 PMCID: PMC9479597 DOI: 10.1172/jci154571] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
The vast majority of people with cystic fibrosis (CF) are now eligible for CF transmembrane regulator (CFTR) modulator therapy. The remaining individuals with CF harbor premature termination codons (PTCs) or rare CFTR variants with limited treatment options. Although the clinical modulator response can be reliably predicted using primary airway epithelial cells, primary cells carrying rare CFTR variants are scarce. To overcome this obstacle, cell lines can be created by overexpression of mouse Bmi-1 and human TERT (hTERT). Using this approach, we developed 2 non-CF and 6 CF airway epithelial cell lines, 3 of which were homozygous for the W1282X PTC variant. The Bmi-1/hTERT cell lines recapitulated primary cell morphology and ion transport function. The 2 F508del-CFTR cell lines responded robustly to CFTR modulators, which was mirrored in the parent primary cells and in the cell donors’ clinical response. Cereblon E3 ligase modulators targeting eukaryotic release factor 3a (eRF3a) rescued W1282X-CFTR function to approximately 20% of WT levels and, when paired with G418, rescued G542X-CFTR function to approximately 50% of WT levels. Intriguingly, eRF3a degraders also diminished epithelial sodium channel (ENaC) function. These studies demonstrate that Bmi-1/hTERT cell lines faithfully mirrored primary cell responses to CFTR modulators and illustrate a therapeutic approach to rescue CFTR nonsense mutations.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Catherine A Lewis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Lihua He
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Emily C Bulik-Sullivan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Samuel C Gallant
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Teresa M Mascenik
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Deborah M Cholon
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Martina Gentzsch
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Lisa C Morton
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - John T Minges
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | | | - Neil A Castle
- Research and Development, Icagen, Durham, United States of America
| | - Michael R Knowles
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Adam J Kimple
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| |
Collapse
|
20
|
Taniguchi S, Ito Y, Kiritani H, Maruo A, Sakai R, Ono Y, Fukuda R, Okiyoneda T. The Ubiquitin Ligase RNF34 Participates in the Peripheral Quality Control of CFTR (RNF34 Role in CFTR PeriQC). Front Mol Biosci 2022; 9:840649. [PMID: 35355508 PMCID: PMC8959631 DOI: 10.3389/fmolb.2022.840649] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 11/27/2022] Open
Abstract
The peripheral protein quality control (periQC) system eliminates the conformationally defective cystic fibrosis transmembrane conductance regulator (CFTR), including ∆F508-CFTR, from the plasma membrane (PM) and limits the efficacy of pharmacological therapy for cystic fibrosis (CF). The ubiquitin (Ub) ligase RFFL is responsible for the chaperone-independent ubiquitination and lysosomal degradation of CFTR in the periQC. Here, we report that the Ub ligase RNF34 participates in the CFTR periQC in parallel to RFFL. An in vitro study reveals that RNF34 directly recognizes the CFTR NBD1 and selectively promotes the ubiquitination of unfolded proteins. RNF34 was localized in the cytoplasm and endosomes, where RFFL was equally colocalized. RNF34 ablation increased the PM density as well as the mature form of ∆F508-CFTR rescued at low temperatures. RFFL ablation, with the exception of RNF34 ablation, increased the functional PM expression of ∆F508-CFTR upon a triple combination of CFTR modulators (Trikafta) treatment by inhibiting the K63-linked polyubiquitination. Interestingly, simultaneous ablation of RNF34 and RFFL dramatically increased the functional PM ∆F508-CFTR by inhibiting the ubiquitination in the post-Golgi compartments. The CFTR-NLuc assay demonstrates that simultaneous ablation of RNF34 and RFFL dramatically inhibits the degradation of mature ∆F508-CFTR after Trikafta treatment. Therefore, these results suggest that RNF34 plays a crucial role in the CFTR periQC, especially when there is insufficient RFFL. We propose that simultaneous inhibition of RFFL and RNF34 may improve the efficacy of CFTR modulators.
Collapse
|
21
|
Michaels WE, Pena-Rasgado C, Kotaria R, Bridges RJ, Hastings ML. Open reading frame correction using splice-switching antisense oligonucleotides for the treatment of cystic fibrosis. Proc Natl Acad Sci U S A 2022; 119:e2114886119. [PMID: 35017302 PMCID: PMC8784102 DOI: 10.1073/pnas.2114886119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
CFTR gene mutations that result in the introduction of premature termination codons (PTCs) are common in cystic fibrosis (CF). This mutation type causes a severe form of the disease, likely because of low CFTR messenger RNA (mRNA) expression as a result of nonsense-mediated mRNA decay, as well as the production of a nonfunctional, truncated CFTR protein. Current therapeutics for CF, which target residual protein function, are less effective in patients with these types of mutations due in part to low CFTR protein levels. Splice-switching antisense oligonucleotides (ASOs), designed to induce skipping of exons in order to restore the mRNA open reading frame, have shown therapeutic promise preclinically and clinically for a number of diseases. We hypothesized that ASO-mediated skipping of CFTR exon 23 would recover CFTR activity associated with terminating mutations in the exon, including CFTR p.W1282X, the fifth most common mutation in CF. Here, we show that CFTR lacking the amino acids encoding exon 23 is partially functional and responsive to corrector and modulator drugs currently in clinical use. ASO-induced exon 23 skipping rescued CFTR expression and chloride current in primary human bronchial epithelial cells isolated from a homozygote CFTR-W1282X patient. These results support the use of ASOs in treating CF patients with CFTR class I mutations in exon 23 that result in unstable CFTR mRNA and truncations of the CFTR protein.
Collapse
Affiliation(s)
- Wren E Michaels
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064
| | - Cecilia Pena-Rasgado
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064
| | - Rusudan Kotaria
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064
| | - Robert J Bridges
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064;
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL 60064;
| |
Collapse
|
22
|
van der Vaart J, Böttinger L, Geurts MH, van de Wetering WJ, Knoops K, Sachs N, Begthel H, Korving J, Lopez‐Iglesias C, Peters PJ, Eitan K, Gileles‐Hillel A, Clevers H. Modelling of primary ciliary dyskinesia using patient-derived airway organoids. EMBO Rep 2021; 22:e52058. [PMID: 34693619 PMCID: PMC8647008 DOI: 10.15252/embr.202052058] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Patient-derived human organoids can be used to model a variety of diseases. Recently, we described conditions for long-term expansion of human airway organoids (AOs) directly from healthy individuals and patients. Here, we first optimize differentiation of AOs towards ciliated cells. After differentiation of the AOs towards ciliated cells, these can be studied for weeks. When returned to expansion conditions, the organoids readily resume their growth. We apply this condition to AOs established from nasal inferior turbinate brush samples of patients suffering from primary ciliary dyskinesia (PCD), a pulmonary disease caused by dysfunction of the motile cilia in the airways. Patient-specific differences in ciliary beating are observed and are in agreement with the patients' genetic mutations. More detailed organoid ciliary phenotypes can thus be documented in addition to the standard diagnostic procedure. Additionally, using genetic editing tools, we show that a patient-specific mutation can be repaired. This study demonstrates the utility of organoid technology for investigating hereditary airway diseases such as PCD.
Collapse
Affiliation(s)
- Jelte van der Vaart
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| | - Lena Böttinger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| | | | - Kèvin Knoops
- The Maastricht Multimodal Molecular Imaging InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - Norman Sachs
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Present address:
Vertex IncSan DiegoCAUSA
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| | - Carmen Lopez‐Iglesias
- The Maastricht Multimodal Molecular Imaging InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - Kerem Eitan
- Division of Cell Biology, Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Alex Gileles‐Hillel
- Division of Cell Biology, Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
- Department of Paediatrics, Paediatric Pulmonology and SleepHadassah Hebrew University Medical CentreJerusalemIsrael
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW)University Medical Centre UtrechtUtrechtThe Netherlands
- Oncode InstituteHubrecht InstituteUtrechtThe Netherlands
| |
Collapse
|
23
|
Hit diffusion: limitations to drug discovery and structure-based design. J Comput Aided Mol Des 2021; 36:373-379. [PMID: 34799815 DOI: 10.1007/s10822-021-00425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
Modern drug discovery employs a 'screening funnel' to pick compounds worthy of advancing to the clinic, a multi-step process linking a series of assays. Molecules which are active in in vitro assays are passed to a cell-based assay, etc. Each pair of assays may be discordant, due to their measuring similar but not identical properties. This can create an enormous potential to overlook the best molecules, which we highlight here through an understanding of relationships we call 'hit diffusion'. Understanding hit diffusion has important implications for structure-based design, and drug discovery overall. The biophysical bases for assay discordance are outlined, and some strategies for ameliorating the hit diffusion problem are described.
Collapse
|
24
|
Liu J, Berg AP, Wang Y, Jantarajit W, Sutcliffe KJ, Stevens EB, Cao L, Pregel MJ, Sheppard DN. A small molecule CFTR potentiator restores ATP-dependent channel gating to the cystic fibrosis mutant G551D-CFTR. Br J Pharmacol 2021; 179:1319-1337. [PMID: 34644413 PMCID: PMC9304199 DOI: 10.1111/bph.15709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators are small molecules developed to treat the genetic disease cystic fibrosis (CF). They interact directly with CFTR Cl- channels at the plasma membrane to enhance channel gating. Here, we investigate the action of a new CFTR potentiator, CP-628006 with a distinct chemical structure. EXPERIMENTAL APPROACH Using electrophysiological assays with CFTR-expressing heterologous cells and CF patient-derived human bronchial epithelial (hBE) cells, we compared the effects of CP-628006 with the marketed CFTR potentiator ivacaftor. KEY RESULTS CP-628006 efficaciously potentiated CFTR function in epithelia from cultured hBE cells. Its effects on the predominant CFTR variant F508del-CFTR were larger than those with the gating variant G551D-CFTR. In excised inside-out membrane patches, CP-628006 potentiated wild-type, F508del- and G551D-CFTR by increasing the frequency and duration of channel openings. CP-628006 increased the affinity and efficacy of F508del-CFTR gating by ATP. In these respects, CP-628006 behaved like ivacaftor. CP-628006 also demonstrated notable differences with ivacaftor. Its potency and efficacy were lower than those of ivacaftor. CP-628006 conferred ATP-dependent gating on G551D-CFTR, whereas the action of ivacaftor was ATP-independent. For G551D-CFTR, but not F508del-CFTR, the action of CP-628006 plus ivacaftor was greater than ivacaftor alone. CP-628006 delayed, but did not prevent, the deactivation of F508del-CFTR at the plasma membrane, whereas ivacaftor accentuated F508del-CFTR deactivation. CONCLUSIONS AND IMPLICATIONS CP-628006 has distinct effects compared to ivacaftor, suggesting a different mechanism of CFTR potentiation. The emergence of CFTR potentiators with diverse modes of action makes therapy with combinations of potentiators a possibility.
Collapse
Affiliation(s)
- Jia Liu
- Neuroscience and Pain Research Unit, Pfizer Inc., Granta Park, Great Abington, Cambridge, UK.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Allison P Berg
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Yiting Wang
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Walailak Jantarajit
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK.,Center of Calcium and Bone Research and Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Katy J Sutcliffe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Edward B Stevens
- Neuroscience and Pain Research Unit, Pfizer Inc., Granta Park, Great Abington, Cambridge, UK
| | - Lishuang Cao
- Neuroscience and Pain Research Unit, Pfizer Inc., Granta Park, Great Abington, Cambridge, UK
| | - Marko J Pregel
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| |
Collapse
|
25
|
Cottrill KA, Giacalone VD, Margaroli C, Bridges RJ, Koval M, Tirouvanziam R, McCarty NA. Mechanistic analysis and significance of sphingomyelinase-mediated decreases in transepithelial CFTR currents in nHBEs. Physiol Rep 2021; 9:e15023. [PMID: 34514718 PMCID: PMC8436056 DOI: 10.14814/phy2.15023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Loss of function of the cystic fibrosis transmembrane conductance regulator (CFTR) causes cystic fibrosis (CF). In the lungs, this manifests as immune cell infiltration and bacterial infections, leading to tissue destruction. Previous work has determined that acute bacterial sphingomyelinase (SMase) decreases CFTR function in bronchial epithelial cells from individuals without CF (nHBEs) and with CF (cfHBEs, homozygous ΔF508-CFTR mutation). This study focuses on exploring the mechanisms underlying this effect. SMase increased the abundance of dihydroceramides, a result mimicked by blockade of ceramidase enzyme using ceranib-1, which also decreased CFTR function. The SMase-mediated inhibitory mechanism did not involve the reduction of cellular CFTR abundance or removal of CFTR from the apical surface, nor did it involve the activation of 5' adenosine monophosphate-activated protein kinase. In order to determine the pathological relevance of these sphingolipid imbalances, we evaluated the sphingolipid profiles of cfHBEs and cfHNEs (nasal) as compared to non-CF controls. Sphingomyelins, ceramides, and dihydroceramides were largely increased in CF cells. Correction of ΔF508-CFTR trafficking with VX445 + VX661 decreased some sphingomyelins and all ceramides, but exacerbated increases in dihydroceramides. Additional treatment with the CFTR potentiator VX770 did not affect these changes, suggesting rescue of misfolded CFTR was sufficient. We furthermore determined that cfHBEs express more acid-SMase protein than nHBEs. Lastly, we determined that airway-like neutrophils, which are increased in the CF lung, secrete acid-SMase. Identifying the mechanism of SMase-mediated inhibition of CFTR will be important, given the imbalance of sphingolipids in CF cells and the secretion of acid-SMase from cell types relevant to CF.
Collapse
Affiliation(s)
- Kirsten A. Cottrill
- Molecular and Systems Pharmacology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Vincent D. Giacalone
- Immunology and Molecular Pathogenesis PhD ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Camilla Margaroli
- Department of MedicineDivision of PulmonaryAllergy & Critical Care MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Program in Protease/Matrix BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Robert J. Bridges
- Department of Physiology and BiophysicsCenter for Genetic DiseasesChicago Medical SchoolNorth ChicagoIllinoisUSA
| | - Michael Koval
- Department of MedicineDivision of Pulmonary, Allergy, Critical Care and Sleep Medicine and Department of Cell BiologyEmory UniversityAtlantaGeorgiaUSA
| | - Rabindra Tirouvanziam
- Department of Pediatrics and Children’s Healthcare of AtlantaCenter for Cystic Fibrosis and Airways Disease ResearchEmory University School of MedicineAtlantaGeorgiaUSA
| | - Nael A. McCarty
- Molecular and Systems Pharmacology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
- Department of Pediatrics and Children’s Healthcare of AtlantaCenter for Cystic Fibrosis and Airways Disease ResearchEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
26
|
Cottrill KA, Peterson RJ, Lewallen CF, Koval M, Bridges RJ, McCarty NA. Sphingomyelinase decreases transepithelial anion secretion in airway epithelial cells in part by inhibiting CFTR-mediated apical conductance. Physiol Rep 2021; 9:e14928. [PMID: 34382377 PMCID: PMC8358481 DOI: 10.14814/phy2.14928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel whose dysfunction causes cystic fibrosis (CF). The loss of CFTR function in pulmonary epithelial cells causes surface dehydration, mucus build-up, inflammation, and bacterial infections that lead to lung failure. Little has been done to evaluate the effects of lipid perturbation on CFTR activity, despite CFTR residing in the plasma membrane. This work focuses on the acute effects of sphingomyelinase (SMase), a bacterial virulence factor secreted by CF relevant airway bacteria which degrades sphingomyelin into ceramide and phosphocholine, on the electrical circuitry of pulmonary epithelial monolayers. We report that basolateral SMase decreases CFTR-mediated transepithelial anion secretion in both primary bronchial and tracheal epithelial cells from explant tissue, with current CFTR modulators unable to rescue this effect. Focusing on primary cells, we took a holistic ion homeostasis approach to determine a cause for reduced anion secretion following SMase treatment. Using impedance analysis, we determined that basolateral SMase inhibits apical and basolateral conductance in non-CF primary cells without affecting paracellular permeability. In CF primary airway cells, correction with clinically relevant CFTR modulators did not prevent SMase-mediated inhibition of CFTR currents. Furthermore, SMase was found to inhibit only apical conductance in these cells. Future work should determine the mechanism for SMase-mediated inhibition of CFTR currents, and further explore the clinical relevance of SMase and sphingolipid imbalances.
Collapse
Affiliation(s)
- Kirsten A. Cottrill
- Molecular and Systems Pharmacology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Raven J. Peterson
- Biochemistry, Cell, and Developmental Biology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Colby F. Lewallen
- Georgia Institute of TechnologyG.W. Woodruff School of Mechanical EngineeringAtlantaGeorgiaUSA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep MedicineDepartment of MedicineEmory UniversityAtlantaGeorgiaUSA
- Department of Cell BiologyEmory UniversityAtlantaGeorgiaUSA
| | - Robert J. Bridges
- Department of Physiology and BiophysicsCenter for Genetic DiseasesChicago Medical SchoolNorth Chicago, IllinoisUSA
| | - Nael A. McCarty
- Molecular and Systems Pharmacology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
- Department of Pediatrics and Children’s Healthcare of AtlantaCenter for Cystic Fibrosis and Airways Disease ResearchEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
27
|
Mutyam V, Sharma J, Li Y, Peng N, Chen J, Tang LP, Falk Libby E, Singh AK, Conrath K, Rowe SM. Novel Correctors and Potentiators Enhance Translational Readthrough in CFTR Nonsense Mutations. Am J Respir Cell Mol Biol 2021; 64:604-616. [PMID: 33616476 DOI: 10.1165/rcmb.2019-0291oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Premature-termination codons (PTCs) in CFTR (cystic fibrosis [CF] transmembrane conductance regulator) result in nonfunctional CFTR protein and are the proximate cause of ∼11% of CF-causing alleles, for which no treatments exist. The CFTR corrector lumacaftor and the potentiator ivacaftor improve CFTR function with terminal PTC mutations and enhance the effect of readthrough agents. Novel correctors GLPG2222 (corrector 1 [C1]), GLPG3221 (corrector 2 [C2]), and potentiator GLPG1837 compare favorably with lumacaftor and ivacaftor in vitro. Here, we evaluated the effect of correctors C1a and C2a (derivatives of C1 and C2) and GLPG1837 alone or in combination with the readthrough compound G418 on CFTR function using heterologous Fischer rat thyroid (FRT) cells, the genetically engineered human bronchial epithelial (HBE) 16HBE14o- cell lines, and primary human cells with PTC mutations. In FRT lines pretreated with G418, GLPG1837 elicited dose-dependent increases in CFTR activity that exceeded those from ivacaftor in FRT-W1282X and FRT-R1162X cells. A three-mechanism strategy consisting of G418, GLPG1837, and two correctors (C1a + C2a) yielded the greatest functional improvements in FRT and 16HBE14o- PTC variants, noting that correction and potentiation without readthrough was sufficient to stimulate CFTR activity for W1282X cells. GLPG1837 + C1a + C2a restored substantial function in G542X/F508del HBE cells and restored even more function for W1282X/F508del cells, largely because of the corrector/potentiator effect, with no additional benefit from G418. In G542X/R553X or R1162X/R1162X organoids, enhanced forskolin-induced swelling was observed with G418 + GLPG1837 + C1a + C2a, although GLPG1837 + C1a + C2a alone was sufficient to improve forskolin-induced swelling in W1282X/W1282X organoids. Combination of CFTR correctors, potentiators, and readthrough compounds augments the functional repair of CFTR nonsense mutations, indicating the potential for novel correctors and potentiators to restore function to truncated W1282X CFTR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Steven M Rowe
- Department of Medicine.,Department of Pediatrics.,Department of Cell Developmental and Integrative Biology, and.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
28
|
Rajan A, Weaver AM, Aloisio GM, Jelinski J, Johnson HL, Venable SF, McBride T, Aideyan L, Piedra FA, Ye X, Melicoff-Portillo E, Yerramilli MRK, Zeng XL, Mancini MA, Stossi F, Maresso AW, Kotkar SA, Estes MK, Blutt S, Avadhanula V, Piedra PA. The human nose organoid respiratory virus model: an ex-vivo human challenge model to study RSV and SARS-CoV-2 pathogenesis and evaluate therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34341793 DOI: 10.1101/2021.07.28.453844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is an unmet need for pre-clinical models to understand the pathogenesis of human respiratory viruses; and predict responsiveness to immunotherapies. Airway organoids can serve as an ex-vivo human airway model to study respiratory viral pathogenesis; however, they rely on invasive techniques to obtain patient samples. Here, we report a non-invasive technique to generate human nose organoids (HNOs) as an alternate to biopsy derived organoids. We made air liquid interface (ALI) cultures from HNOs and assessed infection with two major human respiratory viruses, respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Infected HNO-ALI cultures recapitulate aspects of RSV and SARS-CoV-2 infection, including viral shedding, ciliary damage, innate immune responses, and mucus hyper-secretion. Next, we evaluated the feasibility of the HNO-ALI respiratory virus model system to test the efficacy of palivizumab to prevent RSV infection. Palivizumab was administered in the basolateral compartment (circulation) while viral infection occurred in the apical ciliated cells (airways), simulating the events in infants. In our model, palivizumab effectively prevented RSV infection in a concentration dependent manner. Thus, the HNO-ALI model can serve as an alternate to lung organoids to study respiratory viruses and testing therapeutics.
Collapse
|
29
|
Sharma J, Du M, Wong E, Mutyam V, Li Y, Chen J, Wangen J, Thrasher K, Fu L, Peng N, Tang L, Liu K, Mathew B, Bostwick RJ, Augelli-Szafran CE, Bihler H, Liang F, Mahiou J, Saltz J, Rab A, Hong J, Sorscher EJ, Mendenhall EM, Coppola CJ, Keeling KM, Green R, Mense M, Suto MJ, Rowe SM, Bedwell DM. A small molecule that induces translational readthrough of CFTR nonsense mutations by eRF1 depletion. Nat Commun 2021; 12:4358. [PMID: 34272367 PMCID: PMC8285393 DOI: 10.1038/s41467-021-24575-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2021] [Indexed: 11/09/2022] Open
Abstract
Premature termination codons (PTCs) prevent translation of a full-length protein and trigger nonsense-mediated mRNA decay (NMD). Nonsense suppression (also termed readthrough) therapy restores protein function by selectively suppressing translation termination at PTCs. Poor efficacy of current readthrough agents prompted us to search for better compounds. An NMD-sensitive NanoLuc readthrough reporter was used to screen 771,345 compounds. Among the 180 compounds identified with readthrough activity, SRI-37240 and its more potent derivative SRI-41315, induce a prolonged pause at stop codons and suppress PTCs associated with cystic fibrosis in immortalized and primary human bronchial epithelial cells, restoring CFTR expression and function. SRI-41315 suppresses PTCs by reducing the abundance of the termination factor eRF1. SRI-41315 also potentiates aminoglycoside-mediated readthrough, leading to synergistic increases in CFTR activity. Combining readthrough agents that target distinct components of the translation machinery is a promising treatment strategy for diseases caused by PTCs. Premature termination codons can cause early translation termination and lead to disease. Here the authors perform a screen to identify compounds with readthrough activity and show that these reduce eRF1 levels to suppress premature termination associated with cystic fibrosis.
Collapse
Affiliation(s)
- Jyoti Sharma
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Microbiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Ming Du
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Eric Wong
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Venkateshwar Mutyam
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Yao Li
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Jianguo Chen
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Jamie Wangen
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kari Thrasher
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Lianwu Fu
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Ning Peng
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Liping Tang
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Kaimao Liu
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | | | | | | | - Hermann Bihler
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Feng Liang
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Jerome Mahiou
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Josef Saltz
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Andras Rab
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Jeong Hong
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Eric M Mendenhall
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Candice J Coppola
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Kim M Keeling
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin Mense
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | | | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - David M Bedwell
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA. .,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
30
|
Antisense oligonucleotide-based drug development for Cystic Fibrosis patients carrying the 3849+10 kb C-to-T splicing mutation. J Cyst Fibros 2021; 20:865-875. [PMID: 34226157 PMCID: PMC8464507 DOI: 10.1016/j.jcf.2021.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/24/2023]
Abstract
Background: Antisense oligonucleotide (ASO)-based drugs for splicing modulation were recently approved for various genetic diseases with unmet need. Here we aimed to develop an ASO-based splicing modulation therapy for Cystic Fibrosis (CF) patients carrying the 3849 + 10 kb C-to-T splicing mutation in the CFTR gene. Methods: We have screened, in FRT cells expressing the 3849 + 10 kb C-to-T splicing mutation, ~30 2ʹ-O-Methyl-modified phosphorothioate ASOs, targeted to prevent the recognition and inclusion of a cryptic exon generated due to the mutation. The effect of highly potent ASO candidates on the splicing pattern, protein maturation and CFTR function was further analyzed in well differentiated primary human nasal and bronchial epithelial cells, derived from patients carrying at least one 3849 + 10 kb C-to-T allele. Results: A highly potent lead ASO, efficiently delivered by free uptake, was able to significantly increase the level of correctly spliced mRNA and completely restore the CFTR function to wild type levels in cells from a homozygote patient. This ASO led to CFTR function with an average of 43% of wild type levels in cells from various heterozygote patients. Optimized efficiency of the lead ASO was further obtained with 2ʹ-Methoxy Ethyl modification (2ʹMOE). Conclusion: The highly efficient splicing modulation and functional correction, achieved by free uptake of the selected lead ASO in various patients, demonstrate the ASO therapeutic potential benefit for CF patients carrying splicing mutations and is aimed to serve as the basis for our current clinical development.
Collapse
|
31
|
Anderson JD, Liu Z, Odom LV, Kersh L, Guimbellot JS. CFTR function and clinical response to modulators parallel nasal epithelial organoid swelling. Am J Physiol Lung Cell Mol Physiol 2021; 321:L119-L129. [PMID: 34009038 DOI: 10.1152/ajplung.00639.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In vitro biomarkers to assess cystic fibrosis transmembrane conductance regulator activity are desirable for precision modulator selection and as a tool for clinical trials. Here, we describe an organoid swelling assay derived from human nasal epithelia using commercially available reagents and equipment and an automated imaging process. Cells were collected in nasal brush biopsies, expanded in vitro, and cultured as spherical organoids or as monolayers. Organoids were used in a functional swelling assay with automated measurements and analysis, whereas monolayers were used for short-circuit current measurements to assess ion channel activity. Clinical data were collected from patients on modulators. Relationships between swelling data and short-circuit current, as well as between swelling data and clinical outcome measures, were assessed. The organoid assay measurements correlated with short-circuit current measurements for ion channel activity. The functional organoid assay distinguished individual responses as well as differences between groups. The organoid assay distinguished incremental drug responses to modulator monotherapy with ivacaftor and combination therapy with ivacaftor, tezacaftor, and elexacaftor. The swelling activity paralleled the clinical response. In conclusion, an in vitro biomarker derived from patients' cells can be used to predict responses to drugs and is likely to be useful as a preclinical tool to aid in the development of novel treatments and as a clinical trial outcome measure for a variety of applications, including gene therapy or editing.
Collapse
Affiliation(s)
- Justin D Anderson
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhongyu Liu
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - L Victoria Odom
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Latona Kersh
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Guimbellot
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
32
|
Transcriptional analysis of cystic fibrosis airways at single-cell resolution reveals altered epithelial cell states and composition. Nat Med 2021; 27:806-814. [PMID: 33958799 PMCID: PMC9009537 DOI: 10.1038/s41591-021-01332-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023]
Abstract
Cystic fibrosis (CF) is a lethal autosomal recessive disorder that afflicts more than 70,000 people. People with CF experience multi-organ dysfunction resulting from aberrant electrolyte transport across polarized epithelia due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF-related lung disease is by far the most important determinant of morbidity and mortality. Here we report results from a multi-institute consortium in which single-cell transcriptomics were applied to define disease-related changes by comparing the proximal airway of CF donors (n = 19) undergoing transplantation for end-stage lung disease with that of previously healthy lung donors (n = 19). Disease-dependent differences observed include an overabundance of epithelial cells transitioning to specialized ciliated and secretory cell subsets coupled with an unexpected decrease in cycling basal cells. Our study yields a molecular atlas of the proximal airway epithelium that will provide insights for the development of new targeted therapies for CF airway disease.
Collapse
|
33
|
Campbell DR, Senger CN, Ryan AL, Magin CM. Engineering Tissue-Informed Biomaterials to Advance Pulmonary Regenerative Medicine. Front Med (Lausanne) 2021; 8:647834. [PMID: 33898484 PMCID: PMC8060451 DOI: 10.3389/fmed.2021.647834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
Biomaterials intentionally designed to support the expansion, differentiation, and three-dimensional (3D) culture of induced-pluripotent stem cells (iPSCs) may pave the way to cell-based therapies for chronic respiratory diseases. These conditions are endured by millions of people worldwide and represent a significant cause of morbidity and mortality. Currently, there are no effective treatments for the majority of advanced lung diseases and lung transplantation remains the only hope for many chronically ill patients. Key opinion leaders speculate that the novel coronavirus, COVID-19, may lead to long-term lung damage, further exacerbating the need for regenerative therapies. New strategies for regenerative cell-based therapies harness the differentiation capability of human iPSCs for studying pulmonary disease pathogenesis and treatment. Excitingly, biomaterials are a cell culture platform that can be precisely designed to direct stem cell differentiation. Here, we present a closer look at the state-of-the-art of iPSC differentiation for pulmonary engineering, offer evidence supporting the power of biomaterials to improve stem cell differentiation, and discuss our perspective on the potential for tissue-informed biomaterials to transform pulmonary regenerative medicine.
Collapse
Affiliation(s)
- Donald R. Campbell
- Department of Bioengineering, Denver, Anschutz Medical Campus, University of Colorado, Aurora, CO, United States
| | - Christiana N. Senger
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, United States
| | - Amy L. Ryan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Chelsea M. Magin
- Department of Bioengineering, Denver, Anschutz Medical Campus, University of Colorado, Aurora, CO, United States
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, United States
| |
Collapse
|
34
|
Rajan A, Weaver AM, Aloisio GM, Jelinski J, Johnson HL, Venable SF, McBride T, Aideyan L, Piedra FA, Ye X, Melicoff-Portillo E, Yerramilli MRK, Zeng XL, Mancini MA, Stossi F, Maresso AW, Kotkar SA, Estes MK, Blutt S, Avadhanula V, Piedra PA. The Human Nose Organoid Respiratory Virus Model: an Ex Vivo Human Challenge Model To Study Respiratory Syncytial Virus (RSV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Pathogenesis and Evaluate Therapeutics. mBio 2021; 13:e0351121. [PMID: 35164569 PMCID: PMC8844923 DOI: 10.1128/mbio.03511-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
There is an unmet need for preclinical models to understand the pathogenesis of human respiratory viruses and predict responsiveness to immunotherapies. Airway organoids can serve as an ex vivo human airway model to study respiratory viral pathogenesis; however, they rely on invasive techniques to obtain patient samples. Here, we report a noninvasive technique to generate human nose organoids (HNOs) as an alternative to biopsy-derived organoids. We made air-liquid interface (ALI) cultures from HNOs and assessed infection with two major human respiratory viruses, respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infected HNO-ALI cultures recapitulate aspects of RSV and SARS-CoV-2 infection, including viral shedding, ciliary damage, innate immune responses, and mucus hypersecretion. Next, we evaluated the feasibility of the HNO-ALI respiratory virus model system to test the efficacy of palivizumab to prevent RSV infection. Palivizumab was administered in the basolateral compartment (circulation), while viral infection occurred in the apical ciliated cells (airways), simulating the events in infants. In our model, palivizumab effectively prevented RSV infection in a concentration-dependent manner. Thus, the HNO-ALI model can serve as an alternative to lung organoids to study respiratory viruses and test therapeutics. IMPORTANCE Preclinical models that recapitulate aspects of human airway disease are essential for the advancement of novel therapeutics and vaccines. Here, we report a versatile airway organoid model, the human nose organoid (HNO), that recapitulates the complex interactions between the host and virus. HNOs are obtained using noninvasive procedures and show divergent responses to SARS-CoV-2 and RSV infection. SARS-CoV-2 induces severe damage to cilia and the epithelium, no interferon-λ response, and minimal mucus secretion. In striking contrast, RSV induces hypersecretion of mucus and a profound interferon-λ response with ciliary damage. We also demonstrated the usefulness of our ex vivo HNO model of RSV infection to test the efficacy of palivizumab, an FDA-approved monoclonal antibody to prevent severe RSV disease in high-risk infants. Our study reports a breakthrough in both the development of a novel nose organoid model and in our understanding of the host cellular response to RSV and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ashley Morgan Weaver
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Gina Marie Aloisio
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph Jelinski
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hannah L. Johnson
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Susan F. Venable
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Trevor McBride
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Letisha Aideyan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Felipe-Andrés Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xunyan Ye
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Michael A. Mancini
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Fabio Stossi
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shalaka A. Kotkar
- Environmental Safety Department, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Section of Infectious Diseases and Gastroenterology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
35
|
Tian L, Gao J, Garcia IM, Chen HJ, Castaldi A, Chen YW. Human pluripotent stem cell-derived lung organoids: Potential applications in development and disease modeling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e399. [PMID: 33145915 DOI: 10.1002/wdev.399] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 09/09/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023]
Abstract
The pulmonary system is comprised of two main compartments, airways and alveolar space. Their tissue and cellular complexity ensure lung function and protection from external agents, for example, virus. Two-dimensional (2D) in vitro systems and animal models have been largely employed to elucidate the molecular mechanisms underlying human lung development, physiology, and pathogenesis. However, neither of these models accurately recapitulate the human lung environment and cellular crosstalk. More recently, human-derived three-dimensional (3D) models have been generated allowing for a deeper understanding of cell-to-cell communication. However, the availability and accessibility of primary human cell sources from which generate the 2D and 3D models may be limited. In the past few years, protocols have been developed to successfully employ human pluripotent stem cells (hPSCs) and differentiate them toward pulmonary fate in vitro. In the present review, we discuss the advantages and pitfalls of hPSC-derived lung 2D and 3D models, including the main characteristics and potentials for these models and their current and future applications for modeling development and diseases. Lung organoids currently represent the closest model to the human pulmonary system. We further focus on the applications of lung organoids for the study of human diseases such as pulmonary fibrosis, infectious diseases, and lung cancer. Finally, we discuss the present limitations and potential future applications of 3D lung organoids. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion.
Collapse
Affiliation(s)
- Lu Tian
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jinghui Gao
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Irving M Garcia
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Huanhuan Joyce Chen
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,Ben May department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Alessandra Castaldi
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ya-Wen Chen
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
36
|
Shamseldin HE, Al Mogarri I, Alqwaiee MM, Alharbi AS, Baqais K, AlSaadi M, AlAnzi T, Alhashem A, Saghier A, Ameen W, Ibrahim N, Yang J, Abdulwahab F, Hashem M, Chivukula RR, Alkuraya FS. An exome-first approach to aid in the diagnosis of primary ciliary dyskinesia. Hum Genet 2020; 139:1273-1283. [PMID: 32367404 DOI: 10.1007/s00439-020-02170-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/25/2020] [Indexed: 01/31/2023]
Abstract
Unlike disorders of primary cilium, primary ciliary dyskinesia (PCD) has a much narrower clinical spectrum consistent with the limited tissue distribution of motile cilia. Nonetheless, PCD diagnosis can be challenging due to the overlapping features with other disorders and the requirement for sophisticated tests that are only available in specialized centers. We performed exome sequencing on all patients with a clinical suspicion of PCD but for whom no nasal nitric oxide test or ciliary functional assessment could be ordered. Among 81 patients (56 families), in whom PCD was suspected, 68% had pathogenic or likely pathogenic variants in established PCD-related genes that fully explain the phenotype (20 variants in 11 genes). The major clinical presentations were sinopulmonary infections (SPI) (n = 58), neonatal respiratory distress (NRD) (n = 2), laterality defect (LD) (n = 6), and combined LD/SPI (n = 15). Biallelic likely deleterious variants were also encountered in AKNA and GOLGA3, which we propose as novel candidates in a lung phenotype that overlaps clinically with PCD. We also encountered a PCD phenocopy caused by a pathogenic variant in ITCH, and a pathogenic variant in CEP164 causing Bardet-Biedl syndrome and PCD presentation as a very rare example of the dual presentation of these two disorders of the primary and motile cilia. Exome sequencing is a powerful tool that can help "democratize" the diagnosis of PCD, which is currently limited to highly specialized centers.
Collapse
Affiliation(s)
- Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ibrahim Al Mogarri
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mansour M Alqwaiee
- Deparment of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Adel S Alharbi
- Deparment of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Khaled Baqais
- Deparment of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Muslim AlSaadi
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Talal AlAnzi
- Deparment of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Deparment of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Afaf Saghier
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Waleed Ameen
- Department of Pediatrics, King Saud Medical City, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jason Yang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Raghu R Chivukula
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
37
|
Choice of Differentiation Media Significantly Impacts Cell Lineage and Response to CFTR Modulators in Fully Differentiated Primary Cultures of Cystic Fibrosis Human Airway Epithelial Cells. Cells 2020; 9:cells9092137. [PMID: 32967385 PMCID: PMC7565948 DOI: 10.3390/cells9092137] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
In vitro cultures of primary human airway epithelial cells (hAECs) grown at air–liquid interface have become a valuable tool to study airway biology under normal and pathologic conditions, and for drug discovery in lung diseases such as cystic fibrosis (CF). An increasing number of different differentiation media, are now available, making comparison of data between studies difficult. Here, we investigated the impact of two common differentiation media on phenotypic, transcriptomic, and physiological features of CF and non-CF epithelia. Cellular architecture and density were strongly impacted by the choice of medium. RNA-sequencing revealed a shift in airway cell lineage; one medium promoting differentiation into club and goblet cells whilst the other enriched the growth of ionocytes and multiciliated cells. Pathway analysis identified differential expression of genes involved in ion and fluid transport. Physiological assays (intracellular/extracellular pH, Ussing chamber) specifically showed that ATP12A and CFTR function were altered, impacting pH and transepithelial ion transport in CF hAECs. Importantly, the two media differentially affected functional responses to CFTR modulators. We argue that the effect of growth conditions should be appropriately determined depending on the scientific question and that our study can act as a guide for choosing the optimal growth medium for specific applications.
Collapse
|
38
|
Hor P, Ichida JK, Borok Z, Ryan AL. Protocol for Differentiation of Human iPSCs into Pulmonary Neuroendocrine Cells. STAR Protoc 2020; 1:100068. [PMID: 33111106 PMCID: PMC7580194 DOI: 10.1016/j.xpro.2020.100068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pulmonary neuroendocrine cells (PNECs) are sensory cells within the lung airway epithelia. Here, we provide a detailed protocol for generating induced PNECs (iPNECs) from human induced pluripotent stem cells (iPSCs). The cellular and molecular profile of iPNECs resembles primary human PNECs. Primary human PNECs are exceedingly rare, comprising only 1% of the adult lung. Therefore, a self-renewing source of patient-specific iPNECs facilitates the creation of reproducible human cellular models to study lung diseases characterized by PNEC dysfunction. For complete details on the use and execution of this protocol, please refer to Hor et al. (2020).
Collapse
Affiliation(s)
- Pooja Hor
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zea Borok
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
39
|
Michaels WE, Bridges RJ, Hastings ML. Antisense oligonucleotide-mediated correction of CFTR splicing improves chloride secretion in cystic fibrosis patient-derived bronchial epithelial cells. Nucleic Acids Res 2020; 48:7454-7467. [PMID: 32520327 PMCID: PMC7367209 DOI: 10.1093/nar/gkaa490] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/22/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, encoding an anion channel that conducts chloride and bicarbonate across epithelial membranes. Mutations that disrupt pre-mRNA splicing occur in >15% of CF cases. One common CFTR splicing mutation is CFTR c.3718-2477C>T (3849+10 kb C>T), which creates a new 5′ splice site, resulting in splicing to a cryptic exon with a premature termination codon. Splice-switching antisense oligonucleotides (ASOs) have emerged as an effective therapeutic strategy to block aberrant splicing. We test an ASO targeting the CFTR c.3718-2477C>T mutation and show that it effectively blocks aberrant splicing in primary bronchial epithelial (hBE) cells from CF patients with the mutation. ASO treatment results in long-term improvement in CFTR activity in hBE cells, as demonstrated by a recovery of chloride secretion and apical membrane conductance. We also show that the ASO is more effective at recovering chloride secretion in our assay than ivacaftor, the potentiator treatment currently available to these patients. Our findings demonstrate the utility of ASOs in correcting CFTR expression and channel activity in a manner expected to be therapeutic in patients.
Collapse
Affiliation(s)
- Wren E Michaels
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Robert J Bridges
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
40
|
Cystic fibrosis drug trial design in the era of CFTR modulators associated with substantial clinical benefit: stakeholders’ consensus view. J Cyst Fibros 2020; 19:688-695. [DOI: 10.1016/j.jcf.2020.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022]
|
41
|
Rayner RE, Wellmerling J, Osman W, Honesty S, Alfaro M, Peeples ME, Cormet-Boyaka E. In vitro 3D culture lung model from expanded primary cystic fibrosis human airway cells. J Cyst Fibros 2020; 19:752-761. [PMID: 32565193 DOI: 10.1016/j.jcf.2020.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 04/13/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND In vitro cystic fibrosis (CF) models are crucial for understanding the mechanisms and consequences of the disease. They are also the gold standard for pre-clinical efficacy studies of current and novel CF drugs. However, few studies have investigated expansion and differentiation of primary CF human bronchial epithelial (CF-HBE) cells. Here we describe culture conditions to expand primary CF airway cells while preserving their ability to differentiate into 3D epithelial cultures expressing functional cystic fibrosis transmembrane conductance regulator (CFTR) ion channels that responds to CFTR modulators. METHODS Primary CF airway cells were expanded using PneumaCultTM-Ex Plus (StemCell Technologies) medium with no feeder cells or added Rho kinase (ROCK) inhibitor. Differentially passaged CF-HBE cells at the air-liquid interface (ALI) were characterized phenotypically and functionally in response to the CFTR corrector drug VX-661 (Tezacaftor). RESULTS CF-HBE primary cells, expanded up to six passages (~25 population doublings), differentiated into 3D epithelial cultures as evidenced by trans-epithelial electrical resistance (TEER) of >400 Ohms∙cm2 and presence of pseudostratified columnar ciliated epithelium with goblet cells. However, up to passage five cells from most donors showed increased CFTR-mediated short-circuit currents when treated with the corrector drug, VX-661. Ciliary beat frequency (CBF) also increased with the corrector VX-661. CONCLUSIONS CF donor-derived airway cells can be expanded without the use of feeder cells or additional ROCK inhibitor, and still achieve optimal 3D epithelial cultures that respond to CFTR modulators. The study of rare CF mutations could benefit from cell expansion and could lead to the design of personalized medicine/treatments.
Collapse
Affiliation(s)
- Rachael E Rayner
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | - Jack Wellmerling
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | - Wissam Osman
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | - Sean Honesty
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | - Maria Alfaro
- Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH 43205, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA.
| |
Collapse
|
42
|
Liu Z, Anderson JD, Deng L, Mackay S, Bailey J, Kersh L, Rowe SM, Guimbellot JS. Human Nasal Epithelial Organoids for Therapeutic Development in Cystic Fibrosis. Genes (Basel) 2020; 11:genes11060603. [PMID: 32485957 PMCID: PMC7349680 DOI: 10.3390/genes11060603] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
We describe a human nasal epithelial (HNE) organoid model derived directly from patient samples that is well-differentiated and recapitulates the airway epithelium, including the expression of cilia, mucins, tight junctions, the cystic fibrosis transmembrane conductance regulator (CFTR), and ionocytes. This model requires few cells compared to airway epithelial monolayer cultures, with multiple outcome measurements depending on the application. A novel feature of the model is the predictive capacity of lumen formation, a marker of baseline CFTR function that correlates with short-circuit current activation of CFTR in monolayers and discriminates the cystic fibrosis (CF) phenotype from non-CF. Our HNE organoid model is amenable to automated measurements of forskolin-induced swelling (FIS), which distinguishes levels of CFTR activity. While the apical side is not easily accessible, RNA- and DNA-based therapies intended for systemic administration could be evaluated in vitro, or it could be used as an ex vivo biomarker of successful repair of a mutant gene. In conclusion, this highly differentiated airway epithelial model could serve as a surrogate biomarker to assess correction of the mutant gene in CF or other diseases, recapitulating the phenotypic and genotypic diversity of the population.
Collapse
Affiliation(s)
- Zhongyu Liu
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA; (Z.L.); (J.D.A.); (S.M.); (L.K.); (S.M.R.)
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL 35233, USA; (L.D.); (J.B.)
| | - Justin D. Anderson
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA; (Z.L.); (J.D.A.); (S.M.); (L.K.); (S.M.R.)
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL 35233, USA; (L.D.); (J.B.)
| | - Lily Deng
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL 35233, USA; (L.D.); (J.B.)
| | - Stephen Mackay
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA; (Z.L.); (J.D.A.); (S.M.); (L.K.); (S.M.R.)
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL 35233, USA; (L.D.); (J.B.)
| | - Johnathan Bailey
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL 35233, USA; (L.D.); (J.B.)
| | - Latona Kersh
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA; (Z.L.); (J.D.A.); (S.M.); (L.K.); (S.M.R.)
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, UAB, Birmingham, AL 35294, USA
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA; (Z.L.); (J.D.A.); (S.M.); (L.K.); (S.M.R.)
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL 35233, USA; (L.D.); (J.B.)
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, UAB, Birmingham, AL 35294, USA
- Department of Cell, Developmental and Integrative Biology, UAB, Birmingham, AL 35294, USA
| | - Jennifer S. Guimbellot
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA; (Z.L.); (J.D.A.); (S.M.); (L.K.); (S.M.R.)
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL 35233, USA; (L.D.); (J.B.)
- Correspondence: ; Tel.: +1-205-234-0250; Fax: +1-205-975-5983
| |
Collapse
|
43
|
Guerra L, Favia M, Di Gioia S, Laselva O, Bisogno A, Casavola V, Colombo C, Conese M. The preclinical discovery and development of the combination of ivacaftor + tezacaftor used to treat cystic fibrosis. Expert Opin Drug Discov 2020; 15:873-891. [PMID: 32290721 DOI: 10.1080/17460441.2020.1750592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Cystic Fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. The most common mutation, F508del, induces protein misprocessing and loss of CFTR function. The discovery through in vitro studies of the CFTR correctors (i.e. lumacaftor, tezacaftor) that partially rescue the misprocessing of F508del-CFTR with the potentiator ivacaftor is promising in giving an unprecedented clinical benefit in affected patients. AREAS COVERED Online databases were searched using key phrases for CF and CFTR modulators. Tezacaftor-ivacaftor treatment has proved to be safer than lumacaftor-ivacaftor, although clinical efficacy is similar. Further clinical efficacy has ensued with the introduction of triple therapy, i.e. applying second-generation correctors, such as VX-569 and VX-445 (elexacaftor) to tezacaftor-ivacaftor. The triple combinations will herald the availability of etiologic therapies for patients for whom no CFTR modulators are currently applied (i.e. F508del/minimal function mutations) and enhance CFTR modulator therapy for patients homozygous for F508del. EXPERT OPINION CF patient-derived tissue models are being explored to determine donor-specific response to current approved and future novel CFTR modulators for F508del and other rare mutations. The discovery and validation of biomarkers of CFTR modulation will complement these studies in the long term and in real-life world.
Collapse
Affiliation(s)
- Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia , Foggia, Italy
| | - Onofrio Laselva
- Programme in Molecular Medicine, Research Institute, Hospital for Sick Children , Toronto, Ontario, Canada.,Department of Physiology, University of Toronto , Toronto, Ontario, Canada
| | - Arianna Bisogno
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Regionale di Riferimento per la Fibrosi Cistica, Università degli Studi di Milano , Milan, Italy
| | - Valeria Casavola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
| | - Carla Colombo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Regionale di Riferimento per la Fibrosi Cistica, Università degli Studi di Milano , Milan, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia , Foggia, Italy
| |
Collapse
|
44
|
Chivukula RR, Montoro DT, Leung HM, Yang J, Shamseldin HE, Taylor MS, Dougherty GW, Zariwala MA, Carson J, Daniels MLA, Sears PR, Black KE, Hariri LP, Almogarri I, Frenkel EM, Vinarsky V, Omran H, Knowles MR, Tearney GJ, Alkuraya FS, Sabatini DM. A human ciliopathy reveals essential functions for NEK10 in airway mucociliary clearance. Nat Med 2020; 26:244-251. [PMID: 31959991 PMCID: PMC7018620 DOI: 10.1038/s41591-019-0730-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Raghu R Chivukula
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA. .,Whitehead Institute for Biomedical Research, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA. .,Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Daniel T Montoro
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jason Yang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Martin S Taylor
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Gerard W Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, Münster, Germany
| | - Maimoona A Zariwala
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Johnny Carson
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Leigh Anne Daniels
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick R Sears
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katharine E Black
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lida P Hariri
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Ibrahim Almogarri
- Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Evgeni M Frenkel
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vladimir Vinarsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Münster, Germany
| | - Michael R Knowles
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
45
|
Singh AK, Fan Y, Balut C, Alani S, Manelli AM, Swensen AM, Jia Y, Neelands TR, Vortherms TA, Liu B, Searle XB, Wang X, Gao W, Hwang TC, Ren HY, Cyr D, Kym PR, Conrath K, Tse C. Biological Characterization of F508delCFTR Protein Processing by the CFTR Corrector ABBV-2222/GLPG2222. J Pharmacol Exp Ther 2020; 372:107-118. [PMID: 31732698 PMCID: PMC11047061 DOI: 10.1124/jpet.119.261800] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic autosomal recessive disease in Caucasians caused by pathogenic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (CFTR). Significant small molecule therapeutic advances over the past two decades have been made to target the defective CFTR protein and enhance its function. To address the most prevalent defect of the defective CFTR protein (i.e., F508del mutation) in CF, two biomolecular activities are required, namely, correctors to increase the amount of properly folded F508delCFTR levels at the cell surface and potentiators to allow the effective opening, i.e., function of the F508delCFTR channel. Combined, these activities enhance chloride ion transport yielding improved hydration of the lung surface and subsequent restoration of mucociliary clearance. To enhance clinical benefits to CF patients, a complementary triple combination therapy consisting of two corrector molecules, type 1 (C1) and type 2, with additive mechanisms along with a potentiator are being investigated in the clinic for maximum restoration of mutated CFTR function. We report the identification and in vitro biologic characterization of ABBV-2222/GLPG2222 (4-[(2R,4R)-4-({[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl}amino)-7-(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl]benzoic acid),-a novel, potent, and orally bioavailable C1 corrector developed by AbbVie-Galapagos and currently in clinical trials-which exhibits substantial improvements over the existing C1 correctors. This includes improvements in potency and drug-drug interaction (DDI) compared with 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid (VX-809, Lumacaftor) and improvements in potency and efficacy compared with 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-[1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)indol-5-yl]cyclopropane-1-carboxamide (VX-661, Tezacaftor). ABBV-2222/GLPG2222 exhibits potent in vitro functional activity in primary patient cells harboring F508del/F508del CFTR with an EC50 value <10 nM. SIGNIFICANCE STATEMENT: To address the most prevalent defect of the defective CFTR protein (i.e., F508del mutation) in cystic fibrosis, AbbVie-Galapagos has developed ABBV-2222/GLPG2222, a novel, potent, and orally bioavailable C1 corrector of this protein. ABBV-2222/GLPG2222, which is currently in clinical trials, exhibits potent in vitro functional activity in primary patient cells harboring F508del/F508del CFTR and substantial improvements over the existing C1 correctors.
Collapse
Affiliation(s)
- Ashvani K Singh
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Yihong Fan
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Corina Balut
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Sara Alani
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Arlene M Manelli
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Andrew M Swensen
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Ying Jia
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Torben R Neelands
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Timothy A Vortherms
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Bo Liu
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Xenia B Searle
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Xueqing Wang
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Wenqing Gao
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Tzyh-Chang Hwang
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Hong Y Ren
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Douglas Cyr
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Philip R Kym
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Katja Conrath
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| | - Chris Tse
- AbbVie Inc., iSAT, North Chicago, Illinois (A.K.S., Y.F., C.B., S.A., A.M.M., A.M.S., Y.J., T.R.N., T.A.V., B.L., X.B.S., X.W., W.G., P.R.K., C.T.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (T.-C.H.); Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (H.Y.R., D.C.); and Galapagos NV, Mechelen, Belgium (K.C.)
| |
Collapse
|
46
|
Zhang C, Lee HJ, Shrivastava A, Wang R, McQuiston TJ, Challberg SS, Pollok BA, Wang T. Long-Term In Vitro Expansion of Epithelial Stem Cells Enabled by Pharmacological Inhibition of PAK1-ROCK-Myosin II and TGF-β Signaling. Cell Rep 2019; 25:598-610.e5. [PMID: 30332641 PMCID: PMC6284236 DOI: 10.1016/j.celrep.2018.09.072] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/01/2018] [Accepted: 09/21/2018] [Indexed: 01/22/2023] Open
Abstract
Despite substantial self-renewal capability in vivo, epithelial stem and progenitor cells located in various tissues expand for a few passages in vitro in feeder-free condition before they succumb to growth arrest. Here, we describe the EpiX method, which utilizes small molecules that inhibit PAK1-ROCK-Myosin II and TGF-β signaling to achieve over one trillion-fold expansion of human epithelial stem and progenitor cells from skin, airway, mammary, and prostate glands in the absence of feeder cells. Transcriptomic and epigenomic studies show that this condition helps epithelial cells to overcome stresses for continuous proliferation. EpiX-expanded basal epithelial cells differentiate into mature epithelial cells consistent with their tissue origins. Whole-genome sequencing reveals that the cells retain remarkable genome integrity after extensive in vitro expansion without acquiring tumorigenicity. EpiX technology provides a solution to exploit the potential of tissue-resident epithelial stem and progenitor cells for regenerative medicine.
Collapse
Affiliation(s)
- Chengkang Zhang
- Propagenix, 9605 Medical Center Drive, Suite 325, Rockville, MD 20850, USA.
| | - Hyung Joo Lee
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Anura Shrivastava
- Propagenix, 9605 Medical Center Drive, Suite 325, Rockville, MD 20850, USA
| | - Ruipeng Wang
- Propagenix, 9605 Medical Center Drive, Suite 325, Rockville, MD 20850, USA
| | - Travis J McQuiston
- Propagenix, 9605 Medical Center Drive, Suite 325, Rockville, MD 20850, USA
| | - Sharon S Challberg
- Propagenix, 9605 Medical Center Drive, Suite 325, Rockville, MD 20850, USA
| | - Brian A Pollok
- Propagenix, 9605 Medical Center Drive, Suite 325, Rockville, MD 20850, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA.
| |
Collapse
|
47
|
Phosphorylation-dependent modulation of CFTR macromolecular signalling complex activity by cigarette smoke condensate in airway epithelia. Sci Rep 2019; 9:12706. [PMID: 31481727 PMCID: PMC6722123 DOI: 10.1038/s41598-019-48971-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and acquired loss-of-function defect of the cystic fibrosis transmembrane conductance regulator (CFTR) compromise airway surface liquid homeostasis and mucociliary clearance (MCC), culminating in recurrent lung inflammation/infection. While chronic cigarette smoke (CS), CS extract (CSE; water-soluble compounds) and CS condensate (CSC; particulate, organic fraction) exposure inhibit CFTR activity at transcriptional, biochemical, and functional levels, the acute impact of CSC remains incompletely understood. We report that CSC transiently activates CFTR chloride secretion in airway epithelia. The comparable CFTR phospho-occupancy after CSC- and forskolin-exposure, determined by affinity-enriched tandem mass spectrometry and pharmacology, suggest that localised cAMP-dependent protein kinase (PKA) stimulation by CSC causes the channel opening. Due to the inhibition of the MRP4/ABCC4, a cAMP-exporter confined to the CFTR macromolecular signalling-complex, PKA activation is accomplished by the subcompartmentalised elevation of cytosolic cAMP. In line, MRP4 inhibition results in CFTR activation and phospho-occupancy similar to that by forskolin. In contrast, acute CSC exposure reversibly inhibits the phosphorylated CFTR both in vivo and in phospholipid bilayers, without altering its cell surface density and phospho-occupancy. We propose that components of CSC elicit both a transient protective CFTR activation, as well as subsequent channel block in airway epithelia, contributing to the subacute MCC defect in acquired CF lung diseases.
Collapse
|
48
|
Bioactive Thymosin Alpha-1 Does Not Influence F508del-CFTR Maturation and Activity. Sci Rep 2019; 9:10310. [PMID: 31311979 PMCID: PMC6635361 DOI: 10.1038/s41598-019-46639-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is the most frequent mutation causing cystic fibrosis (CF). F508del-CFTR is misfolded and prematurely degraded. Recently thymosin a-1 (Tα-1) was proposed as a single molecule-based therapy for CF, improving both F508del-CFTR maturation and function by restoring defective autophagy. However, three independent laboratories failed to reproduce these results. Lack of reproducibility has been ascribed by the authors of the original paper to the use of DMSO and to improper handling. Here, we address these potential issues by demonstrating that Tα-1 changes induced by DMSO are fully reversible and that Tα-1 peptides prepared from different stock solutions have equivalent biological activity. Considering the negative results here reported, six independent laboratories failed to demonstrate F508del-CFTR correction by Tα-1. This study also calls into question the autophagy modulator cysteamine, since no rescue of mutant CFTR function was detected following treatment with cysteamine, while deleterious effects were observed when bronchial epithelia were exposed to cysteamine plus the antioxidant food supplement EGCG. Although these studies do not exclude the possibility of beneficial immunomodulatory effects of thymosin α-1, they do not support its utility as a corrector of F508del-CFTR.
Collapse
|
49
|
van Mourik P, Beekman JM, van der Ent CK. Intestinal organoids to model cystic fibrosis. Eur Respir J 2019; 54:13993003.02379-2018. [PMID: 31023844 DOI: 10.1183/13993003.02379-2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Peter van Mourik
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
50
|
Berg A, Hallowell S, Tibbetts M, Beasley C, Brown-Phillips T, Healy A, Pustilnik L, Doyonnas R, Pregel M. High-Throughput Surface Liquid Absorption and Secretion Assays to Identify F508del CFTR Correctors Using Patient Primary Airway Epithelial Cultures. SLAS DISCOVERY 2019; 24:724-737. [PMID: 31107611 DOI: 10.1177/2472555219849375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-throughput screening for drug discovery is increasingly utilizing cellular systems of high physiological relevance, such as patient primary cells and organoid cultures. We used 3D-cultured cystic fibrosis patient bronchial epithelial cells to screen for new small-molecule correctors of the disease-causing F508del mutation in CFTR. Impaired mucociliary clearance due to insufficient airway hydration is a hallmark of cystic fibrosis and we used a simple measure of surface liquid levels to quantify F508del CFTR correction in cultured bronchial epithelial cells. Two robust assay formats were configured and used to screen more than 100,000 compounds as mixtures or individual compounds in 96-well format. The corrector discovery success rate, as measured by the number of hits confirmed by an electrophysiology assay on patient primary bronchial epithelial cells, was superior to screens in cell lines expressing recombinant F508del CFTR. Several novel corrector scaffolds were discovered that when combined with the clinical corrector VX-809 delivered combination responses greater than double that of VX-809 alone. This work exemplifies the advantages of a disease-relevant readout and 3D-cultured patient primary cells for the discovery of new drug candidates.
Collapse
Affiliation(s)
- Allison Berg
- 1 Rare Disease Research, Pfizer Inc., Cambridge, MA, USA
| | - Shawn Hallowell
- 2 Primary Pharmacology Group, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Mark Tibbetts
- 2 Primary Pharmacology Group, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Chad Beasley
- 2 Primary Pharmacology Group, Medicine Design, Pfizer Inc., Groton, CT, USA
| | | | - Anita Healy
- 2 Primary Pharmacology Group, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Leslie Pustilnik
- 2 Primary Pharmacology Group, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Regis Doyonnas
- 2 Primary Pharmacology Group, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Marko Pregel
- 1 Rare Disease Research, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|