1
|
Wahman R, Cruzeiro C, Graßmann J, Schröder P, Letzel T. The changes in Lemna minor metabolomic profile: A response to diclofenac incubation. CHEMOSPHERE 2022; 287:132078. [PMID: 34523431 DOI: 10.1016/j.chemosphere.2021.132078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 05/27/2023]
Abstract
Metabolomics is an emerging approach that investigates the changes in the metabolome profile. In the present study, Lemna minor -considered as an experimental aquatic plant model- was incubated with 10 and 100 μM diclofenac (DCF) for 96 h, respectively. Knowing that DCF is internationally often problematic in wastewater effluents and that it might affect particularly the metabolic profiles in aquatic plants, mainly the oxidoreductase, dehydrogenase, peroxidase, and glutathione reductase activities, here it was hypothesized (H) that in the common duckweed, DCF might increase the phenolic and flavonoids pathways, as an antioxidant response to this stress (H1). Also, it was expected DCF to alternate the physiological characteristics, especially the molecular interaction and biochemical properties, of Lemna (H2). Metabolic changes were investigated with target and untargeted screening analysis using RPLC-HILIC-ESI-TOF-MS. Twelve amino acids were identified in all treatments, together with three organic acids (p-coumaric, cinnamic, and sinapic acids). In untargeted screening, the important metabolites to discriminate between different treatments were assigned to Lemna such as organic acids, lignin, sugars, amino acids, dipeptides, flavonoids, biflavonoids, fatty acids, among others. In resume, Lemna responded to both DCF concentrations, showing different stress patterns. A similar metabolic response had already been identified in other studies in exposing Lemna to other anthropogenic stressors (like pesticides).
Collapse
Affiliation(s)
- Rofida Wahman
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany; Pharmacognosy Department, Faculty of Pharmacy, Assiut University, Assiut, Arab Republic of Egypt, Egypt
| | - Catarina Cruzeiro
- German Research Center for Environmental Health, Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Street 1, 85764, Neuherberg, Germany.
| | - Johanna Graßmann
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
| | - Peter Schröder
- German Research Center for Environmental Health, Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Street 1, 85764, Neuherberg, Germany
| | - Thomas Letzel
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany; Analytisches Forschungsinstitut für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167, Augsburg, Germany
| |
Collapse
|
2
|
Wahman R, Moser S, Bieber S, Cruzeiro C, Schröder P, Gilg A, Lesske F, Letzel T. Untargeted Analysis of Lemna minor Metabolites: Workflow and Prioritization Strategy Comparing Highly Confident Features between Different Mass Spectrometers. Metabolites 2021; 11:832. [PMID: 34940590 PMCID: PMC8706044 DOI: 10.3390/metabo11120832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022] Open
Abstract
Metabolomics approaches provide a vast array of analytical datasets, which require a comprehensive analytical, statistical, and biochemical workflow to reveal changes in metabolic profiles. The biological interpretation of mass spectrometric metabolomics results is still obstructed by the reliable identification of the metabolites as well as annotation and/or classification. In this work, the whole Lemna minor (common duckweed) was extracted using various solvents and analyzed utilizing polarity-extended liquid chromatography (reversed-phase liquid chromatography (RPLC)-hydrophilic interaction liquid chromatography (HILIC)) connected to two time-of-flight (TOF) mass spectrometer types, individually. This study (introduces and) discusses three relevant topics for the untargeted workflow: (1) A comparison study of metabolome samples was performed with an untargeted data handling workflow in two different labs with two different mass spectrometers using the same plant material type. (2) A statistical procedure was observed prioritizing significant detected features (dependent and independent of the mass spectrometer using the predictive methodology Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA). (3) Relevant features were transferred to a prioritization tool (the FOR-IDENT platform (FI)) and were compared with the implemented compound database PLANT-IDENT (PI). This compound database is filled with relevant compounds of the Lemnaceae, Poaceae, Brassicaceae, and Nymphaceae families according to analytical criteria such as retention time (polarity and LogD (pH 7)) and accurate mass (empirical formula). Thus, an untargeted analysis was performed using the new tool as a prioritization and identification source for a hidden-target screening strategy. Consequently, forty-two compounds (amino acids, vitamins, flavonoids) could be recognized and subsequently validated in Lemna metabolic profile using reference standards. The class of flavonoids includes free aglycons and their glycosides. Further, according to our knowledge, the validated flavonoids robinetin and norwogonin were for the first time identified in the Lemna minor extracts.
Collapse
Affiliation(s)
- Rofida Wahman
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany;
- Pharmacognosy Department, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Stefan Moser
- Stefan Moser Process Optimization, Weberweg 3, 83131 Nußdorf am Inn, Germany;
| | - Stefan Bieber
- Analytisches Forschungsinstitut für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167 Augsburg, Germany;
| | - Catarina Cruzeiro
- Research Unit Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Centrum Munich, Ingolstädter Strasse 1, 85764 Neuherberg, Germany; (C.C.); (P.S.)
| | - Peter Schröder
- Research Unit Comparative Microbiome Analysis, German Research Center for Environmental Health, Helmholtz Centrum Munich, Ingolstädter Strasse 1, 85764 Neuherberg, Germany; (C.C.); (P.S.)
| | - August Gilg
- Departement of Bioengineering Sciences, Weihenstephan-Triesdorf University of Applied Sciences, Am Hofgarten 4, Weihenstephan, 85354 Freising, Germany; (A.G.); (F.L.)
| | - Frank Lesske
- Departement of Bioengineering Sciences, Weihenstephan-Triesdorf University of Applied Sciences, Am Hofgarten 4, Weihenstephan, 85354 Freising, Germany; (A.G.); (F.L.)
| | - Thomas Letzel
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany;
- Analytisches Forschungsinstitut für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167 Augsburg, Germany;
| |
Collapse
|
3
|
Papantoniou D, Vergara F, Weinhold A, Quijano T, Khakimov B, Pattison DI, Bak S, van Dam NM, Martínez-Medina A. Cascading Effects of Root Microbial Symbiosis on the Development and Metabolome of the Insect Herbivore Manduca sexta L. Metabolites 2021; 11:731. [PMID: 34822389 PMCID: PMC8622251 DOI: 10.3390/metabo11110731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Root mutualistic microbes can modulate the production of plant secondary metabolites affecting plant-herbivore interactions. Still, the main mechanisms underlying the impact of root mutualists on herbivore performance remain ambiguous. In particular, little is known about how changes in the plant metabolome induced by root mutualists affect the insect metabolome and post-larval development. By using bioassays with tomato plants (Solanum lycopersicum), we analyzed the impact of the arbuscular mycorrhizal fungus Rhizophagus irregularis and the growth-promoting fungus Trichoderma harzianum on the plant interaction with the specialist insect herbivore Manduca sexta. We found that root colonization by the mutualistic microbes impaired insect development, including metamorphosis. By using untargeted metabolomics, we found that root colonization by the mutualistic microbes altered the secondary metabolism of tomato shoots, leading to enhanced levels of steroidal glycoalkaloids. Untargeted metabolomics further revealed that root colonization by the mutualists affected the metabolome of the herbivore, leading to an enhanced accumulation of steroidal glycoalkaloids and altered patterns of fatty acid amides and carnitine-derived metabolites. Our results indicate that the changes in the shoot metabolome triggered by root mutualistic microbes can cascade up altering the metabolome of the insects feeding on the colonized plants, thus affecting the insect development.
Collapse
Affiliation(s)
- Dimitra Papantoniou
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; (D.P.); (F.V.); (A.W.)
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Fredd Vergara
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; (D.P.); (F.V.); (A.W.)
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; (D.P.); (F.V.); (A.W.)
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Teresa Quijano
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná 97000, Mexico;
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen Rolighedsvej 26, 1958 Frederiksberg C, Denmark;
| | - David I. Pattison
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (D.I.P.); (S.B.)
| | - Søren Bak
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (D.I.P.); (S.B.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; (D.P.); (F.V.); (A.W.)
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Ainhoa Martínez-Medina
- Plant-Microorganism Interaction, Institute of Natural Resources and Agrobiology of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
4
|
Gong Y, Song J, Palmer LC, Vinqvist-Tymchuk M, Fillmore S, Toivonen P, Zhang Z. Tracking the development of the superficial scald disorder and effects of treatments with diphenylamine and 1-MCP using an untargeted metabolomic approach in apple fruit. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 2:100022. [PMID: 35415623 PMCID: PMC8991853 DOI: 10.1016/j.fochms.2021.100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 05/25/2023]
Abstract
Superficial scald is a physiological storage disorder that significantly reduces the marketability of apple fruit. To gain fundamental knowledge about the biochemical pathways leading to the development of the disorder and mechanisms of treatments for prevention, an untargeted metabolomics experiment employing liquid chromatography and mass spectrometry with data independent acquisition was performed. Metabolomic changes of two apple cultivars 'Cortland' and 'Red Delicious' with scald development and scald control treatments, using diphenylamine and 1-MCP, at 0-1 °C for up to 7 months was investigated. In total, 833 features/compounds were analyzed, and among them 59 were found to change significantly in controls involved in scald development, and in response to DPA and 1-MCP treatments. Our results provide new evidence that metabolites in association with phenylpropanoid metabolism, antioxidant and redox systems, and amino acid metabolism are related closely to scald development and response to potential treatments.
Collapse
Affiliation(s)
- Yihui Gong
- College of Horticulture, South China Agriculture University, Guangzhou, China
| | - Jun Song
- Agriculture and Agri-Food Canada, KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia B4N 1J5, Canada
| | - Leslie Campbell Palmer
- Agriculture and Agri-Food Canada, KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia B4N 1J5, Canada
| | - Mindy Vinqvist-Tymchuk
- Agriculture and Agri-Food Canada, KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia B4N 1J5, Canada
| | - Sherry Fillmore
- Agriculture and Agri-Food Canada, KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia B4N 1J5, Canada
| | - Peter Toivonen
- Agriculture and Agri-Food Canada, SuRDC, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - ZhaoQi Zhang
- College of Horticulture, South China Agriculture University, Guangzhou, China
| |
Collapse
|
5
|
Moing A, Allwood JW, Aharoni A, Baker J, Beale MH, Ben-Dor S, Biais B, Brigante F, Burger Y, Deborde C, Erban A, Faigenboim A, Gur A, Goodacre R, Hansen TH, Jacob D, Katzir N, Kopka J, Lewinsohn E, Maucourt M, Meir S, Miller S, Mumm R, Oren E, Paris HS, Rogachev I, Rolin D, Saar U, Schjoerring JK, Tadmor Y, Tzuri G, de Vos RC, Ward JL, Yeselson E, Hall RD, Schaffer AA. Comparative Metabolomics and Molecular Phylogenetics of Melon ( Cucumis melo, Cucurbitaceae) Biodiversity. Metabolites 2020; 10:metabo10030121. [PMID: 32213984 PMCID: PMC7143154 DOI: 10.3390/metabo10030121] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/04/2023] Open
Abstract
The broad variability of Cucumis melo (melon, Cucurbitaceae) presents a challenge to conventional classification and organization within the species. To shed further light on the infraspecific relationships within C. melo, we compared genotypic and metabolomic similarities among 44 accessions representative of most of the cultivar-groups. Genotyping-by-sequencing (GBS) provided over 20,000 single-nucleotide polymorphisms (SNPs). Metabolomics data of the mature fruit flesh and rind provided over 80,000 metabolomic and elemental features via an orchestra of six complementary metabolomic platforms. These technologies probed polar, semi-polar, and non-polar metabolite fractions as well as a set of mineral elements and included both flavor- and taste-relevant volatile and non-volatile metabolites. Together these results enabled an estimate of "metabolomic/elemental distance" and its correlation with the genetic GBS distance of melon accessions. This study indicates that extensive and non-targeted metabolomics/elemental characterization produced classifications that strongly, but not completely, reflect the current and extensive genetic classification. Certain melon Groups, such as Inodorous, clustered in parallel with the genetic classifications while other genome to metabolome/element associations proved less clear. We suggest that the combined genomic, metabolic, and element data reflect the extensive sexual compatibility among melon accessions and the breeding history that has, for example, targeted metabolic quality traits, such as taste and flavor.
Collapse
Affiliation(s)
- Annick Moing
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - J. William Allwood
- The James Hutton Institute, Environmental & Biochemical Sciences, Invergowrie, Dundee, DD2 5DA Scotland, UK;
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.A.); (S.M.); (S.B.-D.)
| | - John Baker
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK; (J.B.); (M.H.B.); (S.M.); (J.L.W.)
| | - Michael H. Beale
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK; (J.B.); (M.H.B.); (S.M.); (J.L.W.)
| | - Shifra Ben-Dor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.A.); (S.M.); (S.B.-D.)
| | - Benoît Biais
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - Federico Brigante
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; (F.B.); (A.E.); (J.K.)
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dto. Química Orgánica, Córdoba 5000, Argentina
- CONICET, ICYTAC (Instituto de Ciencia y Tecnologia de Alimentos Córdoba), Córdoba 5000, Argentina
| | - Yosef Burger
- Institute of Plant Science, Agricultural Research Organization—Volcani Center, Rishon LeZiyyon 7515101, Israel; (Y.B.); (A.F.); (E.Y.)
| | - Catherine Deborde
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; (F.B.); (A.E.); (J.K.)
| | - Adi Faigenboim
- Institute of Plant Science, Agricultural Research Organization—Volcani Center, Rishon LeZiyyon 7515101, Israel; (Y.B.); (A.F.); (E.Y.)
| | - Amit Gur
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Royston Goodacre
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK;
| | - Thomas H. Hansen
- Department of Plant and Environmental Sciences & Copenhagen Plant Science Center, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; (T.H.H.); (J.K.S.)
| | - Daniel Jacob
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - Nurit Katzir
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; (F.B.); (A.E.); (J.K.)
| | - Efraim Lewinsohn
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Mickael Maucourt
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.A.); (S.M.); (S.B.-D.)
| | - Sonia Miller
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK; (J.B.); (M.H.B.); (S.M.); (J.L.W.)
| | - Roland Mumm
- Business Unit Bioscience, Wageningen University & Research, Post Box 16, 6700AA, Wageningen, Netherlands; (R.M.); (R.D.H.)
| | - Elad Oren
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Harry S. Paris
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.A.); (S.M.); (S.B.-D.)
| | - Dominique Rolin
- INRAE, Univ. Bordeaux, UMR1332 Fruit Biology and Pathology, Bordeaux Metabolome Facility MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux, 33140 Villenave d’Ornon, France; (A.M.); (B.B.); (C.D.); (D.J.); (M.M.); (D.R.)
| | - Uzi Saar
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Jan K. Schjoerring
- Department of Plant and Environmental Sciences & Copenhagen Plant Science Center, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; (T.H.H.); (J.K.S.)
| | - Yaakov Tadmor
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Galil Tzuri
- Newe Ya‘ar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay 3009500, Israel; (A.G.); (N.K.); (E.L.); (E.O.); (H.S.P.); (U.S.); (Y.T.); (G.T.)
| | - Ric C.H. de Vos
- Business Unit Bioscience, Wageningen University & Research, Post Box 16, 6700AA, Wageningen, Netherlands; (R.M.); (R.D.H.)
| | - Jane L. Ward
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK; (J.B.); (M.H.B.); (S.M.); (J.L.W.)
| | - Elena Yeselson
- Institute of Plant Science, Agricultural Research Organization—Volcani Center, Rishon LeZiyyon 7515101, Israel; (Y.B.); (A.F.); (E.Y.)
| | - Robert D. Hall
- Business Unit Bioscience, Wageningen University & Research, Post Box 16, 6700AA, Wageningen, Netherlands; (R.M.); (R.D.H.)
- Department of Plant Physiology, Wageningen University & Research, Laboratory of Plant Physiology, Post Box 16, 6700AA, Wageningen, Netherlands
| | - Arthur A. Schaffer
- Institute of Plant Science, Agricultural Research Organization—Volcani Center, Rishon LeZiyyon 7515101, Israel; (Y.B.); (A.F.); (E.Y.)
- Correspondence: ; Tel.: + 972(3)9683646
| |
Collapse
|
6
|
Calf OW, Huber H, Peters JL, Weinhold A, Poeschl Y, van Dam NM. Gastropods and Insects Prefer Different Solanum dulcamara Chemotypes. J Chem Ecol 2019; 45:146-161. [PMID: 29961916 PMCID: PMC6469604 DOI: 10.1007/s10886-018-0979-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 01/22/2023]
Abstract
Solanum dulcamara (Bittersweet nightshade) shows significant intraspecific variation in glycoalkaloid (GA) composition and concentration. We previously showed that constitutive differences in overall GA levels are correlated with feeding preference of the grey field slug (GFS; Deroceras reticulatum). One particularly preferred accession, ZD11, contained low GA levels, but high levels of previously unknown structurally related uronic acid conjugated compounds (UACs). Here we test whether different slug species as well as insect herbivores show similar feeding preferences among six S. dulcamara accessions with different GA chemotypes. In addition, we investigate whether slug feeding can lead to induced changes in the chemical composition and affect later arriving herbivores. A leaf disc assay using greenhouse-grown plants showed that three slug species similarly preferred accessions with low GA levels. Untargeted metabolomic analyses showed that previous slug feeding consistently increased the levels of N-caffeoyl-putrescine and a structurally related metabolite, but not the levels of GAs and UACs. Slug-induced responses only affected slug preference in one accession. A common garden experiment using the same six accessions revealed that ZD11 received the highest natural gastropod feeding damage, but suffered the lowest damage by specialist flea beetles. The latter preferred to feed on accessions with high GA levels. Our study indicates that different selection pressures imposed by generalist gastropods and specialist insects may explain part of the observed chemical diversity in S. dulcamara.
Collapse
Affiliation(s)
- Onno W Calf
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| | - Heidrun Huber
- Experimental Plant Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Janny L Peters
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120, Halle, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, Germany.
| |
Collapse
|
7
|
Calf OW, Huber H, Peters JL, Weinhold A, van Dam NM. Glycoalkaloid composition explains variation in slug resistance in Solanum dulcamara. Oecologia 2018; 187:495-506. [PMID: 29383505 PMCID: PMC5997107 DOI: 10.1007/s00442-018-4064-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/08/2018] [Indexed: 12/01/2022]
Abstract
In natural environments, plants have to deal with a wide range of different herbivores whose communities vary in time and space. It is believed that the chemical diversity within plant species has mainly arisen from selection pressures exerted by herbivores. So far, the effects of chemical diversity on plant resistance have mostly been assessed for arthropod herbivores. However, also gastropods, such as slugs, can cause extensive damage to plants. Here we investigate to what extent individual Solanum dulcamara plants differ in their resistance to slug herbivory and whether this variation can be explained by differences in secondary metabolites. We performed a series of preference assays using the grey field slug (Deroceras reticulatum) and S. dulcamara accessions from eight geographically distinct populations from the Netherlands. Significant and consistent variation in slug preference was found for individual accessions within and among populations. Metabolomic analyses showed that variation in steroidal glycoalkaloids (GAs) correlated with slug preference; accessions with high GA levels were consistently less damaged by slugs. One, strongly preferred, accession with particularly low GA levels contained high levels of structurally related steroidal compounds. These were conjugated with uronic acid instead of the glycoside moieties common for Solanum GAs. Our results illustrate how intraspecific variation in steroidal glycoside profiles affects resistance to slug feeding. This suggests that also slugs should be considered as important drivers in the co-evolution between plants and herbivores.
Collapse
Affiliation(s)
- Onno W Calf
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Heidrun Huber
- Experimental Plant Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Janny L Peters
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, Germany
| |
Collapse
|
8
|
Sánchez MIG, McCullagh J, Guy RH, Compton RG. Reverse Iontophoretic Extraction of Metabolites from Living Plants and their Identification by Ion-chromatography Coupled to High Resolution Mass Spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:195-201. [PMID: 28029194 DOI: 10.1002/pca.2660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/14/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION The identification and characterisation of cellular metabolites has now become an important strategy to obtain insight into functional plant biology. However, the extraction of metabolites for identification and analysis is challenging and, at the present time, usually requires destruction of the plant. OBJECTIVE To detect different plant metabolites in living plants with no pre-treatment using the combination of iontophoresis and ion-chromatography with mass spectrometry detection. METHODOLOGY In this work, the simple and non-destructive method of reverse iontophoresis has been used to extract in situ multiple plant metabolites from intact Ocimum basilicum leaves. Subsequently, the analysis of these metabolites has been performed with ion chromatography coupled directly to high resolution mass spectrometric detection (IC-MS). RESULTS The application of reverse iontophoresis to living plant samples has avoided the need for complex pre-treatments. With this approach, no less than 24 compounds, including organic acids and sugars as well as adenosine triphosphate (ATP) were successfully detected. CONCLUSION The research demonstrates that it is feasible to monitor, therefore, a number of important plant metabolites using a simple, relatively fast and non-destructive approach. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Maria Isabel González Sánchez
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK
- Department of Physical Chemistry, Castilla-La Mancha University, 02071, Albacete, Spain
| | - James McCullagh
- Mass Spectrometry Research Facility CRL, Department of Chemistry, Oxford University, Mansfield Road, Oxford, UK
| | - Richard H Guy
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
9
|
Emwas AHM, Al-Talla ZA, Kharbatia NM. Sample collection and preparation of biofluids and extracts for gas chromatography-mass spectrometry. Methods Mol Biol 2015; 1277:75-90. [PMID: 25677148 DOI: 10.1007/978-1-4939-2377-9_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To maximize the utility of gas chromatography-mass spectrometry (GC-MS) in metabonomics research, all stages of the experimental design should be standardized, including sample collection, storage, preparation, and sample separation. Moreover, the prerequisite for any GC-MS analysis is that a compound must be volatile and thermally stable if it is to be analyzed using this technique. Since many metabolites are nonvolatile and polar in nature, they are not readily amenable to analysis by GC-MS and require initial chemical derivatization of the polar functional groups in order to reduce the polarity and to increase the thermal stability and volatility of the analytes. In this chapter, an overview is presented of the optimum approach to sample collection, storage, and preparation for gas chromatography-mass spectrometry-based metabonomics with particular focus on urine samples as example of biofluids.
Collapse
Affiliation(s)
- Abdul-Hamid M Emwas
- NMR Core Lab, King Abdullah University of Science and Technology, Room 0149, 23955-6900, Thuwal, Kingdom of Saudi Arabia,
| | | | | |
Collapse
|
10
|
Mascherpa D, Carazzone C, Marrubini G, Gazzani G, Papetti A. Identification of phenolic constituents in Cichorium endivia var. crispum and var. latifolium salads by high-performance liquid chromatography with diode array detection and electrospray ioniziation tandem mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:12142-50. [PMID: 23157223 DOI: 10.1021/jf3034754] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chicory is a widely consumed vegetable and a source of phenolic compounds. Phenolic acid and flavonoid derivatives were identified in Cichorium endivia var. crispum and var. latifolium and fully characterized using complementary information from two different high-performance liquid chromatography detectors, diode array and mass spectrometer, in positive and negative modes. We describe about 40 phenolic compounds, some of which have never previously been reported in these plants, such as hydroxycinnamic acid derivatives (i.e., different mono- and dicaffeoylquinic acid isomers) and mono- and diglycosides of quercetin, kaempferol, and myricetin (differing also by the glycosylation site). These data provide a contribution to a more exhaustive identification of phenolic compounds in C. endivia vegetables.
Collapse
Affiliation(s)
- Dora Mascherpa
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|