1
|
Markowitz J, Shamblott M, Brohl AS, Sarnaik AA, Eroglu Z, Khushalani NI, Dukes CW, Chamizo A, Bastawrous M, Garcia ET, Dehlawi A, Chen PL, De Aquino DB, Sondak VK, Tarhini AA, Kim Y, Lawman P, Pilon-Thomas S. First-in-Human Stage III/IV Melanoma Clinical Trial of Immune Priming Agent IFx-Hu2.0. Mol Cancer Ther 2024; 23:1139-1143. [PMID: 38657233 PMCID: PMC11292317 DOI: 10.1158/1535-7163.mct-23-0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/21/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
IFx-Hu2.0 was designed to encode part of the Emm55 protein contained within a plasmid in a formulation intended for transfection into mammalian cells. IFx-Hu2.0 promotes both adaptive and innate immune responses in animal studies. Furthermore, previous studies have demonstrated safety/efficacy in equine, canine, and murine species. We present the first-in-human study of IFx-Hu2.0, administered by intralesional injection into melanoma tumors of seven patients with stage III/IV unresectable melanoma. No dose-limiting toxicities attributable to IFx-Hu2.0 were observed. Grade 1/2 injection site reactions were observed in five of seven patients. IgG and IgM responses to Emm55 peptides and known melanoma antigens were seen in the peripheral blood, suggesting that IFx-Hu2.0 acts as an individualized "in situ vaccine." Three of four patients previously refractory to anti-PD1 experienced clinical benefit upon subsequent anti-PD1-based treatment. Therefore, this approach is feasible, and clinical/correlative outcomes warrant further investigation for treating patients with metastatic melanoma with an immune priming agent.
Collapse
Affiliation(s)
- Joseph Markowitz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | | | - Andrew S. Brohl
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Sarcoma Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Amod A. Sarnaik
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Zeynep Eroglu
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Nikhil I. Khushalani
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Christopher W. Dukes
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Alejandra Chamizo
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | | | | | | | - Pei-Ling Chen
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Deanryan B. De Aquino
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Vernon K. Sondak
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Ahmad A. Tarhini
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | | | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| |
Collapse
|
2
|
Izumida T, Imamura T, Ueno Y, Fukahara K, Kinugawa K. Acute Heart Failure in a Patient with Occult Barlow's Disease Receiving Bevacizumab. MEDICINA-LITHUANIA 2021; 57:medicina57100998. [PMID: 34684038 PMCID: PMC8539381 DOI: 10.3390/medicina57100998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
Bevacizumab is a recombinant humanized monoclonal antibody and a key drug for treatment of various types of cancer. Bevacizumab is associated with the occurrence of heart failure, but its risk factors remain unknown. A 55-year-old woman was diagnosed with cervical cancer, which was completely treated by bevacizumab-incorporated chemotherapy. During the 9-month bevacizumab therapy, she suffered from hypertension requiring multiple antihypertensive agents. She was admitted to our hospital due to acute heart failure with afterload mismatch and severe mitral regurgitation. A transesophageal echocardiography showed Barlow's disease with a degenerated and widely prolapsed mitral valve. She received a scheduled surgical mitral valve repair. Post-operative cause was uneventful, but metastatic dissemination developed later. The existence of mitral valve regurgitation, even when sub-clinical, might be a risk of worsening heart failure during bevacizumab therapy. Careful follow-up at an onco-cardiology clinic is highly encouraged particularly for such a cohort during bevacizumab therapy.
Collapse
Affiliation(s)
- Toshihide Izumida
- Second Department of Medicine, University of Toyama, Toyama 930-0194, Japan; (T.I.); (Y.U.); (K.K.)
| | - Teruhiko Imamura
- Second Department of Medicine, University of Toyama, Toyama 930-0194, Japan; (T.I.); (Y.U.); (K.K.)
- Correspondence:
| | - Yohei Ueno
- Second Department of Medicine, University of Toyama, Toyama 930-0194, Japan; (T.I.); (Y.U.); (K.K.)
| | - Kazuaki Fukahara
- Department of Surgery 1, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan;
| | - Koichiro Kinugawa
- Second Department of Medicine, University of Toyama, Toyama 930-0194, Japan; (T.I.); (Y.U.); (K.K.)
| |
Collapse
|
3
|
Cuesta-Mateos C, Brown JR, Terrón F, Muñoz-Calleja C. Of Lymph Nodes and CLL Cells: Deciphering the Role of CCR7 in the Pathogenesis of CLL and Understanding Its Potential as Therapeutic Target. Front Immunol 2021; 12:662866. [PMID: 33841445 PMCID: PMC8024566 DOI: 10.3389/fimmu.2021.662866] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 01/13/2023] Open
Abstract
The lymph node (LN) is an essential tissue for achieving effective immune responses but it is also critical in the pathogenesis of chronic lymphocytic leukemia (CLL). Within the multitude of signaling pathways aberrantly regulated in CLL the homeostatic axis composed by the chemokine receptor CCR7 and its ligands is the main driver for directing immune cells to home into the LN. In this literature review, we address the roles of CCR7 in the pathophysiology of CLL, and how this chemokine receptor is of critical importance to develop more rational and effective therapies for this malignancy.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- Biomarkers, Tumor
- Chemotaxis/genetics
- Chemotaxis/immunology
- Disease Susceptibility
- Gene Expression
- Humans
- Immune Tolerance
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Ligands
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Molecular Targeted Therapy
- Protein Binding
- Receptors, CCR7/antagonists & inhibitors
- Receptors, CCR7/genetics
- Receptors, CCR7/metabolism
- Tumor Microenvironment
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Immunology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria- Instituto de La Princesa (IIS-IP), Madrid, Spain
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
- Catapult Therapeutics BV, Lelystad, Netherlands
| | - Jennifer R. Brown
- Chronic Lymphocytic Leukemia (CLL) Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Fernando Terrón
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
- Catapult Therapeutics BV, Lelystad, Netherlands
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria- Instituto de La Princesa (IIS-IP), Madrid, Spain
- School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Garg SK, Welsh EA, Fang B, Hernandez YI, Rose T, Gray J, Koomen JM, Berglund A, Mulé JJ, Markowitz J. Multi-Omics and Informatics Analysis of FFPE Tissues Derived from Melanoma Patients with Long/Short Responses to Anti-PD1 Therapy Reveals Pathways of Response. Cancers (Basel) 2020; 12:cancers12123515. [PMID: 33255891 PMCID: PMC7768436 DOI: 10.3390/cancers12123515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/21/2020] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Immune based therapies have benefited many melanoma patients, but many patients still do not respond. This study analyzes biospecimens obtained from patients undergoing a type of immune based therapy called anti-PD-1 to understand mechanisms of response and resistance to this treatment. The operational definition of good response utilized in this investigation permitted us to examine the biochemical pathways that are facilitating anti-PD-1 responses independent of prior therapies received by patients. Currently, there are no clinically available tests to reliably test for the outcome of patients treated with anti-PD-1 therapy. The purpose of this study was to facilitate the development of prospective biomarker-directed trials to guide therapy, as even though the side effect profile is favorable for anti-PD-1 therapy, some patients do not respond to therapy with significant toxicity. Each patient may require testing for the pathways upregulated in the tumor to predict optimal benefit to anti-PD-1 treatment. Abstract Anti-PD-1 based immune therapies are thought to be dependent on antigen processing and presentation mechanisms. To characterize the immune-dependent mechanisms that predispose stage III/IV melanoma patients to respond to anti-PD-1 therapies, we performed a multi-omics study consisting of expression proteomics and targeted immune-oncology-based mRNA sequencing. Formalin-fixed paraffin-embedded tissue samples were obtained from stage III/IV patients with melanoma prior to anti-PD-1 therapy. The patients were first stratified into poor and good responders based on whether their tumors had or had not progressed while on anti-PD-1 therapy for 1 year. We identified 263 protein/gene candidates that displayed differential expression, of which 223 were identified via proteomics and 40 via targeted-mRNA analyses. The downstream analyses of expression profiles using MetaCore software demonstrated an enrichment of immune system pathways involved in antigen processing/presentation and cytokine production/signaling. Pathway analyses showed interferon (IFN)-γ-mediated signaling via NF-κB and JAK/STAT pathways to affect immune processes in a cell-specific manner and to interact with the inducible nitric oxide synthase. We review these findings within the context of available literature on the efficacy of anti-PD-1 therapy. The comparison of good and poor responders, using efficacy of PD-1-based therapy at 1 year, elucidated the role of antigen presentation in mediating response or resistance to anti-PD-1 blockade.
Collapse
Affiliation(s)
- Saurabh K. Garg
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (S.K.G.); (Y.I.H.)
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Bin Fang
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (B.F.); (J.M.K.)
| | - Yuliana I. Hernandez
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (S.K.G.); (Y.I.H.)
| | - Trevor Rose
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
| | - Jhanelle Gray
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M. Koomen
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (B.F.); (J.M.K.)
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
| | - Anders Berglund
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - James J. Mulé
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Joseph Markowitz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (S.K.G.); (Y.I.H.)
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-745-8581
| |
Collapse
|
5
|
Antibody-Targeted Nanoparticles for Cancer Treatment. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
6
|
Yang J, Yu S, Yang Z, Yan Y, Chen Y, Zeng H, Ma F, Shi Y, Shi Y, Zhang Z, Sun F. Efficacy and Safety of Anti-cancer Biosimilars Compared to Reference Biologics in Oncology: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BioDrugs 2019; 33:357-371. [PMID: 31175632 DOI: 10.1007/s40259-019-00358-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Many biosimilars of monoclonal antibodies (mAbs) are becoming increasingly available as anticancer therapies, such as the rituximab, bevacizumab, and trastuzumab biosimilars. However, no comprehensive summary of their efficacy and safety is available. OBJECTIVE This study synthesized current evidence on the efficacy and safety of mAb biosimilars relative to their reference biologics among cancer patients. METHODS We searched PubMed, Embase, the Cochrane library, ClinicalTrials.gov, the ISI Web of Science, and several Chinese databases from their inception dates to December 31, 2018, for randomized controlled trials (RCTs) or comparative observational studies that compared the efficacy and safety of biosimilars with reference biologics used in oncology. The binary outcomes were pooled using risk ratio (RR) with 95% confidence intervals (CIs), continuous outcomes using weighted mean difference (WMD) with 95% CIs, and time-to-event outcomes using hazard ratios (HRs). Subgroup and sensitivity analyses were conducted following this. We used the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach to rate the quality of the evidence. RESULTS We did not find any comparative observational studies that fit the criteria. Twenty-three RCTs were identified for biosimilars of three mAbs, of which eight RCTs examined rituximab biosimilars (total N = 1534), six RCTs were for bevacizumab biosimilars (total N = 1897), and nine were for trastuzumab biosimilars (total N = 4953), respectively. The quality of the GRADE evidence for efficacy and safety outcomes was moderate or low. The findings were robust for all pre-specified subgroup and sensitivity analyses. CONCLUSION The existing evidence suggests highly comparable efficacy and safety profiles between mAb biosimilars and their reference biologics in oncological drugs.
Collapse
Affiliation(s)
- Jichun Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Shuqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Zhirong Yang
- Primary Care Unit, School of Clinical Medicine, University of Cambridge, Cambridgeshire, CB18RN, UK
| | - Yusong Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yao Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Hongmei Zeng
- Department of Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yanxia Shi
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center/State Key Laboratory of Oncology in South China/Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yehui Shi
- Phase I Clinical Trial Department of Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Zilu Zhang
- Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA
| | - Feng Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
7
|
Barber FD. Adverse Events of Oncologic Immunotherapy and Their Management. Asia Pac J Oncol Nurs 2019; 6:212-226. [PMID: 31259216 PMCID: PMC6518984 DOI: 10.4103/apjon.apjon_6_19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/10/2019] [Indexed: 12/26/2022] Open
Abstract
Over the past two decades, immunotherapy has emerged as a promising treatment option for patients with cancer. However, newer versions of immunotherapy, such as checkpoint inhibitors, may be associated with unusual adverse effects (AEs) that can range in severity from mild to life-threatening. Unlike common AEs of conventional chemotherapy, which have a predictable nadir or cyclic pattern after administration, AEs of these newer immunotherapies are variable, depending on the type of immunotherapy, route of administration, and mechanism of action. The onset and resolution of these AEs may be present at any time, during administration of treatment, a few weeks after administration of treatment, or several months after completion of treatment. Therefore, improving outcomes in patients undergoing oncologic immunotherapy requires oncology nurses' knowledge and understanding of various immunotherapy agents, as well as early recognition and management of potential AEs, especially AEs associated with checkpoint inhibitors and other therapies that manipulate T-cell activation causing autoimmune toxicity. This article draws upon current evidence from systematic reviews, meta-analyses, and expert consensus guidelines to provide a brief overview of common immunotherapies used in cancer and management of their associated AEs.
Collapse
Affiliation(s)
- Fedricker Diane Barber
- Department of Investigational Cancer Therapeutics (A Phase I Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Marcucci F, Caserta CA, Romeo E, Rumio C. Antibody-Drug Conjugates (ADC) Against Cancer Stem-Like Cells (CSC)-Is There Still Room for Optimism? Front Oncol 2019; 9:167. [PMID: 30984612 PMCID: PMC6449442 DOI: 10.3389/fonc.2019.00167] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/25/2019] [Indexed: 01/06/2023] Open
Abstract
Cancer stem-like cells (CSC) represent a subpopulation of tumor cells with peculiar functionalities that distinguish them from the bulk of tumor cells, most notably their tumor-initiating potential and drug resistance. Given these properties, it appears logical that CSCs have become an important target for many pharma companies. Antibody-drug conjugates (ADC) have emerged over the last decade as one of the most promising new tools for the selective ablation of tumor cells. Three ADCs have already received regulatory approval and many others are in different phases of clinical development. Not surprisingly, also a considerable number of anti-CSC ADCs have been described in the literature and some of these have entered clinical development. Several of these ADCs, however, have yielded disappointing results in clinical studies. This is similar to the results obtained with other anti-CSC drug candidates, including native antibodies, that have been investigated in the clinic. In this article we review the anti-CSC ADCs that have been described in the literature and, in the following, we discuss reasons that may underlie the failures in clinical trials that have been observed. Possible reasons relate to the biology of CSCs themselves, including their heterogeneity, the lack of strictly CSC-specific markers, and the capacity to interconvert between CSCs and non-CSCs; second, inherent limitations of some classes of cytotoxins that have been used for the construction of ADCs; third, the inadequacy of animal models in predicting efficacy in humans. We conclude suggesting some possibilities to address these limitations.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | | | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Reale A, Vitiello A, Conciatori V, Parolin C, Calistri A, Palù G. Perspectives on immunotherapy via oncolytic viruses. Infect Agent Cancer 2019; 14:5. [PMID: 30792754 PMCID: PMC6371415 DOI: 10.1186/s13027-018-0218-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND With few exceptions, current chemotherapy and radiotherapy protocols only obtain a slightly prolonged survival with severe adverse effects in patients with advanced solid tumors. In particular, most solid malignancies not amenable to radical surgery still carry a dismal prognosis, which unfortunately is also the case for relapsing disease after surgery. Even though targeted therapies obtained good results, clinical experience showed that tumors eventually develop resistance. On the other hand, earlier attempts of cancer immunotherapy failed to show consistent efficacy. More recently, a deeper knowledge of immunosuppression in the tumor microenvironment (TME) allowed the development of effective drugs: in particular, monoclonal antibodies targeting the so-called immune checkpoint molecules yielded striking and lasting effects in some tumors. Unfortunately, these monoclonal antibodies are not effective in a majority of patients and are ineffective in several solid malignancies. Furthermore, due to their mechanism of action, checkpoint inhibitors often elicit autoimmune-like disease. MAIN BODY The use of viruses as oncolytic agents (OVs) was considered in the past, while only recently OVs revealed a connection with immunotherapy. However, their antitumoral potential has remained largely unexplored, due to safety concerns and some limitations in the techniques to manipulate viruses. OV research was recently revived by a better knowledge of viral/cancer biology and advances in the methodologies to delete virulence/immune-escape related genes from even complex viral genomes or "to arm" OVs with appropriate transgenes. Recently, the first oncolytic virus, the HSV-1 based Talimogene Laherparepvec (T-VEC), was approved for the treatment of non-resectable melanoma in USA and Europe. CONCLUSION OVs have the potential to become powerful agents of cancer immune and gene therapy. Indeed, in addition to their selective killing activity, they can act as versatile gene expression platforms for the delivery of therapeutic genes. This is particularly true for viruses with a large DNA genome, that can be manipulated to address the multiple immunosuppressive features of the TME. This review will focus on the open issues, on the most promising lines of research in the OV field and, more in general, on how OVs could be improved to achieve real clinical breakthroughs in cancers that are usually difficult to treat by immunotherapy.
Collapse
Affiliation(s)
- Alberto Reale
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| | - Adriana Vitiello
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| | - Valeria Conciatori
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| |
Collapse
|
10
|
Clostridium difficile toxins induce VEGF-A and vascular permeability to promote disease pathogenesis. Nat Microbiol 2018; 4:269-279. [PMID: 30510170 DOI: 10.1038/s41564-018-0300-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 10/22/2018] [Indexed: 01/15/2023]
Abstract
Clostridium difficile infection (CDI) is mediated by two major exotoxins, toxin A (TcdA) and toxin B (TcdB), that damage the colonic epithelial barrier and induce inflammatory responses. The function of the colonic vascular barrier during CDI has been relatively understudied. Here we report increased colonic vascular permeability in CDI mice and elevated vascular endothelial growth factor A (VEGF-A), which was induced in vivo by infection with TcdA- and/or TcdB-producing C. difficile strains but not with a TcdA-TcdB- isogenic mutant. TcdA or TcdB also induced the expression of VEGF-A in human colonic mucosal biopsies. Hypoxia-inducible factor signalling appeared to mediate toxin-induced VEGF production in colonocytes, which can further stimulate human intestinal microvascular endothelial cells. Both neutralization of VEGF-A and inhibition of its signalling pathway attenuated CDI in vivo. Compared to healthy controls, CDI patients had significantly higher serum VEGF-A that subsequently decreased after treatment. Our findings indicate critical roles for toxin-induced VEGF-A and colonic vascular permeability in CDI pathogenesis and may also point to the pathophysiological significance of the gut vascular barrier in response to virulence factors of enteric pathogens. As an alternative to pathogen-targeted therapy, this study may enable new host-directed therapeutic approaches for severe, refractory CDI.
Collapse
|
11
|
Karau MJ, Tilahun ME, Krogman A, Osborne BA, Goldsby RA, David CS, Mandrekar JN, Patel R, Rajagopalan G. Passive therapy with humanized anti-staphylococcal enterotoxin B antibodies attenuates systemic inflammatory response and protects from lethal pneumonia caused by staphylococcal enterotoxin B-producing Staphylococcus aureus. Virulence 2017; 8:1148-1159. [PMID: 27925510 PMCID: PMC5711449 DOI: 10.1080/21505594.2016.1267894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Drugs such as linezolid that inhibit bacterial protein synthesis may be beneficial in treating infections caused by toxigenic Staphylococcus aureus. As protein synthesis inhibitors have no effect on preformed toxins, neutralization of pathogenic exotoxins with anti-toxin antibodies may be beneficial in conjunction with antibacterial therapy. Herein, we evaluated the efficacy of human-mouse chimeric high-affinity neutralizing anti-staphylococcal enterotoxin B (SEB) antibodies in the treatment of experimental pneumonia caused by SEB-producing S. aureus. Since HLA class II transgenic mice mount a stronger systemic immune response following challenge with SEB and are more susceptible to SEB-induced lethal toxic shock than conventional mice strains, HLA-DR3 transgenic mice were used. Lethal pneumonia caused by SEB-producing S. aureus in HLA-DR3 transgenic mice was characterized by robust T cell activation and elevated systemic levels of several pro-inflammatory cytokines and chemokines. Prophylactic administration of a single dose of linezolid 30 min prior to the onset of infection attenuated the systemic inflammatory response and protected from mortality whereas linezolid administered 60 min after the onset of infection failed to confer significant protection. Human-mouse chimeric high-affinity neutralizing anti-SEB antibodies alone, but not polyclonal human IgG, mitigated this response and protected from death when administered immediately after initiation of infection. Further, anti-SEB antibodies as well as intact polyclonal human IgG, but not its Fab or Fc fragments, protected from lethal pneumonia when followed with linezolid therapy 60 min later. In conclusion, neutralization of superantigens with high-affinity antibodies may have beneficial effects in pneumonia.
Collapse
Affiliation(s)
- Melissa J. Karau
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mulualem E. Tilahun
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Department of Biology, Amherst College, Amherst, MA, USA
| | - Ashton Krogman
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Barbara A. Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Chella S. David
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jayawant N. Mandrekar
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Govindarajan Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
12
|
Carter T, Mulholland P, Chester K. Antibody-targeted nanoparticles for cancer treatment. Immunotherapy 2017; 8:941-58. [PMID: 27381686 DOI: 10.2217/imt.16.11] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nanoparticles (NPs) are diverse and versatile with physical properties that can be employed for use in cancer medicine. Targeting NPs using antibodies and antibody fragments could overcome some of the limitations seen with current targeted therapies. This review will discuss the role of antibody-targeted NPs in the treatment of cancer: as delivery vehicles, targeted theranostic agents and in the evolving field of cancer hyperthermia.
Collapse
Affiliation(s)
- Thomas Carter
- UCL Cancer Institute, University College London, London, UK
| | - Paul Mulholland
- UCL Cancer Institute, University College London, London, UK.,University College London Hospitals NHS Foundation Trust, London, UK
| | - Kerry Chester
- UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
13
|
Zhao XY, Subramanyam B, Sarapa N, Golfier S, Dinter H. Novel Antibody Therapeutics Targeting Mesothelin In Solid Tumors. ACTA ACUST UNITED AC 2016; 3:76-86. [PMID: 27853672 PMCID: PMC5080863 DOI: 10.2174/2212697x03666160218215744] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/10/2016] [Accepted: 02/17/2016] [Indexed: 01/08/2023]
Abstract
ABSTRACT BACKGROUND Monoclonal antibodies have become attractive clinical anti-cancer drugs in the last 3 decades due to their targeting specificity and suitable pharmacokinetic properties. Mesothelin is a tumor-associated antigen with limited expression in normal tissues. It is frequently over-expressed on the cell membrane of a number of epithelial malignancies (e.g. mesothelioma, pancreatic, ovarian, lung, triple negative breast and gastric cancers). METHODS Mesothelin is validated as a suitable antibody target for cancer therapy. A number of novel antibody therapeutics targeting mesothelin in development are compared and their mechanisms of action are also discussed. Both basic science and clinical data are provided to give a complete veiw of how an agent is developed from bench to bedside. RESULTS Novel antibody therapeutics, including unconjugated monoclonal antibodies, recombinant immunotoxins and antibody-drug conjugates, targeting mesothelin exert anti-tumor activities by different mechanisms of action. Based on the convincing preclinical data generated with these molecules, the antibody therapeutics have been brought into early clinical evaluation where initial promising results were obtained. CONCLUSION These antibody therapeutics directed against mesothelin are expected to have different safety profiles, based on their different mechanism of action. Further clinical development will reveal which of these molecules shows the best efficacy and widest therapeutic window and thus is best suited to bring benefit to the patients.
Collapse
Affiliation(s)
- Xiao-Yan Zhao
- Bayer Pharmaceuticals, Biologics Research, San Francisco, CA,USA
| | - Babu Subramanyam
- Bayer Pharmaceuticals, Biologics Research, San Francisco, CA,USA
| | | | | | - Harald Dinter
- Bayer Pharmaceuticals, Biologics Research, San Francisco, CA,USA
| |
Collapse
|
14
|
Vago R, Collico V, Zuppone S, Prosperi D, Colombo M. Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacol Res 2016; 111:619-641. [PMID: 27436147 DOI: 10.1016/j.phrs.2016.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023]
Abstract
Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy.
Collapse
Affiliation(s)
- Riccardo Vago
- Università Vita-Salute San Raffaele, Milano, I-20132, Italy; Istituto di Ricerca Urologica, Divisione di Oncologia Sperimentale, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Veronica Collico
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Stefania Zuppone
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy; Istituto di Ricerca Urologica, Divisione di Oncologia Sperimentale, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Davide Prosperi
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Miriam Colombo
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
15
|
Suzuki M, Yamanoi A, Machino Y, Ootsubo M, Izawa KI, Kohroki J, Masuho Y. Effect of trastuzumab interchain disulfide bond cleavage on Fcγ receptor binding and antibody-dependent tumour cell phagocytosis. J Biochem 2015; 159:67-76. [PMID: 26254483 DOI: 10.1093/jb/mvv074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/25/2015] [Indexed: 01/08/2023] Open
Abstract
The Fc domain of human IgG1 binds to Fcγ receptors (FcγRs) to induce effector functions such as phagocytosis. There are four interchain disulfide bonds between the H and L chains. In this study, the disulfide bonds within the IgG1 trastuzumab (TRA), which is specific for HER2, were cleaved by mild S-sulfonation or by mild reduction followed by S-alkylation with three different reagents. The cleavage did not change the binding activities of TRA to HER2-bearing SK-BR-3 cells. The binding activities of TRA to FcγRIIA and FcγRIIB were greatly enhanced by modification with mild reduction and S-alkylation with ICH2CONH2 or N-(4-aminophenyl) maleimide, while the binding activities of TRA to FcγRI and FcγRIIIA were decreased by any of the four modifications. However, the interchain disulfide bond cleavage by the different modifications did not change the antibody-dependent cell-mediated phagocytosis (ADCP) of SK-BR-3 cells by activated THP-1 cells. The order of FcγR expression levels on the THP-1 cells was FcγRII > FcγRI > FcγRIII and ADCP was inhibited by blocking antibodies against FcγRI and FcγRII. These results imply that the effect of the interchain disulfide bond cleavage on FcγRs binding and ADCP is dependent on modifications of the cysteine residues and the FcγR isotypes.
Collapse
Affiliation(s)
- Mami Suzuki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan and Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Ayaka Yamanoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan and
| | - Yusuke Machino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan and
| | - Michiko Ootsubo
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan and
| | - Ken-ichi Izawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan and
| | - Junya Kohroki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan and
| | - Yasuhiko Masuho
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan and
| |
Collapse
|
16
|
Rajasekaran N, Chester C, Yonezawa A, Zhao X, Kohrt HE. Enhancement of antibody-dependent cell mediated cytotoxicity: a new era in cancer treatment. Immunotargets Ther 2015; 4:91-100. [PMID: 27471715 PMCID: PMC4918249 DOI: 10.2147/itt.s61292] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The therapeutic efficacy of some anti-tumor monoclonal antibodies (mAbs) depends on the capacity of the mAb to recognize the tumor-associated antigen and induce cytotoxicity via a network of immune effector cells. This process of antibody-dependent cell-mediated cytotoxicity (ADCC) against tumor cells is triggered by the interaction of the fragment crystallizable (Fc) portion of the mAb with the Fc receptors on effector cells like natural killer cells, macrophages, γδ T cells, and dendritic cells. By augmenting ADCC, the antitumor activity of mAbs can be significantly increased. Currently, identifying and developing therapeutic agents that enhance ADCC is a growing area of research. Combining existing tumor-targeting mAbs and ADCC-promoting agents that stimulate effector cells will translate to greater clinical responses. In this review, we discuss strategies for enhancing ADCC and emphasize the potential of combination treatments that include US Food and Drug Administration-approved mAbs and immunostimulatory therapeutics.
Collapse
Affiliation(s)
- Narendiran Rajasekaran
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Cariad Chester
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Atsushi Yonezawa
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Xing Zhao
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Tissue Engineering and Stem Cells Research Center, Department of Immunology, Guiyang Medical University, Guiyang, Guizhou Province, People’s Republic of China
| | - Holbrook E Kohrt
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Vela M, Aris M, Llorente M, Garcia-Sanz JA, Kremer L. Chemokine receptor-specific antibodies in cancer immunotherapy: achievements and challenges. Front Immunol 2015; 6:12. [PMID: 25688243 PMCID: PMC4311683 DOI: 10.3389/fimmu.2015.00012] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
The 1990s brought a burst of information regarding the structure, expression pattern, and role in leukocyte migration and adhesion of chemokines and their receptors. At that time, the FDA approved the first therapeutic antibodies for cancer treatment. A few years later, it was reported that the chemokine receptors CXCR4 and CCR7 were involved on directing metastases to liver, lung, bone marrow, or lymph nodes, and the over-expression of CCR4, CCR6, and CCR9 by certain tumors. The possibility of inhibiting the interaction of chemokine receptors present on the surface of tumor cells with their ligands emerged as a new therapeutic approach. Therefore, many research groups and companies began to develop small molecule antagonists and specific antibodies, aiming to neutralize signaling from these receptors. Despite great expectations, so far, only one anti-chemokine receptor antibody has been approved for its clinical use, mogamulizumab, an anti-CCR4 antibody, granted in Japan to treat refractory adult T-cell leukemia and lymphoma. Here, we review the main achievements obtained with anti-chemokine receptor antibodies for cancer immunotherapy, including discovery and clinical studies, proposed mechanisms of action, and therapeutic applications.
Collapse
Affiliation(s)
- Maria Vela
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| | - Mariana Aris
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Buenos Aires, Argentina
| | - Mercedes Llorente
- Protein Tools Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| | - Jose A. Garcia-Sanz
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain
| | - Leonor Kremer
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
- Protein Tools Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| |
Collapse
|
18
|
Markowitz J, Brooks TR, Duggan MC, Paul BK, Pan X, Wei L, Abrams Z, Luedke E, Lesinski GB, Mundy-Bosse B, Bekaii-Saab T, Carson WE. Patients with pancreatic adenocarcinoma exhibit elevated levels of myeloid-derived suppressor cells upon progression of disease. Cancer Immunol Immunother 2014; 64:149-59. [PMID: 25305035 DOI: 10.1007/s00262-014-1618-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 09/26/2014] [Indexed: 12/18/2022]
Abstract
Elevated levels of myeloid-derived suppressor cells (MDSCs) induced by tumor-derived factors are associated with inhibition of immune responses in patients with gastrointestinal malignancies. We hypothesized that pro-MDSC cytokines and levels of MDSC in the peripheral blood would be elevated in pancreatic adenocarcinoma patients with progressive disease. Peripheral blood mononuclear cells (PBMCs) were isolated from 16 pancreatic cancer patients undergoing chemotherapy and phenotyped for MDSC using a five antigen panel (CD33, HLA-DR, CD11b, CD14, CD15). Patients with stable disease had significantly lower MDSC levels in the peripheral blood than those with progressive disease (1.41 ± 1.12 vs. 5.14 ± 4.58 %, p = 0.013, Wilcoxon test). A cutoff of 2.5 % MDSC identified patients with progressive disease. Patients with ECOG performance status ≥2 had a weaker association with increased levels of MDSC. Plasma was obtained from 15 chemonaive patients, 13 patients undergoing chemotherapy and 9 normal donors. Increases in the levels of pro-MDSC cytokines were observed for pancreatic cancer patients versus controls, and the pro-MDSC cytokine IL-6 was increased in those patients undergoing chemotherapy. This study suggests that MDSC in peripheral blood may be a predictive biomarker of chemotherapy failure in pancreatic cancer patients.
Collapse
Affiliation(s)
- Joseph Markowitz
- Division of Medical Oncology, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|