1
|
Zhou Q, Gao X, Ma J, Zhao H, Gao D, Zhao H. Decoding the Tissue-Specific Profiles of Bioactive Compounds in Helvella leucopus Using Combined Transcriptomic and Metabolomic Approaches. J Fungi (Basel) 2025; 11:205. [PMID: 40137243 PMCID: PMC11943342 DOI: 10.3390/jof11030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Helvella leucopus, an endangered wild edible fungus, is renowned for its distinct health benefits and nutritional profile, with notable differences in the bioactive and nutritional properties between its cap and stipe. To investigate the molecular basis of these tissue-specific variations, we conducted integrative transcriptomic and metabolomic analyses. Metabolomic profiling showed that the cap is particularly rich in bioactive compounds, including sterols and alkaloids, while the stipe is abundant in essential nutrients, such as glycerophospholipids and amino acids. Transcriptomic analysis revealed a higher expression of genes involved in sterol biosynthesis (ERG1, ERG3, ERG6) and energy metabolism (PGK1, ENO1, PYK1) in the cap, suggesting a more active metabolic profile in this tissue. Pathway enrichment analysis highlighted tissue-specific metabolic pathways, including riboflavin metabolism, pantothenate and CoA biosynthesis, and terpenoid backbone biosynthesis, as key contributors to the unique functional properties of the cap and stipe. A detailed biosynthetic pathway network further illustrated how these pathways contribute to the production of crucial bioactive and nutritional compounds, such as sterols, alkaloids, linoleic acid derivatives, glycerophospholipids, and amino acids, in each tissue. These findings provide significant insights into the molecular mechanisms behind the health-promoting properties of the cap and the nutritional richness of the stipe, offering a theoretical foundation for utilizing H. leucopus in functional food development and broadening our understanding of bioactive and nutritional distribution in edible fungi.
Collapse
Affiliation(s)
- Qian Zhou
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, School of Life Sciences, Xinjiang Normal University, Urumqi 830054, China; (Q.Z.); (H.Z.)
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geography Sciences, Kashi University, Kashi 844000, China; (X.G.); (J.M.)
| | - Xusheng Gao
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geography Sciences, Kashi University, Kashi 844000, China; (X.G.); (J.M.)
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junxia Ma
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geography Sciences, Kashi University, Kashi 844000, China; (X.G.); (J.M.)
| | - Haoran Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, School of Life Sciences, Xinjiang Normal University, Urumqi 830054, China; (Q.Z.); (H.Z.)
| | - Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huixin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, School of Life Sciences, Xinjiang Normal University, Urumqi 830054, China; (Q.Z.); (H.Z.)
| |
Collapse
|
2
|
Wimalasena MK, Wijayawardene NN, Bamunuarachchige TC, Zhang GQ, Udeni Jayalal RG, Bhat DJ, Dawoud TM, de Zoysa HKS, Dai DQ. Ectophoma salviniae sp. nov., Neottiosporina mihintaleensis sp. nov. and four other endophytes associated with aquatic plants from Sri Lanka and their extracellular enzymatic potential. Front Cell Infect Microbiol 2025; 14:1475114. [PMID: 39844839 PMCID: PMC11750795 DOI: 10.3389/fcimb.2024.1475114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 01/24/2025] Open
Abstract
Endophytic fungi associated with selected aquatic plants, Eichhornia crassipes, Nymphaea nouchali, Salvinia minima and S. molesta were evaluated. Ectophoma salviniae sp. nov. and Neottiosporina mihintaleensis sp. nov. are introduced as novel taxa from Salvinia spp. from Sri Lanka. Chaetomella raphigera is reported as a new geographical record, Colletotrichum siamense and C. truncatum are reported as novel host records in aquatic plants, while Phyllosticta capitalensis has been identified on the same host (Nymphaea nouchali) in the North-Central Province of Sri Lanka. Identification of the fungi was based on morphological characteristics and multi-locus phylogenetic analyses using ITS, LSU, SSU, ACT, CHS-1, GAPDH, tub2, rpb2, and tef1-α molecular markers. The identified fungi were analysed for extracellular enzymatic properties. According to the qualitative analysis, Ectophoma salviniae sp. nov. exhibited the highest amylase production, Chaetomella raphigera exhibited the highest cellulase enzyme production, and Neottiosporina mihintaleensis sp. nov. exhibited the highest laccase production. The results demonstrate the aquatic fungal diversity in this region and their extracellular enzymatic potentials, providing valuable insights for future biotechnological approaches.
Collapse
Affiliation(s)
- Madhara K. Wimalasena
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan, China
- Faculty of Graduate Studies, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan, China
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
- Tropical Microbiology Research Foundation, Colombo, Sri Lanka
| | - Thushara C. Bamunuarachchige
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - Gui-Qing Zhang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan, China
| | - R. G. Udeni Jayalal
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - Darbhe J. Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Vishnugupta Vishwavidyapeetam, Gokarna, India
| | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Heethaka K. S. de Zoysa
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan, China
| |
Collapse
|
3
|
Wacira TN, Makonde HM, Bosire CM, Kibiti CM. Molecular Characterization and Antibacterial Potential of Endophytic Fungal Isolates from Selected Mangroves along the Coastline of Kenya. Int J Microbiol 2024; 2024:1261721. [PMID: 39280854 PMCID: PMC11398959 DOI: 10.1155/2024/1261721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
The increasing emergence and re-emergence of resistant pathogenic microbes causes a health threat to the human population. Scientists have been striving to find novel bioactive compounds and drugs to overcome these obstacles. This study aimed to characterize mangrove endophytic fungi and evaluate their antibacterial activity. Heritiera littoralis, Rhizophora mucronata, Bruguiera gymnorrhiza, Avicennia marina, and Xylocarpus granatum species were collected from Tudor Creek, Mida Creek, and Gazi Bay. A total of 30 fungal isolates were subjected to molecular identification based on analysis of their ITS gene region. The isolates in the inferred phylogenetic trees were affiliated with the genus Aspergillus. Ethyl acetate and butanol crude extracts of 38.2% of the 76 isolated fungal endophytes and eight mycelia samples were screened for antibacterial activity against Staphylococcus aureus (ATCC 27853), Escherichia coli (ATCC 25922), and Pseudomonas aeruginosa (ATCC 25923) using the disc diffusion method. A. marina and R. mucronata harbored the most fungal endophytes that showed the highest antibacterial activity. Seven fungal broth extracts exhibited higher antibacterial activities against the tested microorganisms than the positive control. The minimum inhibitory concentration (MIC) activity for the isolates demonstrated that the ethyl acetate extract of a root endophytic fungal isolate (RC6) (3.31 ± 0.01) of A. marina is a strong inhibitor since it showed significantly lower MIC activity compared to the positive control (3.84 ± 0.00) against Pseudomonas aeruginosa (P < 0.05). Therefore, this study confirms that mangrove species harbor fungal isolates that have antibacterial activity and hence could serve as a novel source of antibiotics. It is recommended that the pure compounds from these extracts be isolated for further bioactivity tests and structural elucidation for consideration as lead molecules in drug discovery. In addition, the genes responsible for the enhanced bioactivity in these isolates can be characterized and bioengineered for pharmaceutical application.
Collapse
Affiliation(s)
- Teresia Nyambura Wacira
- Department of Pure and Applied Sciences Technical University of Mombasa P.O. Box 90420-80100, Mombasa, Kenya
- Kenya Marine and Fisheries Research Institute P.O. Box 1881-40100, Kisumu, Kenya
| | - Huxley Mae Makonde
- Department of Pure and Applied Sciences Technical University of Mombasa P.O. Box 90420-80100, Mombasa, Kenya
| | - Carren Moraa Bosire
- Department of Pure and Applied Sciences Technical University of Mombasa P.O. Box 90420-80100, Mombasa, Kenya
| | - Cromwell Mwiti Kibiti
- Department of Pure and Applied Sciences Technical University of Mombasa P.O. Box 90420-80100, Mombasa, Kenya
| |
Collapse
|
4
|
Núñez-García IC, Martínez-Ávila GCG, González-Herrera SM, Tafolla-Arellano JC, Rutiaga-Quiñones OM. Bioprospecting of endophytic fungi from semidesert candelilla (Euphorbia antisyphilitica Zucc): Potential for extracellular enzyme production. J Basic Microbiol 2024; 64:e2400049. [PMID: 38715338 DOI: 10.1002/jobm.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 07/04/2024]
Abstract
Endophytic microbial communities colonize plants growing under various abiotic stress conditions. Candelilla (Euphorbia antisyphilitica Zucc.) is a shrub that develops functionally in arid and semi-arid zones of Mexico; these conditions generate an association between the plant and the microorganisms, contributing to the production of enzymes as a defense mechanism for resistance to abiotic stress. The objective of this research was to isolate and identify endophyte fungi of candelilla and bioprospection of these endophytic fungi for enzyme production using candelilla by-products. Fungi were isolated and identified using ITS1/ITS4 sequencing. Their potency index (PI) was evaluated in producing endoglucanase, xylanase, amylase, and laccase. Fermentation was carried out at 30°C for 8 days at 200 rpm, with measurements every 2 days, using candelilla by-products as substrate. All fungi exhibited higher cellulase, amylase, and laccase activities on the 2nd, 6th, and 8th day of fermentation, respectively, of fermentation. The fungus Aspergillus niger ITD-IN4.1 showed the highest amylase activity (246.84 U/mg), the genus Neurospora showed the highest cellulase activity, reaching up to 13.45 FPU/mg, and the strain Neurospora sp. ITD-IN5.2 showed the highest laccase activity (3.46 U/mg). This work provides the first report on the endophytic diversity of E. antisyphilitica and its potential role in enzyme production.
Collapse
Affiliation(s)
- Itzel C Núñez-García
- Tecnológico Nacional de México/I.T.Durango. Laboratorio Nacional CONAHCYT-LaNAEPBi, Unidad de Servicio Tecnológico Nacional de México/I.T.Durango. Depto. de Ing. Química-Bioquímica, Durango, Dgo, Mexico
| | | | - Silvia M González-Herrera
- Tecnológico Nacional de México/I.T.Durango. Laboratorio Nacional CONAHCYT-LaNAEPBi, Unidad de Servicio Tecnológico Nacional de México/I.T.Durango. Depto. de Ing. Química-Bioquímica, Durango, Dgo, Mexico
| | - Julio C Tafolla-Arellano
- Laboratorio de Biotecnología y Biología Molecular. Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, Mexico
| | - O Miriam Rutiaga-Quiñones
- Tecnológico Nacional de México/I.T.Durango. Laboratorio Nacional CONAHCYT-LaNAEPBi, Unidad de Servicio Tecnológico Nacional de México/I.T.Durango. Depto. de Ing. Química-Bioquímica, Durango, Dgo, Mexico
| |
Collapse
|
5
|
Muhammad M, Basit A, Ali K, Ahmad H, Li WJ, Khan A, Mohamed HI. A review on endophytic fungi: a potent reservoir of bioactive metabolites with special emphasis on blight disease management. Arch Microbiol 2024; 206:129. [PMID: 38416214 DOI: 10.1007/s00203-023-03828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/30/2023] [Indexed: 02/29/2024]
Abstract
Phytopathogenic microorganisms have caused blight diseases that present significant challenges to global agriculture. These diseases result in substantial crop losses and have a significant economic impact. Due to the limitations of conventional chemical treatments in effectively and sustainably managing these diseases, there is an increasing interest in exploring alternative and environmentally friendly approaches for disease control. Using endophytic fungi as biocontrol agents has become a promising strategy in recent years. Endophytic fungi live inside plant tissues, forming mutually beneficial relationships, and have been discovered to produce a wide range of bioactive metabolites. These metabolites demonstrate significant potential for fighting blight diseases and provide a plentiful source of new biopesticides. In this review, we delve into the potential of endophytic fungi as a means of biocontrol against blight diseases. We specifically highlight their significance as a source of biologically active compounds. The review explores different mechanisms used by endophytic fungi to suppress phytopathogens. These mechanisms include competing for nutrients, producing antifungal compounds, and triggering plant defense responses. Furthermore, this review discusses the challenges of using endophytic fungi as biocontrol agents in commercial applications. It emphasizes the importance of conducting thorough research to enhance their effectiveness and stability in real-world environments. Therefore, bioactive metabolites from endophytic fungi have considerable potential for sustainable and eco-friendly blight disease control. Additional research on endophytes and their metabolites will promote biotechnology solutions.
Collapse
Affiliation(s)
- Murad Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Abdul Basit
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Korea
| | - Kashif Ali
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Haris Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ayesha Khan
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
6
|
Gruppuso L, Receveur JP, Fenoglio S, Bona F, Benbow ME. Hidden Decomposers: the Role of Bacteria and Fungi in Recently Intermittent Alpine Streams Heterotrophic Pathways. MICROBIAL ECOLOGY 2023; 86:1499-1512. [PMID: 36646914 PMCID: PMC10497695 DOI: 10.1007/s00248-023-02169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The frequency of flow intermittency and drying events in Alpine rivers is expected to increase due to climate change. These events can have significant consequences for stream ecological communities, though the effects of reduced flow conditions on microbial communities of decomposing allochthonous leaf material require additional research. In this study, we investigated the bacterial and fungal communities associated with the decomposition of two common species of leaf litter, chestnut (Castanea sativa), and oak (Quercus robur). A sampling of experimentally placed leaf bags occurred over six collection dates (up to 126 days after placement) at seven stream sites in the Western Italian Alps with historically different flow conditions. Leaf-associated bacterial and fungal communities were identified using amplicon-based, high-throughput sequencing. Chestnut and oak leaf material harbored distinct bacterial and fungal communities, with a number of taxonomic groups differing in abundance, though bacterial community structure converged later in decomposition. Historical flow conditions (intermittent vs perennial rivers) and observed conditions (normal flow, low flow, ongoing drying event) had weaker effects on bacterial and fungal communities compared to leaf type and collection date (i.e., length of decomposition). Our findings highlight the importance of leaf characteristics (e.g., C:N ratios, recalcitrance) to the in-stream conditioning of leaf litter and a need for additional investigations of drying events in Alpine streams. This study provides new information on the microbial role in leaf litter decomposition with expected flow changes associated with a global change scenario.
Collapse
Affiliation(s)
- L Gruppuso
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy.
- Centro per lo Studio dei Fiumi Alpini (ALPSTREAM - Alpine Stream Research Center), Ostana, (CN), Italy.
| | - J P Receveur
- Institute for Genome Sciences, University of Maryland, Baltimore, MD, USA
| | - S Fenoglio
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
- Centro per lo Studio dei Fiumi Alpini (ALPSTREAM - Alpine Stream Research Center), Ostana, (CN), Italy
| | - F Bona
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
- Centro per lo Studio dei Fiumi Alpini (ALPSTREAM - Alpine Stream Research Center), Ostana, (CN), Italy
| | - M E Benbow
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Singh VK, Kumar A. Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. Symbiosis 2023; 90:1-15. [PMID: 37360552 PMCID: PMC10249938 DOI: 10.1007/s13199-023-00925-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
The synthesis of secondary metabolites is a constantly functioning metabolic pathway in all living systems. Secondary metabolites can be broken down into numerous classes, including alkaloids, coumarins, flavonoids, lignans, saponins, terpenes, quinones, xanthones, and others. However, animals lack the routes of synthesis of these compounds, while plants, fungi, and bacteria all synthesize them. The primary function of bioactive metabolites (BM) synthesized from endophytic fungi (EF) is to make the host plants resistant to pathogens. EF is a group of fungal communities that colonize host tissues' intracellular or intercellular spaces. EF serves as a storehouse of the above-mentioned bioactive metabolites, providing beneficial effects to their hosts. BM of EF could be promising candidates for anti-cancer, anti-malarial, anti-tuberculosis, antiviral, anti-inflammatory, etc. because EF is regarded as an unexploited and untapped source of novel BM for effective drug candidates. Due to the emergence of drug resistance, there is an urgent need to search for new bioactive compounds that combat resistance. This article summarizes the production of BM from EF, high throughput methods for analysis, and their pharmaceutical application. The emphasis is on the diversity of metabolic products from EF, yield, method of purification/characterization, and various functions/activities of EF. Discussed information led to the development of new drugs and food additives that were more effective in the treatment of disease. This review shed light on the pharmacological potential of the fungal bioactive metabolites and emphasizes to exploit them in the future for therapeutic purposes.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| |
Collapse
|
8
|
Arun Renganathan R, Hema M, Karthik C, Lokanath N, Ravishankar Rai V. Extraction of itaconic acid by endophytic Aspergillus sp., isolated from Garcinia indica: Spectroscopic, structural and quantum computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Raghav D, Jyoti A, Siddiqui AJ, Saxena J. Plant associated endophytic fungi as potential bio-factories for extracellular enzymes: Progress, Challenges and Strain improvement with precision approaches. J Appl Microbiol 2022; 133:287-310. [PMID: 35396804 DOI: 10.1111/jam.15574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/04/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
There is an intricate network of relations between endophytic fungi and their hosts that affects the production of various bioactive compounds. Plant-associated endophytic contain industrially important enzymes and have the potential to fulfill their rapid demand in the international market to boost business in technology. Being safe and metabolically active, they have replaced the usage of toxic and harmful chemicals and hold a credible application in biotransformation, bioremediation, and industrial processes. Despite these, there are limited reports on fungal endophytes that can directly cater to the demand and supply of industrially stable enzymes. The underlying reasons include low endogenous production and secretion of enzymes from fungal endophytes which have raised concern for widely accepted applications. Hence it is imperative to augment the biosynthetic and secretory potential of fungal endophytes. Modern state-of-the-art biotechnological technologies aiming at strain improvement using cell factory engineering as well as precise gene editing like Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its Associated proteins (Cas) systems which can provide a boost in fungal endophyte enzyme production. Additionally, it is vital to characterize optimum conditions to grow one strain with multiple enzymes (OSME). The present review encompasses various plants-derived endophytic fungal enzymes and their applications in various sectors. Further, we postulate the feasibility of new precision approaches with an aim for strain improvement and enhanced enzyme production.
Collapse
Affiliation(s)
- Divyangi Raghav
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Anupam Jyoti
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India.,Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, SAS, Nagar, Punjab
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P O Box, Saudi Arabia
| | - Juhi Saxena
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India.,Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, SAS, Nagar, Punjab
| |
Collapse
|
10
|
Fall AF, Nakabonge G, Ssekandi J, Founoune-Mboup H, Apori SO, Ndiaye A, Badji A, Ngom K. Roles of Arbuscular Mycorrhizal Fungi on Soil Fertility: Contribution in the Improvement of Physical, Chemical, and Biological Properties of the Soil. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:723892. [PMID: 37746193 PMCID: PMC10512336 DOI: 10.3389/ffunb.2022.723892] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/19/2022] [Indexed: 09/26/2023]
Abstract
Many of the world's soils are experiencing degradation at an alarming rate. Climate change and some agricultural management practices, such as tillage and excessive use of chemicals, have all contributed to the degradation of soil fertility. Arbuscular Mycorrhizal Fungi (AMFs) contribute to the improvement of soil fertility. Here, a short review focusing on the role of AMF in improving soil fertility is presented. The aim of this review was to explore the role of AMF in improving the chemical, physical, and biological properties of the soil. We highlight some beneficial effects of AMF on soil carbon sequestration, nutrient contents, microbial activities, and soil structure. AMF has a positive impact on the soil by producing organic acids and glomalin, which protect from soil erosion, chelate heavy metals, improve carbon sequestration, and stabilize soil macro-aggregation. AMF also recruits bacteria that produce alkaline phosphatase, a mineralization soil enzyme associated with organic phosphorus availability. Moreover, AMFs influence the composition, diversity, and activity of microbial communities in the soil through mechanisms of antagonism or cooperation. All of these AMF activities contribute to improve soil fertility. Knowledge gaps are identified and discussed in the context of future research in this review. This will help us better understand AMF, stimulate further research, and help in sustaining the soil fertility.
Collapse
Affiliation(s)
- Abdoulaye Fofana Fall
- African Center of Excellence in Agroecology and Livelihood Systems, Faculty of Agriculture, Uganda Martyrs University, Nkozi, Uganda
- Fungi Biotechnology Laboratory, Plant Biology Department, Cheikh Anta Diop University of Dakar (UCAD), Dakar, Senegal
| | - Grace Nakabonge
- College of Agriculture and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Joseph Ssekandi
- African Center of Excellence in Agroecology and Livelihood Systems, Faculty of Agriculture, Uganda Martyrs University, Nkozi, Uganda
| | - Hassna Founoune-Mboup
- ISRA_LNRPV, Laboratoire National de Recherches sur les Productions Végétales (LNRPV), Dakar, Senegal
| | - Samuel Obeng Apori
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Abibatou Ndiaye
- African Center of Excellence in Agroecology and Livelihood Systems, Faculty of Agriculture, Uganda Martyrs University, Nkozi, Uganda
| | - Arfang Badji
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Khady Ngom
- African Center of Excellence in Agroecology and Livelihood Systems, Faculty of Agriculture, Uganda Martyrs University, Nkozi, Uganda
| |
Collapse
|
11
|
Endophytic fungal communities and their biotechnological implications for agro-environmental sustainability. Folia Microbiol (Praha) 2022; 67:203-232. [PMID: 35122218 DOI: 10.1007/s12223-021-00939-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023]
Abstract
Endophytic fungal communities have attracted a great attention to chemists, ecologists, and microbiologists as a treasure trove of biological resource. Endophytic fungi play incredible roles in the ecosystem including abiotic and biotic stress tolerance, eco-adaptation, enhancing growth and development, and maintaining the health of their host. In recent times, endophytic fungi have drawn a special focus owing to their indispensable diversity, unique distribution, and unparalleled metabolic pathways. The endophytic fungal communities belong to three phyla, namely Mucoromycota, Basidiomycota, and Ascomycota with seven predominant classes Agaricomycetes, Dothideomycetes, Eurotiomycetes, Mortierellomycotina, Mucoromycotina, Saccharomycetes, and Sordariomycetes. In a review of a huge number of research finding, it was found that endophytic fungal communities of genera Aspergillus, Chaetomium, Fusarium, Gaeumannomyces, Metarhizium, Microsphaeropsis, Paecilomyces, Penicillium, Piriformospora, Talaromyces, Trichoderma, Verticillium, and Xylaria have been sorted out and well characterized for diverse biotechnological applications for future development. Furthermore, these communities are remarkable source of novel bioactive compounds with amazing biological activity for use in agriculture, food, and pharmaceutical industry. Endophytes are endowed with a broad range of structurally unique bioactive natural products, including alkaloids, benzopyranones, chinones, flavonoids, phenolic acids, and quinines. Subsequently, there is still an excellent opportunity to explore novel compounds from endophytic fungi among numerous plants inhabiting different niches. Furthermore, high-throughput sequencing could be a tool to study interaction between plants and endophytic fungi which may provide further opportunities to reveal unknown functions of endophytic fungal communities. The present review deals with the biodiversity of endophytic fungal communities and their biotechnological implications for agro-environmental sustainability.
Collapse
|
12
|
Potentials of Endophytic Fungi in the Biosynthesis of Versatile Secondary Metabolites and Enzymes. FORESTS 2021. [DOI: 10.3390/f12121784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
World population growth and modernization have engendered multiple environmental problems: the propagation of humans and crop diseases and the development of multi-drug-resistant fungi, bacteria and viruses. Thus, a considerable shift towards eco-friendly products has been seen in medicine, pharmacy, agriculture and several other vital sectors. Nowadays, studies on endophytic fungi and their biotechnological potentials are in high demand due to their substantial, cost-effective and eco-friendly contributions in the discovery of an array of secondary metabolites. For this review, we provide a brief overview of plant–endophytic fungi interactions and we also state the history of the discovery of the untapped potentialities of fungal secondary metabolites. Then, we highlight the huge importance of the discovered metabolites and their versatile applications in several vital fields including medicine, pharmacy, agriculture, industry and bioremediation. We then focus on the challenges and on the possible methods and techniques that can be used to help in the discovery of novel secondary metabolites. The latter range from endophytic selection and culture media optimization to more in-depth strategies such as omics, ribosome engineering and epigenetic remodeling.
Collapse
|
13
|
Perkins AK, Rose AL, Grossart HP, Rojas-Jimenez K, Barroso Prescott SK, Oakes JM. Oxic and Anoxic Organic Polymer Degradation Potential of Endophytic Fungi From the Marine Macroalga, Ecklonia radiata. Front Microbiol 2021; 12:726138. [PMID: 34733248 PMCID: PMC8558676 DOI: 10.3389/fmicb.2021.726138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Cellulose and chitin are the most abundant polymeric, organic carbon source globally. Thus, microbes degrading these polymers significantly influence global carbon cycling and greenhouse gas production. Fungi are recognized as important for cellulose decomposition in terrestrial environments, but are far less studied in marine environments, where bacterial organic matter degradation pathways tend to receive more attention. In this study, we investigated the potential of fungi to degrade kelp detritus, which is a major source of cellulose in marine systems. Given that kelp detritus can be transported considerable distances in the marine environment, we were specifically interested in the capability of endophytic fungi, which are transported with detritus, to ultimately contribute to kelp detritus degradation. We isolated 10 species and two strains of endophytic fungi from the kelp Ecklonia radiata. We then used a dye decolorization assay to assess their ability to degrade organic polymers (lignin, cellulose, and hemicellulose) under both oxic and anoxic conditions and compared their degradation ability with common terrestrial fungi. Under oxic conditions, there was evidence that Ascomycota isolates produced cellulose-degrading extracellular enzymes (associated with manganese peroxidase and sulfur-containing lignin peroxidase), while Mucoromycota isolates appeared to produce both lignin and cellulose-degrading extracellular enzymes, and all Basidiomycota isolates produced lignin-degrading enzymes (associated with laccase and lignin peroxidase). Under anoxic conditions, only three kelp endophytes degraded cellulose. We concluded that kelp fungal endophytes can contribute to cellulose degradation in both oxic and anoxic environments. Thus, endophytic kelp fungi may play a significant role in marine carbon cycling via polymeric organic matter degradation.
Collapse
Affiliation(s)
- Anita K. Perkins
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
- Southern Cross Geoscience, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Andrew L. Rose
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
- Southern Cross Geoscience, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Hans-Peter Grossart
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Experimental Limnology, Berlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Selva K. Barroso Prescott
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Joanne M. Oakes
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
14
|
Choudhary M, Gupta S, Dhar MK, Kaul S. Endophytic Fungi-Mediated Biocatalysis and Biotransformations Paving the Way Toward Green Chemistry. Front Bioeng Biotechnol 2021; 9:664705. [PMID: 34222213 PMCID: PMC8242341 DOI: 10.3389/fbioe.2021.664705] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Catalysis is a process carried out in the presence of a heterogenous catalyst for accelerating the rate of a chemical reaction. It plays a pivotal role in transition from take, make, and dispose technology to sustainable technology via chemo- and biocatalytic processes. However, chemocatalyzed reactions are usually associated with copious amounts of perilous/hazardous environmental footprints. Therefore, whole-cell biotransformations or enzyme cocktails serve as cleaner biocatalytic alternatives in replacing the classical chemical procedures. These benchmark bioconversion reactions serve as important key technology in achieving the goals of green chemistry by eliminating waste generation at source. For this, nature has always been a driving force in fuelling natural product discovery and related applications. The fungal endophytic community, in particular, has undergone co-evolution with their host plant and has emerged as a powerful tool of genetic diversity. They can serve as a treasure trove of biocatalysts, catalyzing organic transformations of a wide range of substances into enantiopure compounds with biotechnological relevance. Additionally, the biocatalytic potential of endophytic fungi as whole-intact organisms/isolated enzyme systems has been greatly expanded beyond the existing boundaries with the advancement in high-throughput screening, molecular biology techniques, metabolic engineering, and protein engineering. Therefore, the present review illustrates the promising applications of endophytic fungi as biocatalysts for the synthesis of new structural analogs and pharmaceutical intermediates and refinement of existing proteins for novel chemistries.
Collapse
Affiliation(s)
| | - Suruchi Gupta
- School of Biotechnology, University of Jammu, Jammu, India
| | - Manoj K Dhar
- School of Biotechnology, University of Jammu, Jammu, India
| | - Sanjana Kaul
- School of Biotechnology, University of Jammu, Jammu, India
| |
Collapse
|
15
|
Fungal Endophytes from Orchidaceae: Diversity and Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Environmental and Industrial Perspective of Beneficial Fungal Communities: Current Research and Future Challenges. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Rudgers JA, Afkhami ME, Bell-Dereske L, Chung YA, Crawford KM, Kivlin SN, Mann MA, Nuñez MA. Climate Disruption of Plant-Microbe Interactions. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-090819] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interactions between plants and microbes have important influences on evolutionary processes, population dynamics, community structure, and ecosystem function. We review the literature to document how climate change may disrupt these ecological interactions and develop a conceptual framework to integrate the pathways of plant-microbe responses to climate over different scales in space and time. We then create a blueprint to aid generalization that categorizes climate effects into changes in the context dependency of plant-microbe pairs, temporal mismatches and altered feedbacks over time, or spatial mismatches that accompany species range shifts. We pair a new graphical model of how plant-microbe interactions influence resistance to climate change with a statistical approach to predictthe consequences of increasing variability in climate. Finally, we suggest pathways through which plant-microbe interactions can affect resilience during recovery from climate disruption. Throughout, we take a forward-looking perspective, highlighting knowledge gaps and directions for future research.
Collapse
Affiliation(s)
- Jennifer A. Rudgers
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA;,
| | - Michelle E. Afkhami
- Department of Biology, University of Miami, Coral Gables, Florida 33157, USA
| | - Lukas Bell-Dereske
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, USA
| | - Y. Anny Chung
- Departments of Plant Biology and Plant Pathology, University of Georgia, Athens, Georgia 30602, USA
| | - Kerri M. Crawford
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Stephanie N. Kivlin
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Michael A. Mann
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA;,
| | - Martin A. Nuñez
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente, CONICET/Universidad Nacional del Comahue, Bariloche 8400, Argentina
| |
Collapse
|
18
|
Nouh FAA, Abo Nahas HH, Abdel-Azeem AM. Agriculturally Important Fungi: Plant–Microbe Association for Mutual Benefits. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
El Mansy SM, Nouh FAA, Mousa MK, Abdel-Azeem AM. Endophytic Fungi: Diversity, Abundance, and Plant Growth-Promoting Attributes. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Identification of Novel Endophytic Yeast Strains from Tangerine Peel. Curr Microbiol 2019; 76:1066-1072. [DOI: 10.1007/s00284-019-01721-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/19/2019] [Indexed: 01/14/2023]
|