1
|
Luo T, Ma C, Fan Y, Qiu Z, Li M, Tian Y, Shang Y, Liu C, Cao Q, Peng Y, Zhang S, Liu S, Song B. CRISPR-Cas9-mediated editing of GmARM improves resistance to multiple stresses in soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112147. [PMID: 38834106 DOI: 10.1016/j.plantsci.2024.112147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
The growth and development of soybean plants can be affected by both abiotic and biotic stressors, such as saline-alkali stress and Phytophthora root rot. In this study, we identified a stress-related gene-GmARM-whose promoter contained several hormone-response and stress-regulatory elements, including ABRE, TCA element, STRE, and MBS. qRT-PCR analysis showed that the expression of GmARM was the highest in seeds at 55 days after flowering. Furthermore, this gene was upregulated after exposure to saline-alkali stress and Phytophthora root rot infection at the seedling stage. Thus, we generated GmARM mutants using the CRISPR-Cas9 system to understand the role of this gene in stress response. T3 plants showed significantly improved salt tolerance, alkali resistance, and disease resistance, with a significantly higher survival rate than the wildtype plants. Moreover, mutations in GmARM affected the expression of related stress-resistance genes, indicating that GmARM mutants achieved multiple stress tolerance. Therefore, this study provides a foundation for further exploration of the genes involved in resistance to multiple stresses in soybean that can be used for breeding multiple stress-resistance soybean varieties.
Collapse
Affiliation(s)
- Tingting Luo
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Chongxuan Ma
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Yuanhang Fan
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Zhendong Qiu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Ming Li
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, China
| | - Yusu Tian
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Yuzhuo Shang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Chang Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Qingqian Cao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Yuhan Peng
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China.
| | - Bo Song
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China; Key Laboratory of Molecular and Cytogenetics, College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
2
|
Shuang LS, Cuevas H, Lemke C, Kim C, Shehzad T, Paterson AH. Genetic dissection of morphological variation between cauliflower and a rapid cycling Brassica oleracea line. G3 (BETHESDA, MD.) 2023; 13:jkad163. [PMID: 37506262 PMCID: PMC10627287 DOI: 10.1093/g3journal/jkad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/10/2022] [Accepted: 03/14/2023] [Indexed: 07/30/2023]
Abstract
To improve resolution to small genomic regions and sensitivity to small-effect loci in the identification of genetic factors conferring the enlarged inflorescence and other traits of cauliflower while also expediting further genetic dissection, 104 near-isogenic introgression lines (NIILs) covering 78.56% of the cauliflower genome, were selected from an advanced backcross population using cauliflower [Brassica oleracea var. botrytis L., mutant for Orange gene (ORG)] as the donor parent and a rapid cycling line (TO1434) as recurrent parent. Subsets of the advanced backcross population and NIILs were planted in the field for 8 seasons, finding 141 marker-trait associations for 15 leaf-, stem-, and flower-traits. Exemplifying the usefulness of these lines, we delineated the previously known flower color gene to a 4.5 MB interval on C3; a gene for small plant size to a 3.4 MB region on C8; and a gene for large plant size and flowering time to a 6.1 MB region on C9. This approach unmasked closely linked QTL alleles with opposing effects (on chr. 8) and revealed both alleles with expected phenotypic effects and effects opposite the parental phenotypes. Selected B. oleracea NIILs with short generation time add new value to widely used research and teaching materials.
Collapse
Affiliation(s)
- Lan Shuan Shuang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Hugo Cuevas
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Cornelia Lemke
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Changsoo Kim
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Tariq Shehzad
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Pan Y, Chen B, Qiao L, Chen F, Zhao J, Cheng Z, Weng Y. Phenotypic Characterization and Fine Mapping of a Major-Effect Fruit Shape QTL FS5.2 in Cucumber, Cucumis sativus L., with Near-Isogenic Line-Derived Segregating Populations. Int J Mol Sci 2022; 23:13384. [PMID: 36362172 PMCID: PMC9653860 DOI: 10.3390/ijms232113384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 04/21/2025] Open
Abstract
Cucumber (Cucumis sativus L.) fruit size/shape (FS) is an important yield and quality trait that is quantitatively inherited. Many quantitative trait loci (QTLs) for fruit size/shape have been identified, but very few have been fine-mapped or cloned. In this study, through marker-assisted foreground and background selections, we developed near-isogenic lines (NILs) for a major-effect fruit size/shape QTL FS5.2 in cucumber. Morphological and microscopic characterization of NILs suggests that the allele of fs5.2 from the semi-wild Xishuangbanna (XIS) cucumber (C. s. var. xishuangbannesis) reduces fruit elongation but promotes radial growth resulting in shorter but wider fruit, which seems to be due to reduced cell length, but increased cellular layers. Consistent with this, the NIL carrying the homozygous XIS allele (fs5.2) had lower auxin/IAA contents in both the ovary and the developing fruit. Fine genetic mapping with NIL-derived segregating populations placed FS5.2 into a 95.5 kb region with 15 predicted genes, and a homolog of the Arabidopsis CRABS CLAW (CsCRC) appeared to be the most possible candidate for FS5.2. Transcriptome profiling of NIL fruits at anthesis identified differentially expressed genes enriched in the auxin biosynthesis and signaling pathways, as well as genes involved in cell cycle, division, and cell wall processes. We conclude that the major-effect QTL FS5.2 controls cucumber fruit size/shape through regulating auxin-mediated cell division and expansion for the lateral and longitudinal fruit growth, respectively. The gibberellic acid (GA) signaling pathway also plays a role in FS5.2-mediated fruit elongation.
Collapse
Affiliation(s)
- Yupeng Pan
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Birong Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Lijun Qiao
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Feifan Chen
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jianyu Zhao
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- USDA-ARS Vegetable Crops Research Unit, 1575 Linden Dr., Madison, WI 53706, USA
| |
Collapse
|
4
|
Salminen TS, Vale PF. Drosophila as a Model System to Investigate the Effects of Mitochondrial Variation on Innate Immunity. Front Immunol 2020; 11:521. [PMID: 32269576 PMCID: PMC7109263 DOI: 10.3389/fimmu.2020.00521] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding why the response to infection varies between individuals remains one of the major challenges in immunology and infection biology. A substantial proportion of this heterogeneity can be explained by individual genetic differences which result in variable immune responses, and there are many examples of polymorphisms in nuclear-encoded genes that alter immunocompetence. However, how immunity is affected by genetic polymorphism in an additional genome, inherited maternally inside mitochondria (mtDNA), has been relatively understudied. Mitochondria are increasingly recognized as important mediators of innate immune responses, not only because they are the main source of energy required for costly immune responses, but also because by-products of mitochondrial metabolism, such as reactive oxygen species (ROS), may have direct microbicidal action. Yet, it is currently unclear how naturally occurring variation in mtDNA contributes to heterogeneity in infection outcomes. In this review article, we describe potential sources of variation in mitochondrial function that may arise due to mutations in vital nuclear and mitochondrial components of energy production or due to a disruption in mito-nuclear crosstalk. We then highlight how these changes in mitochondrial function can impact immune responses, focusing on their effects on ATP- and ROS-generating pathways, as well as immune signaling. Finally, we outline how being a powerful and genetically tractable model of infection, immunity and mitochondrial genetics makes the fruit fly Drosophila melanogaster ideally suited to dissect mitochondrial effects on innate immune responses to infection.
Collapse
Affiliation(s)
- Tiina S. Salminen
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pedro F. Vale
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Unpredictable Effects of the Genetic Background of Transgenic Lines in Physiological Quantitative Traits. G3-GENES GENOMES GENETICS 2019; 9:3877-3890. [PMID: 31540975 PMCID: PMC6829147 DOI: 10.1534/g3.119.400715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Physiology, fitness and disease phenotypes are complex traits exhibiting continuous variation in natural populations. To understand complex trait gene functions transgenic lines of undefined genetic background are often combined to assess quantitative phenotypes ignoring the impact of genetic polymorphisms. Here, we used inbred wild-type strains of the Drosophila Genetics Reference Panel to assess the phenotypic variation of six physiological and fitness traits, namely, female fecundity, survival and intestinal mitosis upon oral infection, defecation rate and fecal pH upon oral infection, and terminal tracheal cell branching in hypoxia. We found continuous variation in the approximately 150 strains tested for each trait, with extreme values differing by more than four standard deviations for all traits. In addition, we assessed the effects of commonly used Drosophila UAS-RNAi transgenic strains and their backcrossed isogenized counterparts, in the same traits plus baseline intestinal mitosis and tracheal branching in normoxia, in heterozygous conditions, when only half of the genetic background was different among strains. We tested 20 non-isogenic strains (10 KK and 10 GD) from the Vienna Drosophila Resource Center and their isogenized counterparts without Gal4 induction. Survival upon infection and female fecundity exhibited differences in 50% and 40% of the tested isogenic vs. non-isogenic pairs, respectively, whereas all other traits were affected in only 10–25% of the cases. When 11 isogenic and their corresponding non-isogenic UAS-RNAi lines were expressed ubiquitously with Gal4, 4 isogenic vs. non-isogenic pairs exhibited differences in survival to infection. Furthermore, when a single UAS-RNAi line was crossed with the same Gal4 transgene inserted in different genetic backgrounds, the quantitative variations observed were unpredictable on the basis of pure line performance. Thus, irrespective of the trait of interest, the genetic background of commonly used transgenic strains needs to be considered carefully during experimentation.
Collapse
|
6
|
Can H, Kal U, Ozyigit II, Paksoy M, Turkmen O. Construction, characteristics and high throughput molecular screening methodologies in some special breeding populations: a horticultural perspective. J Genet 2019. [DOI: 10.1007/s12041-019-1129-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Zaidem ML, Groen SC, Purugganan MD. Evolutionary and ecological functional genomics, from lab to the wild. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:40-55. [PMID: 30444573 DOI: 10.1111/tpj.14167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 05/12/2023]
Abstract
Plant phenotypes are the result of both genetic and environmental forces that act to modulate trait expression. Over the last few years, numerous approaches in functional genomics and systems biology have led to a greater understanding of plant phenotypic variation and plant responses to the environment. These approaches, and the questions that they can address, have been loosely termed evolutionary and ecological functional genomics (EEFG), and have been providing key insights on how plants adapt and evolve. In particular, by bringing these studies from the laboratory to the field, EEFG studies allow us to gain greater knowledge of how plants function in their natural contexts.
Collapse
Affiliation(s)
- Maricris L Zaidem
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
| | - Simon C Groen
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
- Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Cockram J, Mackay I. Genetic Mapping Populations for Conducting High-Resolution Trait Mapping in Plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 164:109-138. [PMID: 29470600 DOI: 10.1007/10_2017_48] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fine mapping of quantitative trait loci (QTL) is the route to more detailed molecular characterization and functional studies of the relationship between polymorphism and trait variation. It is also of direct relevance to breeding since it makes QTL more easily integrated into marker-assisted breeding and into genomic selection. Fine mapping requires that marker-trait associations are tested in populations in which large numbers of recombinations have occurred. This can be achieved by increasing the size of mapping populations or by increasing the number of generations of crossing required to create the population. We review the factors affecting the precision and power of fine mapping experiments and describe some contemporary experimental approaches, focusing on the use of multi-parental or multi-founder populations such as the multi-parent advanced generation intercross (MAGIC) and nested association mapping (NAM). We favor approaches such as MAGIC since these focus explicitly on increasing the amount of recombination that occurs within the population. Whatever approaches are used, we believe the days of mapping QTL in small populations must come to an end. In our own work in MAGIC wheat populations, we started with a target of developing 1,000 lines per population: that number now looks to be on the low side. Graphical Abstract.
Collapse
Affiliation(s)
- James Cockram
- The John Bingham Laboratory, National Institute of Agricultural Botany (NIAB), Cambridge, UK.
| | - Ian Mackay
- The John Bingham Laboratory, National Institute of Agricultural Botany (NIAB), Cambridge, UK
| |
Collapse
|
9
|
Muñoz N, Liu A, Kan L, Li MW, Lam HM. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement. Int J Mol Sci 2017; 18:E328. [PMID: 28165413 PMCID: PMC5343864 DOI: 10.3390/ijms18020328] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 01/14/2023] Open
Abstract
Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea) to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes.
Collapse
Affiliation(s)
- Nacira Muñoz
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Centro de Investigaciones Agropecuarias-INTA, Instituto de Fisiología y Recursos Genéticos Vegetales, Córdoba X5000, Argentina.
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba X5000, Argentina.
| | - Ailin Liu
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Leo Kan
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Man-Wah Li
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hon-Ming Lam
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Yan G, Liu H, Wang H, Lu Z, Wang Y, Mullan D, Hamblin J, Liu C. Accelerated Generation of Selfed Pure Line Plants for Gene Identification and Crop Breeding. FRONTIERS IN PLANT SCIENCE 2017; 8:1786. [PMID: 29114254 PMCID: PMC5660708 DOI: 10.3389/fpls.2017.01786] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/02/2017] [Indexed: 05/18/2023]
Abstract
Production of pure lines is an important step in biological studies and breeding of many crop plants. The major types of pure lines for biological studies and breeding include doubled haploid (DH) lines, recombinant inbred lines (RILs), and near isogenic lines (NILs). DH lines can be produced through microspore and megaspore culture followed by chromosome doubling while RILs and NILs can be produced through introgressions or repeated selfing of hybrids. DH approach was developed as a quicker method than conventional method to produce pure lines. However, its drawbacks of genotype-dependency and only a single chance of recombination limited its wider application. A recently developed fast generation cycling system (FGCS) achieved similar times to those of DH for the production of selfed pure lines but is more versatile as it is much less genotype-dependent than DH technology and does not restrict recombination to a single event. The advantages and disadvantages of the technologies and their produced pure line populations for different purposes of biological research and breeding are discussed. The development of a concept of complete in vitro meiosis and mitosis system is also proposed. This could integrate with the recently developed technologies of single cell genomic sequencing and genome wide selection, leading to a complete laboratory based pre-breeding scheme.
Collapse
Affiliation(s)
- Guijun Yan
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Guijun Yan
| | - Hui Liu
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
| | - Haibo Wang
- Hebei Centre of Plant Genetic Engineering, Institute of Genetics and Physiology, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Huhhot, China
| | - Yanxia Wang
- Hebei Province Wheat Engineering Technical Research Center, Shijiazhuang Academy of Agricultural Sciences, Shijiazhuang, China
| | - Daniel Mullan
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- InterGrain Pty. Ltd., Bibra Lake, WA, Australia
| | - John Hamblin
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- SuperSeeds Technologies Pty. Ltd., Perth, WA, Australia
| | - Chunji Liu
- Faculty of Science, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, St. Lucia, QLD, Australia
| |
Collapse
|
11
|
Wijnen CL, Keurentjes JJB. Genetic resources for quantitative trait analysis: novelty and efficiency in design from an Arabidopsis perspective. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:103-9. [PMID: 24657834 DOI: 10.1016/j.pbi.2014.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 05/11/2023]
Abstract
The use of genetic resources for the analysis of quantitative traits finds its roots in crop breeding but has seen a rejuvenation in Arabidopsis thaliana thanks to specific tools and genomic approaches. Although widely used in numerous crop and natural species, many approaches were first developed in this reference plant. We will discuss the scientific background and historical use of mapping populations in Arabidopsis and highlight the technological innovations that drove the development of novel strategies. We will especially lay emphasis on the methodologies used to generate the diverse population types and designate possible applications. Finally we highlight some of the most recent developments in generating genetic mapping resources and suggest specific usage for these novel tools and concepts.
Collapse
Affiliation(s)
- Cris L Wijnen
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, The Netherlands.
| |
Collapse
|
12
|
Wijnker E, Deurhof L, van de Belt J, de Snoo CB, Blankestijn H, Becker F, Ravi M, Chan SWL, van Dun K, Lelivelt CLC, de Jong H, Dirks R, Keurentjes JJB. Hybrid recreation by reverse breeding in Arabidopsis thaliana. Nat Protoc 2014; 9:761-72. [PMID: 24603935 DOI: 10.1038/nprot.2014.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hybrid crop varieties are traditionally produced by selecting and crossing parental lines to evaluate hybrid performance. Reverse breeding allows doing the opposite: selecting uncharacterized heterozygotes and generating parental lines from them. With these, the selected heterozygotes can be recreated as F1 hybrids, greatly increasing the number of hybrids that can be screened in breeding programs. Key to reverse breeding is the suppression of meiotic crossovers in a hybrid plant to ensure the transmission of nonrecombinant chromosomes to haploid gametes. These gametes are subsequently regenerated as doubled-haploid (DH) offspring. Each DH carries combinations of its parental chromosomes, and complementing pairs can be crossed to reconstitute the initial hybrid. Achiasmatic meiosis and haploid generation result in uncommon phenotypes among offspring owing to chromosome number variation. We describe how these features can be dealt with during a reverse-breeding experiment, which can be completed in six generations (∼1 year).
Collapse
Affiliation(s)
- Erik Wijnker
- 1] Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands. [2]
| | - Laurens Deurhof
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Jose van de Belt
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | | | - Hetty Blankestijn
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Frank Becker
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Maruthachalam Ravi
- 1] Department of Plant Biology, University of California, Davis, Davis, California, USA. [2]
| | - Simon W L Chan
- Department of Plant Biology, University of California, Davis, Davis, California, USA
| | - Kees van Dun
- Rijk Zwaan R&D Fijnaart, Fijnaart, The Netherlands
| | | | - Hans de Jong
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Rob Dirks
- Rijk Zwaan R&D Fijnaart, Fijnaart, The Netherlands
| | | |
Collapse
|
13
|
Molenaar JA, Keurentjes JJB. Exploiting natural variation in Arabidopsis. Methods Mol Biol 2014; 1062:139-53. [PMID: 24057363 DOI: 10.1007/978-1-62703-580-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Natural variation for many traits is present within the species Arabidopsis thaliana. This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of genetic markers, the phenotyping of quantitative traits, and, finally, QTL analyses. The focus of the chapter is on the use and development of recombinant inbred lines, but other types of segregating populations, including genome-wide association mapping in natural populations, are also discussed.
Collapse
Affiliation(s)
- Johanna A Molenaar
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|