1
|
Belgrad J, McConnell E, Leonard S, Nolen N, Lauffer M, Watts J, Yu T, Yan W, Aartsma-Rus A. The N=1 Collaborative: advancing customized nucleic acid therapies through collaboration and data sharing. Nucleic Acids Res 2025; 53:gkaf346. [PMID: 40277082 PMCID: PMC12022754 DOI: 10.1093/nar/gkaf346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Developing customized gene-targeting therapies for the millions of individuals affected by ultra-rare diseases globally requires breaking new ground in therapeutic and regulatory innovation. To address this need, the N=1 Collaborative (N1C) was established to unite academia, industry, patients, and regulators, building an open, shared ecosystem for personalized medicines. Initially focusing on antisense oligonucleotides (ASOs) for rare, fatal neurodegenerative conditions, the N1C aims to develop frameworks that can rapidly extend to other treatment modalities and conditions. Progress in the advancement of personalized therapies has also propelled advancements in the nucleic acids field, offering critical insights into dosing, safety, and efficacy. In October 2024, the N1C convened scientific, regulatory, and advocacy leaders in ASO development for an inaugural meeting. This review report examines the current state of the scientific and clinical ecosystems enabling customized genetic therapies and explores the innovation, frameworks, and systems needed to deliver additional individualized medicines safely and at scale.
Collapse
Affiliation(s)
- Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
- N=1 Collaborative, Somerville, MA 02143, United States
| | - Erin McConnell
- N=1 Collaborative, Somerville, MA 02143, United States
- Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Stef Leonard
- N=1 Collaborative, Somerville, MA 02143, United States
| | - Nicole Nolen
- N=1 Collaborative, Somerville, MA 02143, United States
| | - Marlen C Lauffer
- N=1 Collaborative, Somerville, MA 02143, United States
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, United States
- N=1 Collaborative, Somerville, MA 02143, United States
| | - Timothy Yu
- N=1 Collaborative, Somerville, MA 02143, United States
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Division of Medical Sciences, Boston, MA, 02115, United States
| | - Winston X Yan
- N=1 Collaborative, Somerville, MA 02143, United States
| | - Annemieke Aartsma-Rus
- N=1 Collaborative, Somerville, MA 02143, United States
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
2
|
Leckie J, Yokota T. Integrating Machine Learning-Based Approaches into the Design of ASO Therapies. Genes (Basel) 2025; 16:185. [PMID: 40004514 PMCID: PMC11855077 DOI: 10.3390/genes16020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Rare diseases impose a significant burden on affected individuals, caregivers, and healthcare systems worldwide. Developing effective therapeutics for these small patient populations presents substantial challenges. Antisense oligonucleotides (ASOs) have emerged as a promising therapeutic approach that targets the underlying genetic cause of disease at the RNA level. Several ASOs have gained FDA approval for the treatment of genetic conditions, including use in personalized N-of-1 trials. However, despite their potential, ASOs often exhibit limited clinical efficacy, and optimizing their design is a complex process influenced by numerous factors. Machine learning-based platforms, including eSkip-Finder and ASOptimizer, have been developed to address these challenges by predicting optimal ASO sequences and chemical modifications to enhance efficacy. eSkip-Finder focuses on exon-skipping applications, while ASOptimizer aims to optimize ASOs for RNA degradation. Preliminary in vitro results have demonstrated the promising predictive power of these platforms. However, limitations remain, including their generalizability to alternative targets and gaps in their consideration of all factors influencing ASO efficacy and safety. Continued advancements in machine learning models, alongside efforts to incorporate additional features affecting ASO efficacy and safety, hold significant promise for the field. These platforms have the potential to streamline ASO development, reduce associated costs, and improve clinical outcomes, positioning machine learning as a key tool in the future of ASO therapeutics.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
3
|
García-Bohórquez B, Barberán-Martínez P, Aller E, Jaijo T, Mínguez P, Rodilla C, Fernández-Caballero L, Blanco-Kelly F, Ayuso C, Sanchis-Juan A, Broekman S, de Vrieze E, van Wijk E, García-García G, Millán JM. Exploring non-coding variants and evaluation of antisense oligonucleotides for splicing redirection in Usher syndrome. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102374. [PMID: 39629117 PMCID: PMC11612772 DOI: 10.1016/j.omtn.2024.102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024]
Abstract
Exploring non-coding regions is increasingly gaining importance in the diagnosis of inherited retinal dystrophies. Deep-intronic variants causing aberrant splicing have been identified, prompting the development of antisense oligonucleotides (ASOs) to modulate splicing. We performed a screening of five previously described USH2A deep-intronic variants among USH2A monoallelic patients with Usher syndrome (USH) or isolated retinitis pigmentosa. Sequencing of entire USH2A or USH genes was then conducted in unresolved or newly monoallelic cases. The splicing impact of identified variants was assessed using minigene assays, and ASOs were designed to correct splicing. The screening allowed to diagnose 30.95% of the studied patients. The sequencing of USH genes revealed 16 new variants predicted to affect splicing, with four confirmed to affect splicing through minigene assays. Two of them were unreported deep-intronic variants and predicted to include a pseudoexon in the pre-mRNA, and the other two could alter a regulatory cis-element. ASOs designed for three USH2A deep-intronic variants successfully redirected splicing in vitro. Our study demonstrates the improvement in genetic characterization of IRDs when analyzing non-coding regions, highlighting that deep-intronic variants significantly contribute to USH2A pathogenicity. Furthermore, successful splicing modulation through ASOs highlights their therapeutic potential for patients carrying deep-intronic variants.
Collapse
Affiliation(s)
- Belén García-Bohórquez
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
| | - Pilar Barberán-Martínez
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
- University and Polytechnic La Fe Hospital of Valencia, 46026 Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
- University and Polytechnic La Fe Hospital of Valencia, 46026 Valencia, Spain
| | - Pablo Mínguez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Cristina Rodilla
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Lidia Fernández-Caballero
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Fiona Blanco-Kelly
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Carmen Ayuso
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Alba Sanchis-Juan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sanne Broekman
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
- University and Polytechnic La Fe Hospital of Valencia, 46026 Valencia, Spain
| |
Collapse
|
4
|
Vázquez-Domínguez I, Anido AA, Duijkers L, Hoppenbrouwers T, Hoogendoorn AM, Koster C, Collin RJ, Garanto A. Efficacy, biodistribution and safety comparison of chemically modified antisense oligonucleotides in the retina. Nucleic Acids Res 2024; 52:10447-10463. [PMID: 39119918 PMCID: PMC11417397 DOI: 10.1093/nar/gkae686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Antisense oligonucleotides (AONs) are a versatile tool for treating inherited retinal diseases. However, little is known about how different chemical modifications of AONs can affect their biodistribution, toxicity, and uptake in the retina. Here, we addressed this question by comparing splice-switching AONs with three different chemical modifications commonly used in a clinical setting (2'O-methyl-phosphorothioate (2-OMe/PS), 2'O-methoxyethyl-phosphoriate (2-MOE/PS), and phosphorodiamidite morpholino oligomers (PMO)). These AONs targeted genes exclusively expressed in certain types of retinal cells. Overall, studies in vitro and in vivo in C57BL/6J wild-type mouse retinas showed that 2-OMe/PS and 2-MOE/PS AONs have comparable efficacy and safety profiles. In contrast, octa-guanidine-dendrimer-conjugated in vivo PMO-oligonucleotides (ivPMO) caused toxicity. This was evidenced by externally visible ocular phenotypes in 88.5% of all ivPMO-treated animals, accompanied by severe alterations at the morphological level. However, delivery of unmodified PMO-AONs did not cause any toxicity, although it clearly reduced the efficacy. We conducted the first systematic comparison of different chemical modifications of AONs in the retina. Our results showed that the same AON sequence with different chemical modifications displayed different splicing modulation efficacies, suggesting the 2'MOE/PS modification as the most efficacious in these conditions. Thereby, our work provides important insights for future clinical applications.
Collapse
Affiliation(s)
| | - Alejandro Allo Anido
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Lonneke Duijkers
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Tamara Hoppenbrouwers
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Anita D M Hoogendoorn
- Radboud university medical center, Amalia Children's Hospital, Department of Pediatrics, Nijmegen, The Netherlands
| | - Céline Koster
- Departments of Human Genetics and Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob W J Collin
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Alejandro Garanto
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
- Radboud university medical center, Amalia Children's Hospital, Department of Pediatrics, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Alary B, Cintas P, Claude C, Dellis O, Thèze C, Van Goethem C, Cossée M, Krahn M, Delague V, Bartoli M. Store-operated calcium entry dysfunction in CRAC channelopathy: Insights from a novel STIM1 mutation. Clin Immunol 2024; 265:110306. [PMID: 38977117 DOI: 10.1016/j.clim.2024.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Store-operated calcium entry (SOCE) plays a crucial role in maintaining cellular calcium homeostasis. This mechanism involves proteins, such as stromal interaction molecule 1 (STIM1) and ORAI1. Mutations in the genes encoding these proteins, especially STIM1, can lead to various diseases, including CRAC channelopathies associated with severe combined immunodeficiency. Herein, we describe a novel homozygous mutation, NM_003156 c.792-3C > G, in STIM1 in a patient with a clinical profile of CRAC channelopathy, including immune system deficiencies and muscle weakness. Functional analyses revealed three distinct spliced forms in the patient cells: wild-type, exon 7 skipping, and intronic retention. Calcium influx analysis revealed impaired SOCE in the patient cells, indicating a loss of STIM1 function. We developed an antisense oligonucleotide treatment that improves STIM1 splicing and highlighted its potential as a therapeutic approach. Our findings provide insights into the complex effects of STIM1 mutations and shed light on the multifaceted clinical presentation of the patient.
Collapse
Affiliation(s)
| | - Pascal Cintas
- Centre de Référence Maladies Rares Neuromusculaire, CHU Toulouse, Toulouse, France
| | | | | | - Corinne Thèze
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | | | - Mireille Cossée
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France; PhyMedExp (Physiologie et Médecine Expérimentale du Cœur et des Muscles), Université de Montpellier, Inserm U1046, CNRS UMR9214, Montpellier, France
| | - Martin Krahn
- Aix Marseille Univ, INSERM, MMG, U1251 Marseille, France; Département de Génétique Médicale, Hôpital Timone Enfants, APHM, Marseille, France
| | | | - Marc Bartoli
- Aix Marseille Univ, INSERM, MMG, U1251 Marseille, France; CNRS, Marseille, France
| |
Collapse
|
6
|
Shimo T, Ueda O, Yamamoto S. Design and evaluation of antisense sequence length for modified mouse U7 small nuclear RNA to induce efficient pre-messenger RNA splicing modulation in vitro. PLoS One 2024; 19:e0305012. [PMID: 38980892 PMCID: PMC11232981 DOI: 10.1371/journal.pone.0305012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/21/2024] [Indexed: 07/11/2024] Open
Abstract
Pre-messenger RNA (pre-mRNA) splicing modulation is an attractive approach for investigating the mechanisms of genetic disorders caused by mis-splicing. Previous reports have indicated that a modified U7 small nuclear RNA (U7 snRNA) is a prospective tool for modulating splicing both in vitro and in vivo. To date, very few studies have investigated the role of antisense sequence length in modified U7 snRNA. In this study, we designed a series of antisense sequences with various lengths and evaluated their efficiency in inducing splicing modulation. To express modified U7 snRNAs, we constructed a series of plasmid DNA sequences which codes cytomegalovirus (CMV) enhancer, human U1 promoter, and modified mouse U7 snRNAs with antisense sequences of different lengths. We evaluated in vitro splicing modulation efficiency using a luciferase reporter system for simple and precise evaluation as well as reverse transcription-polymerase chain reaction to monitor splicing patterns. Our in vitro assay findings suggest that antisense sequences of modified mouse U7 snRNAs have an optimal length for efficient splicing modulation, which depends on the target exon. In addition, antisense sequences that were either too long or too short decreased splicing modulation efficiency. To confirm reproducibility, we performed an in vitro assay using two target genes, mouse Fas and mouse Dmd. Together, our data suggests that the antisense sequence length should be optimized for modified mouse U7 snRNAs to induce efficient splicing modulation.
Collapse
Affiliation(s)
- Takenori Shimo
- Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Otoya Ueda
- Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Satoshi Yamamoto
- Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| |
Collapse
|
7
|
Chini A, Guha P, Rishi A, Obaid M, Udden SN, Mandal SS. Discovery and functional characterization of LncRNAs associated with inflammation and macrophage activation. Methods 2024; 227:1-16. [PMID: 38703879 DOI: 10.1016/j.ymeth.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
Long noncoding RNAs (lncRNA) are emerging players in regulation of gene expression and cell signaling and their dysregulation has been implicated in a multitude of human diseases. Recent studies from our laboratory revealed that lncRNAs play critical roles in cytokine regulation, inflammation, and metabolism. We demonstrated that lncRNA HOTAIR, which is a well-known regulator of gene silencing, plays critical roles in modulation of cytokines and proinflammatory genes, and glucose metabolism in macrophages during inflammation. In addition, we recently discovered a series of novel lncRNAs that are closely associated with inflammation and macrophage activation. We termed these as long-noncoding inflammation associated RNAs (LinfRNAs). We are currently engaged in the functional characterization of these hLinfRNAs (human LinfRNAs) with a focus on their roles in inflammation, and we are investigating their potential implications in chronic inflammatory human diseases. Here, we have summarized experimental methods that have been utilized for the discovery and functional characterization of lncRNAs in inflammation and macrophage activation.
Collapse
Affiliation(s)
- Avisankar Chini
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Prarthana Guha
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Monira Obaid
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Sm Nashir Udden
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
8
|
Gerrits T, Dijkstra KL, Bruijn JA, Scharpfenecker M, Bijkerk R, Baelde HJ. Antisense oligonucleotide-mediated terminal intron retention of endoglin: A potential strategy to inhibit renal interstitial fibrosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167186. [PMID: 38642778 DOI: 10.1016/j.bbadis.2024.167186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
TGF-β is considered an important cytokine in the development of interstitial fibrosis in chronic kidney disease. The TGF-β co-receptor endoglin (ENG) tends to be upregulated in kidney fibrosis. ENG has two membrane bound isoforms generated via alternative splicing. Long-ENG was shown to enhance the extent of renal fibrosis in an unilateral ureteral obstruction mouse model, while short-ENG inhibited renal fibrosis. Here we aimed to achieve terminal intron retention of endoglin using antisense-oligo nucleotides (ASOs), thereby shifting the ratio towards short-ENG to inhibit the TGF-β1-mediated pro-fibrotic response. We isolated mRNA from kidney biopsies of patients with chronic allograft disease (CAD) (n = 12) and measured total ENG and short-ENG mRNA levels. ENG mRNA was upregulated 2.3 fold (p < 0.05) in kidneys of CAD patients compared to controls, while the percentage short-ENG of the total ENG mRNA was significantly lower (1.8 fold; p < 0.05). Transfection of ASOs that target splicing regulatory sites of ENG into TK173 fibroblasts led to higher levels of short-ENG (2 fold; p < 0.05). In addition, we stimulated these cells with TGF-β1 and measured a decrease in upregulation of ACTA2, COL1A1 and FN1 mRNA levels, and protein expression of αSMA, collagen type I, and fibronectin. These results show a potential for ENG ASOs as a therapy to reduce interstitial fibrosis in CKD.
Collapse
Affiliation(s)
- Tessa Gerrits
- Department of Pathology, Leiden University Medical Centre, 2333 ZA Leiden, Netherlands.
| | - Kyra L Dijkstra
- Department of Pathology, Leiden University Medical Centre, 2333 ZA Leiden, Netherlands
| | - Jan Anthonie Bruijn
- Department of Pathology, Leiden University Medical Centre, 2333 ZA Leiden, Netherlands
| | - Marion Scharpfenecker
- Department of Pathology, Leiden University Medical Centre, 2333 ZA Leiden, Netherlands
| | - Roel Bijkerk
- Department of Nephrology, Leiden University Medical Centre, 2333 ZA Leiden, Netherlands
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Centre, 2333 ZA Leiden, Netherlands
| |
Collapse
|
9
|
Zardetto B, van Roon-Mom W, Aartsma-Rus A, Lauffer MC. Treatability of the KMT2-Associated Neurodevelopmental Disorders Using Antisense Oligonucleotide-Based Treatments. Hum Mutat 2024; 2024:9933129. [PMID: 40225946 PMCID: PMC11925151 DOI: 10.1155/2024/9933129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/15/2025]
Abstract
Neurodevelopmental disorders (NDDs) of genetic origin are a group of early-onset neurological diseases with highly heterogeneous etiology and a symptomatic spectrum that includes intellectual disability, autism spectrum disorder, and learning and language disorders. One group of rare NDDs is associated with dysregulation of the KMT2 protein family. Members of this family share a common methyl transferase function and are involved in the etiology of rare haploinsufficiency disorders. For each of the KMT2 genes, at least one distinct disorder has been reported, yet clinical manifestations often overlap for multiple of these individually very rare disorders. Clinical care is currently focused on the management of symptoms with no targeted treatments available, illustrating a high unmet medical need and the urgency of developing disease-modifying therapeutic strategies. Antisense oligonucleotides (ASOs) are one option to treat some of these rare genetic disorders. ASOs are RNA-based treatments that can be employed to modulate gene expression through various mechanisms. In this work, we discuss the phenotypic features across the KMT2-associated NDDs and which ASO approaches are most suited for the treatment of each associated disorder. We hereby address variant-specific strategies as well as options applicable to larger groups of patients.
Collapse
Affiliation(s)
- Bianca Zardetto
- Dutch Center for RNA TherapeuticsDepartment of Human GeneticsLeiden University Medical CenterLeiden, Netherlands
| | - Willeke van Roon-Mom
- Dutch Center for RNA TherapeuticsDepartment of Human GeneticsLeiden University Medical CenterLeiden, Netherlands
| | - Annemieke Aartsma-Rus
- Dutch Center for RNA TherapeuticsDepartment of Human GeneticsLeiden University Medical CenterLeiden, Netherlands
| | - Marlen C. Lauffer
- Dutch Center for RNA TherapeuticsDepartment of Human GeneticsLeiden University Medical CenterLeiden, Netherlands
| |
Collapse
|
10
|
Corradi Z, Hitti-Malin RJ, de Rooij LA, Garanto A, Collin RWJ, Cremers FPM. Antisense Oligonucleotide-Based Rescue of Complex Intronic Splicing Defects in ABCA4. Nucleic Acid Ther 2024; 34:125-133. [PMID: 38800942 DOI: 10.1089/nat.2024.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
The ABCA4 gene, involved in Stargardt disease, has a high percentage of splice-altering pathogenic variants, some of which cause complex RNA defects. Although antisense oligonucleotides (AONs) have shown promising results in splicing modulation, they have not yet been used to target complex splicing defects. Here, we performed AON-based rescue studies on ABCA4 complex splicing defects. Intron 13 variants c.1938-724A>G, c.1938-621G>A, c.1938-619A>G, and c.1938-514A>G all lead to the inclusion of different pseudo-exons (PEs) with and without an upstream PE (PE1). Intron 44 variant c.6148-84A>T results in multiple PE inclusions and/or exon skipping events. Five novel AONs were designed to target these defects. AON efficacy was assessed by in vitro splice assays using midigenes containing the variants of interest. All screened complex splicing defects were effectively rescued by the AONs. Although varying levels of efficacy were observed between AONs targeting the same PEs, for all variants at least one AON restored splicing to levels comparable or better than wildtype. In conclusion, AONs are a promising approach to target complex splicing defects in ABCA4.
Collapse
Affiliation(s)
- Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rebekkah J Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura A de Rooij
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Zardetto B, Lauffer MC, van Roon-Mom W, Aartsma-Rus A, on behalf of the N = 1 Collaborative. Practical Recommendations for the Selection of Patients for Individualized Splice-Switching ASO-Based Treatments. Hum Mutat 2024; 2024:9920230. [PMID: 40225926 PMCID: PMC11919232 DOI: 10.1155/2024/9920230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 04/15/2025]
Abstract
Although around 6% of the world's population is affected by rare diseases, only a small number of disease-modifying therapies are available. In recent years, antisense oligonucleotides (ASOs) have emerged as one option for the development of therapeutics for orphan diseases. In particular, ASOs can be utilized for individualized genetic treatments, addressing patients with a known disease-causing genetic variant, who would otherwise not be able to receive therapy. Careful prioritization of genetic variants amenable to an ASO approach is crucial to increase chances for successful treatments and reduce costs and time for drug development. At present, there is no consensus on how to systematically approach this selection procedure. Here, we present practical guidelines to evaluate disease-causing variants and standardize the process of selecting n-of-1 cases. We focus on variants leading to a loss of function in monogenic disorders and consider which splice-switching ASO-mediated treatments are applicable in each case. To ease the understanding and application of our guidelines, we created a hypothetical transcript covering different pathogenic variants and explained their evaluation in detail. We support our recommendations with real-life examples and add further considerations to be applied to specific cases to provide a comprehensive framework for selecting eligible variants.
Collapse
Affiliation(s)
- Bianca Zardetto
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Marlen C. Lauffer
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Willeke van Roon-Mom
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Annemieke Aartsma-Rus
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
12
|
Ni L, Yamada T, Nakatani K. Utility of oligonucleotide in upregulating circular RNA production in a cellular model. Sci Rep 2024; 14:8096. [PMID: 38582789 PMCID: PMC10998836 DOI: 10.1038/s41598-024-58663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
Circular RNAs (circRNAs), are a covalently closed, single-stranded RNA without 5'- and 3'-termini, commonly stem from the exons of precursor mRNAs (pre-mRNAs). They have recently garnered interest, with studies uncovering their pivotal roles in regulating various aspects of cell functions and disease progressions. A notable feature of circRNA lies in the mechanism of its biogenesis involving a specialized form of splicing: back-splicing. A splicing process that relies on interactions between introns flanking the circularizing exon to bring the up and downstream splice sites in proximity through the formation of a prerequisite hairpin structure, allowing the spliceosomes to join the two splice sites together to produce a circular RNA molecule. Based on this mechanism, we explored the feasibility of facilitating the formation of such a prerequisite hairpin structure by utilizing a newly designed oligonucleotide, CircuLarIzation Promoting OligoNucleotide (CLIP-ON), to promote the production of circRNA in cells. CLIP-ON was designed to hybridize with and physically bridge two distal sequences in the flanking introns of the circularizing exons. The feasibility of CLIP-ON was confirmed in HeLa cells using a model pre-mRNA, demonstrating the applicability of CLIP-ON as a trans-acting modulator to upregulate the production of circRNAs in a cellular environment.
Collapse
Affiliation(s)
- Lu Ni
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Takeshi Yamada
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
13
|
Metz T, Welling MM, Suidgeest E, Nieuwenhuize E, de Vlaam T, Curtis D, Hailu TT, van der Weerd L, van Roon-Mom WMC. Biodistribution of Radioactively Labeled Splice Modulating Antisense Oligonucleotides After Intracerebroventricular and Intrathecal Injection in Mice. Nucleic Acid Ther 2024; 34:26-34. [PMID: 38386285 DOI: 10.1089/nat.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Antisense oligonucleotides (AONs) are promising therapeutic candidates, especially for neurological diseases. Intracerebroventricular (ICV) injection is the predominant route of administration in mouse studies, while in clinical trials, intrathecal (IT) administration is mostly used. There is little knowledge on the differences in distribution of these injection methods within the same species over time. In this study, we compared the distribution of splice-switching AONs targeting exon 15 of amyloid precursor protein pre-mRNA injected via the ICV and IT route in mice. The AON was labeled with radioactive indium-111 and mice were imaged using single-photon emission computed tomography (SPECT) 0, 4, 24, 48, 72, and 96 h after injection. In vivo SPECT imaging showed 111In-AON activity diffused throughout the central nervous system (CNS) in the first hours after injection. The 111In-AON activity in the CNS persisted over the course of 4 days, while signal in the kidneys rapidly decreased. Postmortem counting in different organs and tissues showed very similar distribution of 111In-AON activity throughout the body, while the signal in the different brain regions was higher with ICV injection. Overall, IT and ICV injection have very similar distribution patterns in the mouse, but ICV injection is much more effective in reaching the brain.
Collapse
Affiliation(s)
- Tom Metz
- Department of Human Genetics,Leiden University Medical Center, Leiden, The Netherlands
| | - Mick M Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ernst Suidgeest
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Esmée Nieuwenhuize
- Department of Human Genetics,Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Louise van der Weerd
- Department of Human Genetics,Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
14
|
Aartsma-Rus A, Collin RWJ, Elgersma Y, Lauffer MC, van Roon-Mom W. Joining forces to develop individualized antisense oligonucleotides for patients with brain or eye diseases: the example of the Dutch Center for RNA Therapeutics. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241273465. [PMID: 39328974 PMCID: PMC11425740 DOI: 10.1177/26330040241273465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/15/2024] [Indexed: 09/28/2024]
Abstract
Antisense oligonucleotides (ASOs) offer versatile tools to modify the processing and expression levels of gene transcripts. As such, they have a high therapeutic potential for rare genetic diseases, where applicability of each ASO ranges from thousands of patients worldwide to single individuals based on the prevalence of the causative pathogenic variant. It was shown that development of individualized ASOs was feasible within an academic setting, starting with Milasen for the treatment of a patient with CLN7 Batten's disease in the USA. Inspired by this, the Dutch Center for RNA Therapeutics (DCRT) was established by three academic medical centers in the Netherlands with a track record in ASO development for progressive, genetic neurodegenerative, neurodevelopmental, and retinal disorders. The goal of the DCRT is to bundle expertise and address national ethical, regulatory, and financial issues related to ASO treatment, and ultimately to develop individualized ASOs for eligible patients with genetic diseases affecting the central nervous system in an academic, not-for-profit setting. In this perspective, we describe the establishment of the DCRT in 2020 and the achievements so far, with a specific focus on lessons learned: the need for processes and procedures, the need for global collaboration, the need to raise awareness, and the fact that N-of-1 is N-of-a-few.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Dutch Center for RNA Therapeutic, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob W J Collin
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ype Elgersma
- Dutch Center for RNA Therapeutics, Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Marlen C Lauffer
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Willeke van Roon-Mom
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Zhou H, Arechavala-Gomeza V, Garanto A. Experimental Model Systems Used in the Preclinical Development of Nucleic Acid Therapeutics. Nucleic Acid Ther 2023; 33:238-247. [PMID: 37145922 PMCID: PMC10457615 DOI: 10.1089/nat.2023.0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/23/2023] [Indexed: 05/07/2023] Open
Abstract
Preclinical evaluation of nucleic acid therapeutics (NATs) in relevant experimental model systems is essential for NAT drug development. As part of COST Action "DARTER" (Delivery of Antisense RNA ThERapeutics), a network of researchers in the field of RNA therapeutics, we have conducted a survey on the experimental model systems routinely used by our members in preclinical NAT development. The questionnaire focused on both cellular and animal models. Our survey results suggest that skin fibroblast cultures derived from patients is the most commonly used cellular model, while induced pluripotent stem cell-derived models are also highly reported, highlighting the increasing potential of this technology. Splice-switching antisense oligonucleotide is the most frequently investigated RNA molecule, followed by small interfering RNA. Animal models are less prevalent but also widely used among groups in the network, with transgenic mouse models ranking the top. Concerning the research fields represented in our survey, the mostly studied disease area is neuromuscular disorders, followed by neurometabolic diseases and cancers. Brain, skeletal muscle, heart, and liver are the top four tissues of interest reported. We expect that this snapshot of the current preclinical models will facilitate decision making and the share of resources between academics and industry worldwide to facilitate the development of NATs.
Collapse
Affiliation(s)
- Haiyan Zhou
- Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Center, London, United Kingdom
| | - Virginia Arechavala-Gomeza
- Nucleic Acid Therapeutics for Rare Disorders (NAT-RD), Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Alejandro Garanto
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Reurink J, Weisschuh N, Garanto A, Dockery A, van den Born LI, Fajardy I, Haer-Wigman L, Kohl S, Wissinger B, Farrar GJ, Ben-Yosef T, Pfiffner FK, Berger W, Weener ME, Dudakova L, Liskova P, Sharon D, Salameh M, Offenheim A, Heon E, Girotto G, Gasparini P, Morgan A, Bergen AA, ten Brink JB, Klaver CC, Tranebjærg L, Rendtorff ND, Vermeer S, Smits JJ, Pennings RJ, Aben M, Oostrik J, Astuti GD, Corominas Galbany J, Kroes HY, Phan M, van Zelst-Stams WA, Thiadens AA, Verheij JB, van Schooneveld MJ, de Bruijn SE, Li CH, Hoyng CB, Gilissen C, Vissers LE, Cremers FP, Kremer H, van Wijk E, Roosing S. Whole genome sequencing for USH2A-associated disease reveals several pathogenic deep-intronic variants that are amenable to splice correction. HGG ADVANCES 2023; 4:100181. [PMID: 36785559 PMCID: PMC9918427 DOI: 10.1016/j.xhgg.2023.100181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments.
Collapse
Affiliation(s)
- Janine Reurink
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pediatrics, Amalia’s Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Adrian Dockery
- The School of Genetics & Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Isabelle Fajardy
- Centre de Biologie Pathologie Génétique, CHU de Lille, Lille, France
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - G. Jane Farrar
- The School of Genetics & Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Tamar Ben-Yosef
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Fatma Kivrak Pfiffner
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Dror Sharon
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Manar Salameh
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ashley Offenheim
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elise Heon
- Departments of Ophthalmology and Vision Sciences, The Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | - Giorgia Girotto
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Paolo Gasparini
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Anna Morgan
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy
| | - Arthur A. Bergen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, the Netherlands
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, the Netherlands
| | - Jacoline B. ten Brink
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, the Netherlands
| | - Caroline C.W. Klaver
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lisbeth Tranebjærg
- Department of Clinical Genetics, The Kennedy Center, Copenhagen University Hospital, 2600 Glostrup, Denmark
- Institute of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nanna D. Rendtorff
- Department of Clinical Genetics, The Kennedy Center, Copenhagen University Hospital, 2600 Glostrup, Denmark
| | - Sascha Vermeer
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Jeroen J. Smits
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Hearing & Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center of Utrecht, Utrecht, the Netherlands
| | - Ronald J.E. Pennings
- Hearing & Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marco Aben
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Oostrik
- Hearing & Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Galuh D.N. Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | | | - Hester Y. Kroes
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center of Utrecht, Utrecht, the Netherlands
| | - Milan Phan
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Rijnstate Hospital, Arnhem, the Netherlands
| | | | | | - Joke B.G.M. Verheij
- Department of Medical Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mary J. van Schooneveld
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, the Netherlands
| | - Suzanne E. de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Catherina H.Z. Li
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carel B. Hoyng
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lisenka E.L.M. Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P.M. Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hannie Kremer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Hearing & Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erwin van Wijk
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Hearing & Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
17
|
Kaltak M, de Bruijn P, Piccolo D, Lee SE, Dulla K, Hoogenboezem T, Beumer W, Webster AR, Collin RW, Cheetham ME, Platenburg G, Swildens J. Antisense oligonucleotide therapy corrects splicing in the common Stargardt disease type 1-causing variant ABCA4 c.5461-10T>C. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:674-688. [PMID: 36910710 PMCID: PMC9999166 DOI: 10.1016/j.omtn.2023.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/15/2023] [Indexed: 02/20/2023]
Abstract
Stargardt disease type 1 (STGD1) is the most common hereditary form of maculopathy and remains untreatable. STGD1 is caused by biallelic variants in the ABCA4 gene, which encodes the ATP-binding cassette (type 4) protein (ABCA4) that clears toxic byproducts of the visual cycle. The c.5461-10T>C p.[Thr1821Aspfs∗6,Thr1821Valfs∗13] variant is the most common severe disease-associated variant, and leads to exon skipping and out-of-frame ABCA4 transcripts that prevent translation of functional ABCA4 protein. Homozygous individuals typically display early onset STGD1 and are legally blind by early adulthood. Here, we applied antisense oligonucleotides (AONs) to promote exon inclusion and restore wild-type RNA splicing of ABCA4 c.5461-10T>C. The effect of AONs was first investigated in vitro using an ABCA4 midigene model. Subsequently, the best performing AONs were administered to homozygous c.5461-10T>C 3D human retinal organoids. Isoform-specific digital polymerase chain reaction revealed a significant increase in correctly spliced transcripts after treatment with the lead AON, QR-1011, up to 53% correct transcripts at a 3 μM dose. Furthermore, western blot and immunohistochemistry analyses identified restoration of ABCA4 protein after treatment. Collectively, we identified QR-1011 as a potent splice-correcting AON and a possible therapeutic intervention for patients harboring the severe ABCA4 c.5461-10T>C variant.
Collapse
Affiliation(s)
- Melita Kaltak
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, and Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands
| | - Petra de Bruijn
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Davide Piccolo
- UCL, Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
| | - Sang-Eun Lee
- UCL, Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
| | - Kalyan Dulla
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | | | - Wouter Beumer
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Andrew R. Webster
- UCL, Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
- Moorfields Eye Hospital, 162 City Road, EC1V 2PD London, UK
| | - Rob W.J. Collin
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, and Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands
| | | | | | - Jim Swildens
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| |
Collapse
|
18
|
Goyenvalle A, Jimenez-Mallebrera C, van Roon W, Sewing S, Krieg AM, Arechavala-Gomeza V, Andersson P. Considerations in the Preclinical Assessment of the Safety of Antisense Oligonucleotides. Nucleic Acid Ther 2023; 33:1-16. [PMID: 36579950 PMCID: PMC9940817 DOI: 10.1089/nat.2022.0061] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nucleic acid therapeutics field has made tremendous progress in the past decades. Continuous advances in chemistry and design have led to many successful clinical applications, eliciting even more interest from researchers including both academic groups and drug development companies. Many preclinical studies in the field focus on improving the delivery of antisense oligonucleotide drugs (ONDs) and/or assessing their efficacy in target tissues, often neglecting the evaluation of toxicity, at least in early phases of development. A series of consensus recommendations regarding regulatory considerations and expectations have been generated by the Oligonucleotide Safety Working Group and the Japanese Research Working Group for the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use S6 and Related Issues (WGS6) in several white papers. However, safety aspects should also be kept in sight in earlier phases while screening and designing OND to avoid subsequent failure in the development phase. Experts and members of the network "DARTER," a COST Action funded by the Cooperation in Science and Technology of the EU, have utilized their collective experience working with OND, as well as their insights into OND-mediated toxicities, to generate a series of consensus recommendations to assess OND toxicity in early stages of preclinical research. In the past few years, several publications have described predictive assays, which can be used to assess OND-mediated toxicity in vitro or ex vivo to filter out potential toxic candidates before moving to in vivo phases of preclinical development, that is, animal toxicity studies. These assays also have the potential to provide translational insight since they allow a safety evaluation in human in vitro systems. Yet, small preliminary in vivo studies should also be considered to complement this early assessment. In this study, we summarize the state of the art and provide guidelines and recommendations on the different tests available for these early stage preclinical assessments.
Collapse
Affiliation(s)
- Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France.,Address correspondence to: Aurélie Goyenvalle, PhD, Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles 78000, France
| | - Cecilia Jimenez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Departamento de Genética, Microbiología y Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Willeke van Roon
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sabine Sewing
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Arthur M. Krieg
- RNA Therapeutics Institute, University of Massachusetts, Worcester, Massachusetts, USA
| | - Virginia Arechavala-Gomeza
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Patrik Andersson
- Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.,Address correspondence to: Patrik Andersson, PhD, Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal, Gothenburg 431 83, Sweden
| |
Collapse
|
19
|
Aartsma-Rus A, Garanto A, van Roon-Mom W, McConnell EM, Suslovitch V, Yan WX, Watts JK, Yu TW, on behalf of the N = 1 Collaborative. Consensus Guidelines for the Design and In Vitro Preclinical Efficacy Testing N-of-1 Exon Skipping Antisense Oligonucleotides. Nucleic Acid Ther 2023; 33:17-25. [PMID: 36516128 PMCID: PMC9940807 DOI: 10.1089/nat.2022.0060] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antisense oligonucleotides (ASOs) can modulate pre-mRNA splicing. This offers therapeutic opportunities for numerous genetic diseases, often in a mutation-specific and sometimes even individual-specific manner. Developing therapeutic ASOs for as few as even a single patient has been shown feasible with the development of Milasen for an individual with Batten disease. Efforts to develop individualized ASOs for patients with different genetic diseases are ongoing globally. The N = 1 Collaborative (N1C) is an umbrella organization dedicated to supporting the nascent field of individualized medicine. N1C recently organized a workshop to discuss and advance standards for the rigorous design and testing of splice-switching ASOs. In this study, we present guidelines resulting from that meeting and the key recommendations: (1) dissemination of standardized experimental designs, (2) use of standardized reference ASOs, and (3) a commitment to data sharing and exchange.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Dutch Center for RNA Therapeutics, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,N = 1 Collaborative
| | - Alejandro Garanto
- Dutch Center for RNA Therapeutics, the Netherlands.,Department of Pediatrics and Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Willeke van Roon-Mom
- Dutch Center for RNA Therapeutics, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Victoria Suslovitch
- N = 1 Collaborative.,Department of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Jonathan K Watts
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Timothy W Yu
- N = 1 Collaborative.,Department of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Division of Genetics and Genomics, Boston, Massachusetts, USA
| | | |
Collapse
|
20
|
Goossens R, Verwey N, Ariyurek Y, Schnell F, Aartsma-Rus A. DMD antisense oligonucleotide mediated exon skipping efficiency correlates with flanking intron retention time and target position within the exon. RNA Biol 2023; 20:693-702. [PMID: 37667454 PMCID: PMC10481881 DOI: 10.1080/15476286.2023.2254041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Mutations in the DMD gene are causative for Duchenne muscular dystrophy (DMD). Antisense oligonucleotide (AON) mediated exon skipping to restore disrupted dystrophin reading frame is a therapeutic approach that allows production of a shorter but functional protein. As DMD causing mutations can affect most of the 79 exons encoding dystrophin, a wide variety of AONs are needed to treat the patient population. Design of AONs is largely guided by trial-and-error, and it is yet unclear what defines the skippability of an exon. Here, we use a library of phosphorodiamidate morpholino oligomer (PMOs) AONs of similar physical properties to test the skippability of a large number of DMD exons. The DMD transcript is non-sequentially spliced, meaning that certain introns are retained longer in the transcript than downstream introns. We tested whether the relative intron retention time has a significant effect on AON efficiency, and found that targeting an out-of-frame exon flanked at its 5'-end by an intron that is retained in the transcript longer ('slow' intron) leads to overall higher exon skipping efficiency than when the 5'-end flanking intron is 'fast'. Regardless of splicing speed of flanking introns, we find that positioning an AON closer to the 5'-end of the target exon leads to higher exon skipping efficiency opposed to targeting an exons 3'-end. The data enclosed herein can be of use to guide future target selection and preferential AON binding sites for both DMD and other disease amenable by exon skipping therapies.
Collapse
Affiliation(s)
- Remko Goossens
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nisha Verwey
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yavuz Ariyurek
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
21
|
Abstract
RNA-based therapeutics have entered the mainstream with seemingly limitless possibilities to treat all categories of neurological disease. Here, common RNA-based drug modalities such as antisense oligonucleotides, small interfering RNAs, RNA aptamers, RNA-based vaccines and mRNA drugs are reviewed highlighting their current and potential applications. Rapid progress has been made across rare genetic diseases and neurodegenerative disorders, but safe and effective delivery to the brain remains a significant challenge for many applications. The advent of individualized RNA-based therapies for ultra-rare diseases is discussed against the backdrop of the emergence of this field into more common conditions such as Alzheimer's disease and ischaemic stroke. There remains significant untapped potential in the use of RNA-based therapeutics for behavioural disorders and tumours of the central nervous system; coupled with the accelerated development expected over the next decade, the true potential of RNA-based therapeutics to transform the therapeutic landscape in neurology remains to be uncovered.
Collapse
Affiliation(s)
- Karen Anthony
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, UK
| |
Collapse
|
22
|
Therapeutic Prospects of Exon Skipping for Epidermolysis Bullosa. Int J Mol Sci 2021; 22:ijms222212222. [PMID: 34830104 PMCID: PMC8621297 DOI: 10.3390/ijms222212222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Epidermolysis bullosa is a group of genetic skin conditions characterized by abnormal skin (and mucosal) fragility caused by pathogenic variants in various genes. The disease severity ranges from early childhood mortality in the most severe types to occasional acral blistering in the mildest types. The subtype and severity of EB is linked to the gene involved and the specific variants in that gene, which also determine its mode of inheritance. Current treatment is mainly focused on symptomatic relief such as wound care and blister prevention, because truly curative treatment options are still at the preclinical stage. Given the current level of understanding, the broad spectrum of genes and variants underlying EB makes it impossible to develop a single treatment strategy for all patients. It is likely that many different variant-specific treatment strategies will be needed to ultimately treat all patients. Antisense-oligonucleotide (ASO)-mediated exon skipping aims to counteract pathogenic sequence variants by restoring the open reading frame through the removal of the mutant exon from the pre-messenger RNA. This should lead to the restored production of the protein absent in the affected skin and, consequently, improvement of the phenotype. Several preclinical studies have demonstrated that exon skipping can restore protein production in vitro, in skin equivalents, and in skin grafts derived from EB-patient skin cells, indicating that ASO-mediated exon skipping could be a viable strategy as a topical or systemic treatment. The potential value of exon skipping for EB is supported by a study showing reduced phenotypic severity in patients who carry variants that result in natural exon skipping. In this article, we review the substantial progress made on exon skipping for EB in the past 15 years and highlight the opportunities and current challenges of this RNA-based therapy approach. In addition, we present a prioritization strategy for the development of exon skipping based on genomic information of all EB-involved genes.
Collapse
|
23
|
Synofzik M, van Roon-Mom WMC, Marckmann G, van Duyvenvoorde HA, Graessner H, Schüle R, Aartsma-Rus A. Preparing n-of-1 Antisense Oligonucleotide Treatments for Rare Neurological Diseases in Europe: Genetic, Regulatory, and Ethical Perspectives. Nucleic Acid Ther 2021; 32:83-94. [PMID: 34591693 PMCID: PMC9058873 DOI: 10.1089/nat.2021.0039] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antisense oligonucleotide (ASO) therapies present a promising disease-modifying treatment approach for rare neurological diseases (RNDs). However, the current focus is on "more common" RNDs, leaving a large share of RND patients still without prospect of disease-modifying treatments. In response to this gap, n-of-1 ASO treatment approaches are targeting ultrarare or even private variants. While highly attractive, this emerging, academia-driven field of ultimately individualized precision medicine is in need of systematic guidance and standards, which will allow global scaling of this approach. We provide here genetic, regulatory, and ethical perspectives for preparing n-of-1 ASO treatments and research programs, with a specific focus on the European context. By example of splice modulating ASOs, we outline genetic criteria for variant prioritization, chart the regulatory field of n-of-1 ASO treatment development in Europe, and propose an ethically informed classification for n-of-1 ASO treatment strategies and level of outcome assessments. To accommodate the ethical requirements of both individual patient benefit and knowledge gain, we propose a stronger integration of patient care and clinical research when developing novel n-of-1 ASO treatments: each single trial of therapy should inherently be driven to generate generalizable knowledge, be registered in a ASO treatment registry, and include assessment of generic outcomes, which allow aggregated analysis across n-of-1 trials of therapy.
Collapse
Affiliation(s)
- Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Georg Marckmann
- Institute of Ethics, History and Theory of Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | | | - Holm Graessner
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
24
|
Antisense oligonucleotide-based drug development for Cystic Fibrosis patients carrying the 3849+10 kb C-to-T splicing mutation. J Cyst Fibros 2021; 20:865-875. [PMID: 34226157 PMCID: PMC8464507 DOI: 10.1016/j.jcf.2021.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/24/2023]
Abstract
Background: Antisense oligonucleotide (ASO)-based drugs for splicing modulation were recently approved for various genetic diseases with unmet need. Here we aimed to develop an ASO-based splicing modulation therapy for Cystic Fibrosis (CF) patients carrying the 3849 + 10 kb C-to-T splicing mutation in the CFTR gene. Methods: We have screened, in FRT cells expressing the 3849 + 10 kb C-to-T splicing mutation, ~30 2ʹ-O-Methyl-modified phosphorothioate ASOs, targeted to prevent the recognition and inclusion of a cryptic exon generated due to the mutation. The effect of highly potent ASO candidates on the splicing pattern, protein maturation and CFTR function was further analyzed in well differentiated primary human nasal and bronchial epithelial cells, derived from patients carrying at least one 3849 + 10 kb C-to-T allele. Results: A highly potent lead ASO, efficiently delivered by free uptake, was able to significantly increase the level of correctly spliced mRNA and completely restore the CFTR function to wild type levels in cells from a homozygote patient. This ASO led to CFTR function with an average of 43% of wild type levels in cells from various heterozygote patients. Optimized efficiency of the lead ASO was further obtained with 2ʹ-Methoxy Ethyl modification (2ʹMOE). Conclusion: The highly efficient splicing modulation and functional correction, achieved by free uptake of the selected lead ASO in various patients, demonstrate the ASO therapeutic potential benefit for CF patients carrying splicing mutations and is aimed to serve as the basis for our current clinical development.
Collapse
|
25
|
Daoutsali E, Hailu TT, Buijsen RAM, Pepers BA, van der Graaf LM, Verbeek MM, Curtis D, de Vlaam T, van Roon-Mom WMC. Antisense Oligonucleotide-Induced Amyloid Precursor Protein Splicing Modulation as a Therapeutic Approach for Dutch-Type Cerebral Amyloid Angiopathy. Nucleic Acid Ther 2021; 31:351-363. [PMID: 34061681 PMCID: PMC8823675 DOI: 10.1089/nat.2021.0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dutch-type cerebral amyloid angiopathy (D-CAA) is a monogenic form of cerebral amyloid angiopathy and is inherited in an autosomal dominant manner. The disease is caused by a point mutation in exon 17 of the amyloid precursor protein (APP) gene that leads to an amino acid substitution at codon 693. The mutation is located within the amyloid beta (Aβ) domain of APP, and leads to accumulation of toxic Aβ peptide in and around the cerebral vasculature. We have designed an antisense oligonucleotide (AON) approach that results in skipping of exon 17, generating a shorter APP isoform that lacks part of the Aβ domain and the D-CAA mutation. We demonstrate efficient AON-induced skipping of exon 17 at RNA level and the occurrence of a shorter APP protein isoform in three different cell types. This resulted in a reduction of Aβ40 in neuronally differentiated, patient-derived induced pluripotent stem cells. AON-treated wild-type mice showed successful exon skipping on RNA and protein levels throughout the brain. These results illustrate APP splice modulation as a promising therapeutic approach for D-CAA.
Collapse
Affiliation(s)
- Elena Daoutsali
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Barry A Pepers
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Linda M van der Graaf
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Marcel M Verbeek
- Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Centre, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Daniel Curtis
- Amylon Therapeutics, Leiden, the Netherlands.,Atalanta Therapeutics, Boston, Massachusetts, USA
| | | | | |
Collapse
|
26
|
Dulla K, Slijkerman R, van Diepen HC, Albert S, Dona M, Beumer W, Turunen JJ, Chan HL, Schulkens IA, Vorthoren L, den Besten C, Buil L, Schmidt I, Miao J, Venselaar H, Zang J, Neuhauss SCF, Peters T, Broekman S, Pennings R, Kremer H, Platenburg G, Adamson P, de Vrieze E, van Wijk E. Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations. Mol Ther 2021; 29:2441-2455. [PMID: 33895329 PMCID: PMC8353187 DOI: 10.1016/j.ymthe.2021.04.024] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mutations in USH2A are among the most common causes of syndromic and non-syndromic retinitis pigmentosa (RP). The two most recurrent mutations in USH2A, c.2299delG and c.2276G > T, both reside in exon 13. Skipping exon 13 from the USH2A transcript presents a potential treatment modality in which the resulting transcript is predicted to encode a slightly shortened usherin protein. Morpholino-induced skipping of ush2a exon 13 in zebrafish ush2armc1 mutants resulted in the production of usherinΔexon 13 protein and a completely restored retinal function. Antisense oligonucleotides were investigated for their potential to selectively induce human USH2A exon 13 skipping. Lead candidate QR-421a induced a concentration-dependent exon 13 skipping in induced pluripotent stem cell (iPSC)-derived photoreceptor precursors from an Usher syndrome patient homozygous for the c.2299delG mutation. Mouse surrogate mQR-421a reached the retinal outer nuclear layer after a single intravitreal injection and induced a detectable level of exon skipping until at least 6 months post-injection. In conclusion, QR-421a-induced exon skipping proves to be a highly promising treatment option for RP caused by mutations in USH2A exon 13.
Collapse
Affiliation(s)
- Kalyan Dulla
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Ralph Slijkerman
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | | | - Silvia Albert
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Margo Dona
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Wouter Beumer
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Janne J Turunen
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Hee Lam Chan
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Iris A Schulkens
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Lars Vorthoren
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | | | - Levi Buil
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Iris Schmidt
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Jiayi Miao
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Hanka Venselaar
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jingjing Zang
- University of Zürich, Institute of Molecular Life Sciences, 8057 Zürich, Switzerland
| | - Stephan C F Neuhauss
- University of Zürich, Institute of Molecular Life Sciences, 8057 Zürich, Switzerland
| | - Theo Peters
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Sanne Broekman
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Ronald Pennings
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Hannie Kremer
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | | | - Peter Adamson
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands; UCL, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
27
|
Amaral MD. How to determine the mechanism of action of CFTR modulator compounds: A gateway to theranostics. Eur J Med Chem 2020; 210:112989. [PMID: 33190956 DOI: 10.1016/j.ejmech.2020.112989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
The greatest challenge of 21st century biology is to fully understand mechanisms of disease to drive new approaches and medical innovation. Parallel to this is the huge biomedical endeavour of treating people through personalized medicine. Until now all CFTR modulator drugs that have entered clinical trials have been genotype-dependent. An emerging alternative is personalized/precision medicine in CF, i.e., to determine whether rare CFTR mutations respond to existing (or novel) CFTR modulator drugs by pre-assessing them directly on patient's tissues ex vivo, an approach also now termed theranostics. To administer the right drug to the right person it is essential to understand how drugs work, i.e., to know their mechanism of action (MoA), so as to predict their applicability, not just in certain mutations but also possibly in other diseases that share the same defect/defective pathway. Moreover, an understanding the MoA of a drug before it is tested in clinical trials is the logical path to drug discovery and can increase its chance for success and hence also approval. In conclusion, the most powerful approach to determine the MoA of a compound is to understand the underlying biology. Novel large datasets of intervenients in most biological processes, namely those emerging from the post-genomic era tools, are available and should be used to help in this task.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Faculty of Sciences, University of Lisboa, Portugal.
| |
Collapse
|
28
|
Khan M, Arno G, Fakin A, Parfitt DA, Dhooge PPA, Albert S, Bax NM, Duijkers L, Niblock M, Hau KL, Bloch E, Schiff ER, Piccolo D, Hogden MC, Hoyng CB, Webster AR, Cremers FPM, Cheetham ME, Garanto A, Collin RWJ. Detailed Phenotyping and Therapeutic Strategies for Intronic ABCA4 Variants in Stargardt Disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:412-427. [PMID: 32653833 PMCID: PMC7352060 DOI: 10.1016/j.omtn.2020.06.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/15/2020] [Accepted: 06/09/2020] [Indexed: 01/17/2023]
Abstract
Stargardt disease is a progressive retinal disorder caused by bi-allelic mutations in the ABCA4 gene that encodes the ATP-binding cassette, subfamily A, member 4 transporter protein. Over the past few years, we and others have identified several pathogenic variants that reside within the introns of ABCA4, including a recurrent variant in intron 36 (c.5196+1137G>A) of which the pathogenicity so far remained controversial. Detailed clinical characterization of this variant confirmed its pathogenic nature, and classified it as an allele of intermediate severity. Moreover, we discovered several additional ABCA4 variants clustering in intron 36. Several of these variants resulted in aberrant splicing of ABCA4, i.e., the inclusion of pseudoexons, while the splicing defects caused by the recurrent c.5196+1137G>A variant strongly increased upon differentiation of patient-derived induced pluripotent stem cells into retina-like cells. Finally, all splicing defects could be rescued by the administration of antisense oligonucleotides that were designed to specifically block the pseudoexon insertion, including rescue in 3D retinal organoids harboring the c.5196+1137G>A variant. Our data illustrate the importance of intronic variants in ABCA4 and expand the therapeutic possibilities for overcoming splicing defects in Stargardt disease.
Collapse
Affiliation(s)
- Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gavin Arno
- UCL Institute for Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK; Great Ormond Street Hospital for Children, London, UK
| | - Ana Fakin
- UCL Institute for Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK; Eye Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | - Patty P A Dhooge
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Silvia Albert
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nathalie M Bax
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lonneke Duijkers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Kwan L Hau
- UCL Institute for Ophthalmology, London, UK
| | - Edward Bloch
- UCL Institute for Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK
| | | | | | | | - Carel B Hoyng
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andrew R Webster
- UCL Institute for Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
29
|
Aguti S, Bolduc V, Ala P, Turmaine M, Bönnemann CG, Muntoni F, Zhou H. Exon-Skipping Oligonucleotides Restore Functional Collagen VI by Correcting a Common COL6A1 Mutation in Ullrich CMD. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:205-216. [PMID: 32585628 PMCID: PMC7321786 DOI: 10.1016/j.omtn.2020.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 11/19/2022]
Abstract
Collagen VI-related congenital muscular dystrophies (COL6-CMDs) are the second most common form of congenital muscular dystrophy. Currently, there is no effective treatment available. COL6-CMDs are caused by recessive or dominant mutations in one of the three genes encoding for the α chains of collagen type VI (COL6A1, COL6A2, and COL6A3). One of the most common mutations in COL6-CMD patients is a de novo deep intronic c.930+189C > T mutation in COL6A1 gene. This mutation creates a cryptic donor splice site and induces incorporation of a novel in-frame pseudo-exon in the mature transcripts. In this study, we systematically evaluated the splice switching approach using antisense oligonucleotides (ASOs) to correct this mutation. Fifteen ASOs were designed using the RNA-tiling approach to target the misspliced pseudo-exon and its flanking sequences. The efficiency of ASOs was evaluated at RNA, protein, and structural levels in skin fibroblasts established from four patients carrying the c.930+189C > T mutation. We identified two additional lead ASO candidates that efficiently induce pseudo-exon exclusion from the mature transcripts, thus allowing for the restoration of a functional collagen VI microfibrillar matrix. Our findings provide further evidence for ASO exon skipping as a therapeutic approach for COL6-CMD patients carrying this common intronic mutation.
Collapse
Affiliation(s)
- Sara Aguti
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Pierpaolo Ala
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Mark Turmaine
- Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK.
| | - Haiyan Zhou
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK; Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK.
| |
Collapse
|
30
|
Halloy F, Iyer P, Ćwiek P, Ghidini A, Barman-Aksözen J, Wildner-Verhey van Wijk N, Theocharides APA, Minder E, Schneider-Yin X, Schümperli D, Hall J. Delivery of oligonucleotides to bone marrow to modulate ferrochelatase splicing in a mouse model of erythropoietic protoporphyria. Nucleic Acids Res 2020; 48:4658-4671. [PMID: 32313951 PMCID: PMC7229840 DOI: 10.1093/nar/gkaa229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Erythropoietic protoporphyria (EPP) is a rare genetic disease in which patients experience acute phototoxic reactions after sunlight exposure. It is caused by a deficiency in ferrochelatase (FECH) in the heme biosynthesis pathway. Most patients exhibit a loss-of-function mutation in trans to an allele bearing a SNP that favors aberrant splicing of transcripts. One viable strategy for EPP is to deploy splice-switching oligonucleotides (SSOs) to increase FECH synthesis, whereby an increase of a few percent would provide therapeutic benefit. However, successful application of SSOs in bone marrow cells is not described. Here, we show that SSOs comprising methoxyethyl-chemistry increase FECH levels in cells. We conjugated one SSO to three prototypical targeting groups and administered them to a mouse model of EPP in order to study their biodistribution, their metabolic stability and their FECH splice-switching ability. The SSOs exhibited distinct distribution profiles, with increased accumulation in liver, kidney, bone marrow and lung. However, they also underwent substantial metabolism, mainly at their linker groups. An SSO bearing a cholesteryl group increased levels of correctly spliced FECH transcript by 80% in the bone marrow. The results provide a promising approach to treat EPP and other disorders originating from splicing dysregulation in the bone marrow.
Collapse
Affiliation(s)
- François Halloy
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | - Pavithra S Iyer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | - Paulina Ćwiek
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | - Alice Ghidini
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | | | | | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | | | - Daniel Schümperli
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| |
Collapse
|
31
|
Matos L, Vilela R, Rocha M, Santos JI, Coutinho MF, Gaspar P, Prata MJ, Alves S. Development of an Antisense Oligonucleotide-Mediated Exon Skipping Therapeutic Strategy for Mucolipidosis II: Validation at RNA Level. Hum Gene Ther 2020; 31:775-783. [PMID: 32283951 DOI: 10.1089/hum.2020.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lysosomal storage disorders (LSDs) are a group of rare inherited metabolic diseases caused by the malfunction of the lysosomal system, which results in the accumulation of undergraded substrates inside the lysosomes and leads to severe and progressive pathology. Despite there currently being a broad understanding of the molecular defects behind LSDs, curative therapies have been approved for only few of these diseases, whereas existing treatments are still mostly symptomatic with several limitations. Mucolipidosis type II alpha/beta (ML II) is one of most severe LSDs, which is caused by the total deficiency of the GlcNAc-1-phosphotransferase, a key enzyme for the formation of specific targeting signals on lysosomal hydrolases to lysosomes. GlcNAc-1-phosphotransferase is a multimeric enzyme complex encoded by two genes: GNPTAB and GNPTG. One of the most frequent ML II causal mutation is a dinucleotide deletion on exon 19 of GNPTAB (c.3503_3504del) that leads to the generation of a truncated protein, loss of GlcNAc-1-phosphotransferase activity, and missorting of multiple lysosomal enzymes. Presently, there is no therapy available for ML II. In this study, we explored the possibility of an innovative therapeutic strategy for ML II based on the use of antisense oligonucleotides (AOs) capable to induce the skipping of GNPTAB exon 19 harboring the most common disease-causing mutation, c.3503_3504del. The approach confirmed the ability of specific AOs for RNA splicing modulation, thus paving the way for future studies on the therapeutic potential of this strategy.
Collapse
Affiliation(s)
- Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Porto, Portugal.,Center for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal
| | - Regina Vilela
- Research and Development Unit, Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Porto, Portugal
| | - Melissa Rocha
- Research and Development Unit, Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Porto, Portugal
| | - Juliana I Santos
- Research and Development Unit, Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Porto, Portugal.,Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Porto, Portugal.,Center for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal
| | - Paulo Gaspar
- Newborn Screening, Metabolism and Genetics Unit, Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Porto, Portugal
| | - Maria João Prata
- Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal.,i3S, Institute of Research and Innovation in Health/IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Porto, Portugal.,Center for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Verwey N, Gazzoli I, Krause S, Mamchaoui K, Mouly V, Aartsma-Rus A. Antisense-Mediated Skipping of Dysferlin Exons in Control and Dysferlinopathy Patient-Derived Cells. Nucleic Acid Ther 2019; 30:71-79. [PMID: 31873062 DOI: 10.1089/nat.2019.0788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dysferlinopathies encompass a spectrum of progressive muscular dystrophies caused by the lack of dysferlin due to missense mutations in the dysferlin gene or mutations causing premature truncation of protein translation. Dysferlin is a modular protein, and dysferlins lacking one or more repetitive domains have been shown to retain functionality. As such, antisense-mediated exon skipping has been proposed as a therapy for dysferlinopathy. By skipping the mutated exon, the reading frame would be maintained, while the mutation would be bypassed, thus allowing production of an internally deleted, but partially functional, dysferlin. We previously showed that dysferlin exon skipping is feasible in control cell lines. We here evaluated exon skipping and dysferlin protein restoration in patient-derived cells requiring the skipping of exon 9, 29, 30, or 34. Exon 30 skipping was possible at high efficiency, but did not result in increased dysferlin. We discovered that the alleged exon 30 mutation was in fact a polymorphism and identified a splicing mutation in intron 28 as the disease-causing mutation. While exon skipping was feasible for each of the other cell lines, no increases in dysferlin protein could be detected by western blotting.
Collapse
Affiliation(s)
- Nisha Verwey
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Isabella Gazzoli
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sabine Krause
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich, Munchen, Germany
| | - Kamel Mamchaoui
- Sorbonne Université, INSERM, Institut de Myologie, Myology Research Center, CRM, Paris, France
| | - Vincent Mouly
- Sorbonne Université, INSERM, Institut de Myologie, Myology Research Center, CRM, Paris, France
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
33
|
Systematic Approach to Developing Splice Modulating Antisense Oligonucleotides. Int J Mol Sci 2019; 20:ijms20205030. [PMID: 31614438 PMCID: PMC6834167 DOI: 10.3390/ijms20205030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/05/2023] Open
Abstract
The process of pre-mRNA splicing is a common and fundamental step in the expression of most human genes. Alternative splicing, whereby different splice motifs and sites are recognised in a developmental and/or tissue-specific manner, contributes to genetic plasticity and diversity of gene expression. Redirecting pre-mRNA processing of various genes has now been validated as a viable clinical therapeutic strategy, providing treatments for Duchenne muscular dystrophy (inducing specific exon skipping) and spinal muscular atrophy (promoting exon retention). We have designed and evaluated over 5000 different antisense oligonucleotides to alter splicing of a variety of pre-mRNAs, from the longest known human pre-mRNA to shorter, exon-dense primary gene transcripts. Here, we present our guidelines for designing, evaluating and optimising splice switching antisense oligomers in vitro. These systematic approaches assess several critical factors such as the selection of target splicing motifs, choice of cells, various delivery reagents and crucial aspects of validating assays for the screening of antisense oligonucleotides composed of 2′-O-methyl modified bases on a phosphorothioate backbone.
Collapse
|
34
|
Coutinho MF, Matos L, Santos JI, Alves S. RNA Therapeutics: How Far Have We Gone? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:133-177. [PMID: 31342441 DOI: 10.1007/978-3-030-19966-1_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In recent years, the RNA molecule became one of the most promising targets for therapeutic intervention. Currently, a large number of RNA-based therapeutics are being investigated both at the basic research level and in late-stage clinical trials. Some of them are even already approved for treatment. RNA-based approaches can act at pre-mRNA level (by splicing modulation/correction using antisense oligonucleotides or U1snRNA vectors), at mRNA level (inhibiting gene expression by siRNAs and antisense oligonucleotides) or at DNA level (by editing mutated sequences through the use of CRISPR/Cas). Other RNA approaches include the delivery of in vitro transcribed (IVT) mRNA or the use of oligonucleotides aptamers. Here we review these approaches and their translation into clinics trying to give a brief overview also on the difficulties to its application as well as the research that is being done to overcome them.
Collapse
Affiliation(s)
- Maria Francisca Coutinho
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Liliana Matos
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Juliana Inês Santos
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Sandra Alves
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal.
| |
Collapse
|
35
|
Garanto A, Duijkers L, Tomkiewicz TZ, Collin RWJ. Antisense Oligonucleotide Screening to Optimize the Rescue of the Splicing Defect Caused by the Recurrent Deep-Intronic ABCA4 Variant c.4539+2001G>A in Stargardt Disease. Genes (Basel) 2019; 10:genes10060452. [PMID: 31197102 PMCID: PMC6628380 DOI: 10.3390/genes10060452] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Deep-sequencing of the ABCA4 locus has revealed that ~10% of autosomal recessive Stargardt disease (STGD1) cases are caused by deep-intronic mutations. One of the most recurrent deep-intronic variants in the Belgian and Dutch STGD1 population is the c.4539+2001G>A mutation. This variant introduces a 345-nt pseudoexon to the ABCA4 mRNA transcript in a retina-specific manner. Antisense oligonucleotides (AONs) are short sequences of RNA that can modulate splicing. In this work, we designed 26 different AONs to perform a thorough screening to identify the most effective AONs to correct splicing defects associated with c.4539+2001G>A. All AONs were tested in patient-derived induced pluripotent stem cells (iPSCs) that were differentiated to photoreceptor precursor cells (PPCs). AON efficacy was assessed through RNA analysis and was based on correction efficacy, and AONs were grouped and their properties assessed. We (a) identified nine AONs with significant correction efficacies (>50%), (b) confirmed that a single nucleotide mismatch was sufficient to significantly decrease AON efficacy, and (c) found potential correlations between efficacy and some of the parameters analyzed. Overall, our results show that AON-based splicing modulation holds great potential for treating Stargardt disease caused by splicing defects in ABCA4.
Collapse
Affiliation(s)
- Alejandro Garanto
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands.
| | - Lonneke Duijkers
- Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands.
| | - Tomasz Z Tomkiewicz
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands.
| | - Rob W J Collin
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands.
| |
Collapse
|
36
|
Antisense Oligonucleotide-Based Splice Correction of a Deep-Intronic Mutation in CHM Underlying Choroideremia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1074:83-89. [PMID: 29721931 DOI: 10.1007/978-3-319-75402-4_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Choroideremia is a progressive genetic eye disorder caused by mutations in the CHM gene that encodes the Rab escort protein-1 (REP-1). One of the many CHM mutations described so far is a deep-intronic variant, c.315-4587T>A, that creates a novel splice acceptor site resulting in the insertion of a 98-bp pseudoexon in the CHM transcript. Antisense oligonucleotides (AONs) are a potential therapeutic tool for correcting splice defects, as they have the properties to bind to the pre-mRNA and redirect the splicing process. Previously, we used AONs to correct aberrant splicing events caused by a recurrent intronic mutation in CEP290 underlying Leber congenital amaurosis. Here, we expand the use of these therapeutic molecules for the c.315-4587T>A deep-intronic mutation in CHM by demonstrating splice correction in patient-derived lymphoblast cells.
Collapse
|
37
|
Hahn JK, Neupane B, Pradhan K, Zhou Q, Testa L, Pelzl L, Maleck C, Gawaz M, Gramlich M. The assembly and evaluation of antisense oligonucleotides applied in exon skipping for titin-based mutations in dilated cardiomyopathy. J Mol Cell Cardiol 2019; 131:12-19. [PMID: 30998980 DOI: 10.1016/j.yjmcc.2019.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/16/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022]
Abstract
The leading cause of genetic dilated cardiomyopathy (DCM) is due to mutations in the TTN gene, impacting approximately 15-20% of familial and 18% of sporadic DCM cases. Currently, there is potential for a personalized RNA-based therapeutic approach in titin-based DCM, utilizing antisense oligonucleotide (AON) mediated exon-skipping, which attempts to reframe mutated titin transcripts, resulting in shortened, functional protein. However, the TTN gene is massive with 363 exons; each newly identified TTN exon mutation provides a challenge to address when considering the potential application of AON mediated exon skipping. In the initial phase of this strategy, the mutated TTN exon requires specific AON design and evaluation to assess the exon skipping effectiveness for subsequent experiments. Here, we present a detailed protocol to effectively assemble and evaluate AONs for efficient exon-skipping in targeted TTN exons. We chose a previously identified TTN 1-bp deletion mutation in exon 335 as an exemplary target exon, which causes a frameshift mutation leading to truncated A-band titin in DCM. We designed two specific AONs to mask the Ttn exon 335 and confirmed successfully mediated exon skipping without disrupting the Ttn reading frame. In addition, we evaluated and confirmed AON-treated HL-1 cells show maintained store-operated calcium entry, fractional shortening as well as preserved sarcomeric formation in comparison to control samples, indicating the treated cardiomyocytes retain adequate, essential cell function and structure, proving the treated cells can compensate for the loss of exon 335. These results indicate our method offers the first systematic protocol in designing and evaluating AONs specifically for mutated TTN target exons, expanding the framework of future advancements in the therapeutic potential of antisense-mediated exon skipping in titin-based DCM.
Collapse
Affiliation(s)
- Julia Kelley Hahn
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Balram Neupane
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany; Department of Invasive Electrophysiology, RWTH Aachen, Pauwelsstr. 30, Aachen, Germany
| | - Kabita Pradhan
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany; Department of Invasive Electrophysiology, RWTH Aachen, Pauwelsstr. 30, Aachen, Germany
| | - Qifeng Zhou
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Lauren Testa
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany; Department of Molecular Genetics, University of Rochester, New York, USA
| | - Lisann Pelzl
- Department of Physiology I, Eberhard Karls University, Tübingen, Germany
| | - Carole Maleck
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Michael Gramlich
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany; Department of Invasive Electrophysiology, RWTH Aachen, Pauwelsstr. 30, Aachen, Germany.
| |
Collapse
|
38
|
Antisense Oligonucleotide Design and Evaluation of Splice-Modulating Properties Using Cell-Based Assays. Methods Mol Biol 2019; 1828:519-530. [PMID: 30171565 DOI: 10.1007/978-1-4939-8651-4_34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Antisense oligonucleotide (AON)-based splice modulation has been proven to hold great promise as a therapeutic strategy for a number of hereditary conditions. AONs are small modified single-stranded RNA or DNA molecules that are complementary to splice enhancer or silencer target sites. Upon pre-mRNA binding, AONs will prevent or stimulate binding of the spliceosome thereby modulating splicing events. AONs can be designed and applied for different genes and genetic disorders as the specificity depends on their nucleotide sequence. Here we provide a guideline for setting up AON-based splice-modulation experiments by describing a detailed protocol to design and evaluate AONs using a combination of in silico and in vitro analyses.
Collapse
|
39
|
Bolduc V, Foley AR, Solomon-Degefa H, Sarathy A, Donkervoort S, Hu Y, Chen GS, Sizov K, Nalls M, Zhou H, Aguti S, Cummings BB, Lek M, Tukiainen T, Marshall JL, Regev O, Marek-Yagel D, Sarkozy A, Butterfield RJ, Jou C, Jimenez-Mallebrera C, Li Y, Gartioux C, Mamchaoui K, Allamand V, Gualandi F, Ferlini A, Hanssen E, Wilton SD, Lamandé SR, MacArthur DG, Wagener R, Muntoni F, Bönnemann CG. A recurrent COL6A1 pseudoexon insertion causes muscular dystrophy and is effectively targeted by splice-correction therapies. JCI Insight 2019; 4:124403. [PMID: 30895940 DOI: 10.1172/jci.insight.124403] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/12/2019] [Indexed: 12/27/2022] Open
Abstract
The clinical application of advanced next-generation sequencing technologies is increasingly uncovering novel classes of mutations that may serve as potential targets for precision medicine therapeutics. Here, we show that a deep intronic splice defect in the COL6A1 gene, originally discovered by applying muscle RNA sequencing in patients with clinical findings of collagen VI-related dystrophy (COL6-RD), inserts an in-frame pseudoexon into COL6A1 mRNA, encodes a mutant collagen α1(VI) protein that exerts a dominant-negative effect on collagen VI matrix assembly, and provides a unique opportunity for splice-correction approaches aimed at restoring normal gene expression. Using splice-modulating antisense oligomers, we efficiently skipped the pseudoexon in patient-derived fibroblast cultures and restored a wild-type matrix. Similarly, we used CRISPR/Cas9 to precisely delete an intronic sequence containing the pseudoexon and efficiently abolish its inclusion while preserving wild-type splicing. Considering that this splice defect is emerging as one of the single most frequent mutations in COL6-RD, the design of specific and effective splice-correction therapies offers a promising path for clinical translation.
Collapse
Affiliation(s)
- Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Herimela Solomon-Degefa
- Center for Biochemistry, Faculty of Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Apurva Sarathy
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Grace S Chen
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Katherine Sizov
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Matthew Nalls
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom.,Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sara Aguti
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom
| | - Beryl B Cummings
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Monkol Lek
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Taru Tukiainen
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jamie L Marshall
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Oded Regev
- Courant Institute of Mathematical Sciences, New York University, New York, USA
| | - Dina Marek-Yagel
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom
| | - Russell J Butterfield
- Department of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Cristina Jou
- Pathology Department and Biobanc de l'Hospital Infantil Sant Joan de Déu per a la Investigació, Hospital Sant Joan de Déu, Barcelona, Spain.,Neuromuscular Unit, Neuropediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,CIBERER (ISCIII), Madrid, Spain
| | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neuropediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,CIBERER (ISCIII), Madrid, Spain
| | - Yan Li
- Peptide/Protein Sequencing Facility, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland, USA
| | - Corine Gartioux
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Valérie Allamand
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Francesca Gualandi
- Medical Genetics Unit, Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom.,Medical Genetics Unit, Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Eric Hanssen
- Bio21 Advanced Microscopy Facility, The University of Melbourne, Melbourne, Australia
| | | | - Steve D Wilton
- Centre for Molecular Medicine and Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, Australia
| | - Shireen R Lamandé
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Daniel G MacArthur
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Raimund Wagener
- Center for Biochemistry, Faculty of Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Leigh F, Ferlini A, Biggar D, Bushby K, Finkel R, Morgenroth LP, Wagner KR. Neurology Care, Diagnostics, and Emerging Therapies of the Patient With Duchenne Muscular Dystrophy. Pediatrics 2018; 142:S5-S16. [PMID: 30275245 DOI: 10.1542/peds.2018-0333c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy is the most common form of childhood muscular dystrophy. A mutation in the DMD gene disrupts dystrophin (protein) production, causing damage to muscle integrity, weakness, loss of ambulation, and cardiopulmonary compromise by the second decade of life. Life expectancy has improved from mid-teenage years to mid-20s with the use of glucocorticoids and beyond the third decade with ventilator support and multidisciplinary care. However, Duchenne muscular dystrophy is associated with comorbidities and is a fatal disease. Glucocorticoids prolong ambulation, but their side effects are significant. Emerging investigational therapies have surfaced over the past decade and have rapidly been tested in clinical trials. Gene-specific strategies include nonsense readthrough, exon skipping, gene editing, utrophin modulation, and gene replacement. Other mechanisms include muscle regeneration, antioxidants, and antifibrosis and anti-inflammatory pathways. With potential therapies emerging, early diagnosis is needed to initiate treatment early enough to minimize morbidity and mortality. Newborn screening can be used to significantly improve early diagnosis, especially for gene-specific therapeutics.
Collapse
Affiliation(s)
- Fawn Leigh
- Massachusetts General Hospital and Harvard Medical School, Harvard University, Cambridge, Massachusetts; .,Seattle Children's Hospital, University of Washington, Seattle, Washington
| | | | - Doug Biggar
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Katharine Bushby
- John Walton Centre for Muscular Dystrophy Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | - Kathryn R Wagner
- Kennedy Krieger Institute, Baltimore, Maryland; and.,School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
41
|
Garanto A, Collin RWJ. Design and In Vitro Use of Antisense Oligonucleotides to Correct Pre-mRNA Splicing Defects in Inherited Retinal Dystrophies. Methods Mol Biol 2018; 1715:61-78. [PMID: 29188506 DOI: 10.1007/978-1-4939-7522-8_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Antisense oligonucleotides (AONs) are small molecules able to bind to the pre-mRNA and modulate splicing. The increasing amount of intronic mutations leading to pseudoexon insertion in genes underlying inherited retinal dystrophies (IRDs) has highlighted the potential of AONs as a therapeutic tool for these disorders. Here we describe how to design and test AON molecules in vitro in order to correct pre-mRNA splicing defects involved in IRDs.
Collapse
Affiliation(s)
- Alejandro Garanto
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Rob W J Collin
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
42
|
Wyatt EJ, Demonbreun AR, Kim EY, Puckelwartz MJ, Vo AH, Dellefave-Castillo LM, Gao QQ, Vainzof M, Pavanello RCM, Zatz M, McNally EM. Efficient exon skipping of SGCG mutations mediated by phosphorodiamidate morpholino oligomers. JCI Insight 2018; 3:99357. [PMID: 29720576 DOI: 10.1172/jci.insight.99357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Exon skipping uses chemically modified antisense oligonucleotides to modulate RNA splicing. Therapeutically, exon skipping can bypass mutations and restore reading frame disruption by generating internally truncated, functional proteins to rescue the loss of native gene expression. Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the SGCG gene, which encodes the dystrophin-associated protein γ-sarcoglycan. The most common SGCG mutations disrupt the transcript reading frame abrogating γ-sarcoglycan protein expression. In order to treat most SGCG gene mutations, it is necessary to skip 4 exons in order to restore the SGCG transcript reading frame, creating an internally truncated protein referred to as Mini-Gamma. Using direct reprogramming of human cells with MyoD, myogenic cells were tested with 2 antisense oligonucleotide chemistries, 2'-O-methyl phosphorothioate oligonucleotides and vivo-phosphorodiamidate morpholino oligomers, to induce exon skipping. Treatment with vivo-phosphorodiamidate morpholino oligomers demonstrated efficient skipping of the targeted exons and corrected the mutant reading frame, resulting in the expression of a functional Mini-Gamma protein. Antisense-induced exon skipping of SGCG occurred in normal cells and those with multiple distinct SGCG mutations, including the most common 521ΔT mutation. These findings demonstrate a multiexon-skipping strategy applicable to the majority of limb-girdle muscular dystrophy 2C patients.
Collapse
Affiliation(s)
- Eugene J Wyatt
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ellis Y Kim
- Committee on Molecular Medicine and Molecular Pathogenesis and
| | - Megan J Puckelwartz
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andy H Vo
- Committee on Developmental Biology and Regenerative Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Lisa M Dellefave-Castillo
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Quan Q Gao
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mariz Vainzof
- Human Genome and Stem-Cell Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Rita C M Pavanello
- Human Genome and Stem-Cell Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem-Cell Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
43
|
Albert S, Garanto A, Sangermano R, Khan M, Bax NM, Hoyng CB, Zernant J, Lee W, Allikmets R, Collin RW, Cremers FP. Identification and Rescue of Splice Defects Caused by Two Neighboring Deep-Intronic ABCA4 Mutations Underlying Stargardt Disease. Am J Hum Genet 2018. [PMID: 29526278 DOI: 10.1016/j.ajhg.2018.02.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sequence analysis of the coding regions and splice site sequences in inherited retinal diseases is not able to uncover ∼40% of the causal variants. Whole-genome sequencing can identify most of the non-coding variants, but their interpretation is still very challenging, in particular when the relevant gene is expressed in a tissue-specific manner. Deep-intronic variants in ABCA4 have been associated with autosomal-recessive Stargardt disease (STGD1), but the exact pathogenic mechanism is unknown. By generating photoreceptor precursor cells (PPCs) from fibroblasts obtained from individuals with STGD1, we demonstrated that two neighboring deep-intronic ABCA4 variants (c.4539+2001G>A and c.4539+2028C>T) result in a retina-specific 345-nt pseudoexon insertion (predicted protein change: p.Arg1514Leufs∗36), likely due to the creation of exonic enhancers. Administration of antisense oligonucleotides (AONs) targeting the 345-nt pseudoexon can significantly rescue the splicing defect observed in PPCs of two individuals with these mutations. Intriguingly, an AON that is complementary to c.4539+2001G>A rescued the splicing defect only in PPCs derived from an individual with STGD1 with this but not the other mutation, demonstrating the high specificity of AONs. In addition, a single AON molecule rescued splicing defects associated with different neighboring mutations, thereby providing new strategies for the treatment of persons with STGD1. As many genes associated with human genetic conditions are expressed in specific tissues and pre-mRNA splicing may also rely on organ-specific factors, our approach to investigate and treat splicing variants using differentiated cells derived from individuals with STGD1 can be applied to any tissue of interest.
Collapse
|
44
|
de Bruin RG, Rabelink TJ, van Zonneveld AJ, van der Veer EP. Emerging roles for RNA-binding proteins as effectors and regulators of cardiovascular disease. Eur Heart J 2018; 38:1380-1388. [PMID: 28064149 DOI: 10.1093/eurheartj/ehw567] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022] Open
Abstract
The cardiovascular system comprises multiple cell types that possess the capacity to modulate their phenotype in response to acute or chronic injury. Transcriptional and post-transcriptional mechanisms play a key role in the regulation of remodelling and regenerative responses to damaged cardiovascular tissues. Simultaneously, insufficient regulation of cellular phenotype is tightly coupled with the persistence and exacerbation of cardiovascular disease. Recently, RNA-binding proteins such as Quaking, HuR, Muscleblind, and SRSF1 have emerged as pivotal regulators of these functional adaptations in the cardiovascular system by guiding a wide-ranging number of post-transcriptional events that dramatically impact RNA fate, including alternative splicing, stability, localization and translation. Moreover, homozygous disruption of RNA-binding protein genes is commonly associated with cardiac- and/or vascular complications. Here, we summarize the current knowledge on the versatile role of RNA-binding proteins in regulating the transcriptome during phenotype switching in cardiovascular health and disease. We also detail existing and potential DNA- and RNA-based therapeutic approaches that could impact the treatment of cardiovascular disease in the future.
Collapse
Affiliation(s)
- Ruben G de Bruin
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands.,Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands
| | - Ton J Rabelink
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands.,Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands.,Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands
| | - Eric P van der Veer
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands.,Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands
| |
Collapse
|
45
|
Toonen LJA, Rigo F, van Attikum H, van Roon-Mom WMC. Antisense Oligonucleotide-Mediated Removal of the Polyglutamine Repeat in Spinocerebellar Ataxia Type 3 Mice. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:232-242. [PMID: 28918024 PMCID: PMC5504086 DOI: 10.1016/j.omtn.2017.06.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 11/05/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a currently incurable neurodegenerative disorder caused by a CAG triplet expansion in exon 10 of the ATXN3 gene. The resultant expanded polyglutamine stretch in the mutant ataxin-3 protein causes a gain of toxic function, which eventually leads to neurodegeneration. One important function of ataxin-3 is its involvement in the proteasomal protein degradation pathway, and long-term downregulation of the protein may therefore not be desirable. In the current study, we made use of antisense oligonucleotides to mask predicted exonic splicing signals, resulting in exon 10 skipping from ATXN3 pre-mRNA. This led to formation of a truncated ataxin-3 protein lacking the toxic polyglutamine expansion, but retaining its ubiquitin binding and cleavage function. Repeated intracerebroventricular injections of the antisense oligonucleotides in a SCA3 mouse model led to exon skipping and formation of the modified ataxin-3 protein throughout the mouse brain. Exon skipping was long lasting, with the modified protein being detectable for at least 2.5 months after antisense oligonucleotide injection. A reduction in insoluble ataxin-3 and nuclear accumulation was observed following antisense oligonucleotide treatment, indicating a beneficial effect on pathogenicity. Together, these data suggest that exon 10 skipping is a promising therapeutic approach for SCA3.
Collapse
Affiliation(s)
- Lodewijk J A Toonen
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, the Netherlands
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, the Netherlands
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, the Netherlands.
| |
Collapse
|
46
|
Antisense Oligonucleotide-based Splice Correction for USH2A-associated Retinal Degeneration Caused by a Frequent Deep-intronic Mutation. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e381. [PMID: 27802265 DOI: 10.1038/mtna.2016.89] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022]
Abstract
Usher syndrome (USH) is the most common cause of combined deaf-blindness in man. The hearing loss can be partly compensated by providing patients with hearing aids or cochlear implants, but the loss of vision is currently untreatable. In general, mutations in the USH2A gene are the most frequent cause of USH explaining up to 50% of all patients worldwide. The first deep-intronic mutation in the USH2A gene (c.7595-2144A>G) was reported in 2012, leading to the insertion of a pseudoexon (PE40) into the mature USH2A transcript. When translated, this PE40-containing transcript is predicted to result in a truncated non-functional USH2A protein. In this study, we explored the potential of antisense oligonucleotides (AONs) to prevent aberrant splicing of USH2A pre-mRNA as a consequence of the c.7595-2144A>G mutation. Engineered 2'-O-methylphosphorothioate AONs targeting the PE40 splice acceptor site and/or exonic splice enhancer regions displayed significant splice correction potential in both patient derived fibroblasts and a minigene splice assay for USH2A c.7595-2144A>G, whereas a non-binding sense oligonucleotide had no effect on splicing. Altogether, AON-based splice correction could be a promising approach for the development of a future treatment for USH2A-associated retinitis pigmentosa caused by the deep-intronic c.7595-2144A>G mutation.
Collapse
|
47
|
Pasteuning-Vuhman S, Boertje-van der Meulen JW, van Putten M, Overzier M, Ten Dijke P, Kiełbasa SM, Arindrarto W, Wolterbeek R, Lezhnina KV, Ozerov IV, Aliper AM, Hoogaars WM, Aartsma-Rus A, Loomans CJM. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration. FASEB J 2016; 31:238-255. [PMID: 27733450 PMCID: PMC5161514 DOI: 10.1096/fj.201600675r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense oligonucleotides (AONs) were designed specifically to block the function of ALK4, a key receptor for the MSTN/activin pathway in skeletal muscle. AON-induced exon skipping resulted in specific Alk4 down-regulation, inhibition of MSTN activity, and increased myoblast differentiation in vitro. Unexpectedly, a marked decrease in muscle mass (10%) was found after Alk4 AON treatment in mdx mice. In line with in vitro results, muscle regeneration was stimulated, and muscle fiber size decreased markedly. Notably, when Alk4 was down-regulated in adult wild-type mice, muscle mass decreased even more. RNAseq analysis revealed dysregulated metabolic functions and signs of muscle atrophy. We conclude that ALK4 inhibition increases myogenesis but also regulates the tight balance of protein synthesis and degradation. Therefore, caution must be used when developing therapies that interfere with MSTN/activin pathways.—Pasteuning-Vuhman, S., Boertje-van der Meulen, J. W., van Putten, M., Overzier, M., ten Dijke, P., Kiełbasa, S. M., Arindrarto, W., Wolterbeek, R., Lezhnina, K. V., Ozerov, I. V., Aliper, A. M., Hoogaars, W. M., Aartsma-Rus, A., Loomans, C. J. M. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration.
Collapse
Affiliation(s)
| | | | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maurice Overzier
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology Leiden University Medical Center, Leiden, The Netherlands.,Cancer Genomics Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Szymon M Kiełbasa
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wibowo Arindrarto
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ron Wolterbeek
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ksenia V Lezhnina
- InSilico Medicine, Incorporated, Emerging Technology Centers, Johns Hopkins University, Baltimore, Maryland, USA; and
| | - Ivan V Ozerov
- InSilico Medicine, Incorporated, Emerging Technology Centers, Johns Hopkins University, Baltimore, Maryland, USA; and
| | - Aleksandr M Aliper
- InSilico Medicine, Incorporated, Emerging Technology Centers, Johns Hopkins University, Baltimore, Maryland, USA; and
| | - Willem M Hoogaars
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Move Research Institute Amsterdam, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands;
| | - Cindy J M Loomans
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
48
|
Antisense oligonucleotide-mediated exon skipping as a strategy to reduce proteolytic cleavage of ataxin-3. Sci Rep 2016; 6:35200. [PMID: 27731380 PMCID: PMC5059676 DOI: 10.1038/srep35200] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/27/2016] [Indexed: 12/04/2022] Open
Abstract
Spinocerebellar ataxia type-3 (SCA3) is a neurodegenerative disorder caused by a polyglutamine repeat expansion in the ataxin-3 protein. Cleavage of mutant ataxin-3 by proteolytic enzymes yields ataxin-3 fragments containing the polyglutamine stretch. These shorter ataxin-3 fragments are thought to be involved in SCA3 pathogenesis due to their increased cellular toxicity and their involvement in formation of the characteristic neuronal aggregates. As a strategy to prevent formation of toxic cleavage fragments, we investigated an antisense oligonucleotide-mediated modification of the ataxin-3 pre-mRNA through exon skipping of exon 8 and 9, resulting in the removal of a central 88 amino acid region of the ataxin-3 protein. This removed protein region contains several predicted cleavage sites and two ubiquitin-interacting motifs. In contrast to unmodified mutant ataxin-3, the internally truncated ataxin-3 protein did not give rise to potentially toxic cleavage fragments when incubated with caspases. In vitro experiments did not show cellular toxicity of the modified ataxin-3 protein. However, the modified protein was incapable of binding poly-ubiquitin chains, which may interfere with its normal deubiquitinating function. Low exon skipping efficiencies combined with reduction in important ataxin-3 protein functions suggest that skipping of exon 8 and 9 is not a viable therapeutic option for SCA3.
Collapse
|
49
|
Shorter SA, Gollings AS, Gorringe-Pattrick MAM, Coakley JE, Dyer PDR, Richardson SCW. The potential of toxin-based drug delivery systems for enhanced nucleic acid therapeutic delivery. Expert Opin Drug Deliv 2016; 14:685-696. [DOI: 10.1080/17425247.2016.1227781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Bornert O, Kühl T, Bremer J, van den Akker PC, Pasmooij AM, Nyström A. Analysis of the functional consequences of targeted exon deletion in COL7A1 reveals prospects for dystrophic epidermolysis bullosa therapy. Mol Ther 2016; 24:1302-11. [PMID: 27157667 DOI: 10.1038/mt.2016.92] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/03/2016] [Indexed: 12/18/2022] Open
Abstract
Genetically evoked deficiency of collagen VII causes dystrophic epidermolysis bullosa (DEB)-a debilitating disease characterized by chronic skin fragility and progressive fibrosis. Removal of exons carrying frame-disrupting mutations can reinstate protein expression in genetic diseases. The therapeutic potential of this approach is critically dependent on gene, protein, and disease intrinsic factors. Naturally occurring exon skipping in COL7A1, translating collagen VII, suggests that skipping of exons containing disease-causing mutations may be feasible for the treatment of DEB. However, despite a primarily in-frame arrangement of exons in the COL7A1 gene, no general conclusion of the aptitude of exon skipping for DEB can be drawn, since regulation of collagen VII functionality is complex involving folding, intra- and intermolecular interactions. To directly address this, we deleted two conceptually important exons located at both ends of COL7A1, exon 13, containing recurrent mutations, and exon 105, predicted to impact folding. The resulting recombinantly expressed proteins showed conserved functionality in biochemical and in vitro assays. Injected into DEB mice, the proteins promoted skin stability. By demonstrating functionality of internally deleted collagen VII variants, our study provides support of targeted exon deletion or skipping as a potential therapy to treat a large number of individuals with DEB.
Collapse
Affiliation(s)
- Olivier Bornert
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Tobias Kühl
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jeroen Bremer
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter C van den Akker
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna Mg Pasmooij
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|