1
|
Huang L, Liu X, Wang Q, Chen W, Fu W, Guo Y. RALF proteins-a monitoring hub for regulating salinity tolerance in plants. FRONTIERS IN PLANT SCIENCE 2025; 15:1365133. [PMID: 39830941 PMCID: PMC11738622 DOI: 10.3389/fpls.2024.1365133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/31/2024] [Indexed: 01/22/2025]
Affiliation(s)
- Liping Huang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Qianqian Wang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wen Chen
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wenxuan Fu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Yongjun Guo
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
- Foshan ZhiBao Ecological Technology Co. Ltd, Foshan, Guangdong, China
| |
Collapse
|
2
|
Zhu X, Duan H, Zhang N, Majeed Y, Jin H, Li W, Chen Z, Chen S, Tang J, Zhang Y, Si H. Genome-Wide Identification of GATA Family Genes in Potato and Characterization of StGATA12 in Response to Salinity and Osmotic Stress. Int J Mol Sci 2024; 25:12423. [PMID: 39596486 PMCID: PMC11594768 DOI: 10.3390/ijms252212423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
GATA factors are evolutionarily conserved transcription regulators that are implicated in the regulation of physiological changes under abiotic stress. Unfortunately, there are few studies investigating the potential role of GATA genes in potato plants responding to salt and osmotic stresses. The physicochemical properties, chromosomal distribution, gene duplication, evolutionary relationships and classification, conserved motifs, gene structure, interspecific collinearity relationship, and cis-regulatory elements were analyzed. Potato plants were treated with NaCl and PEG to induce salinity and osmotic stress responses. qRT-PCR was carried out to characterize the expression pattern of StGATA family genes in potato plants subjected to salinity and osmotic stress. StGATA12 loss-of-function and gain-of-function plants were established. Morphological phenotypes and growth were indicated. Photosynthetic gas exchange was suggested by the net photosynthetic rate, transpiration rate, and stomatal conductance. Physiological indicators and the corresponding genes were indicated by enzyme activity and mRNA expression of genes encoding CAT, SOD, POD, and P5CS, and contents of H2O2, MDA, and proline. The expression patterns of StGATA family genes were altered in response to salinity and osmotic stress. StGATA12 protein is located in the nucleus. StGATA12 is involved in the regulation of potato plant growth in response to salinity and osmotic stress. Overexpression of StGATA12 promoted photosynthesis, transpiration, and stomatal conductance under salinity and osmotic stress. StGATA12 overexpression induced biochemical responses of potato plants to salinity and osmotic stress by regulating the levels of H2O2, MDA, and proline and the activity of CAT, SOD, and POD. StGATA12 overexpression induced the up-regulation of StCAT, StSOD, StPOD, and StP5CS against salinity and osmotic stress. StGATA12 could reinforce the ability of potato plants to resist salinity and osmosis-induced damages, which may provide an effective strategy to engineer potato plants for better adaptability to adverse salinity and osmotic conditions.
Collapse
Affiliation(s)
- Xi Zhu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (X.Z.); (H.D.); (H.J.); (W.L.); (Z.C.); (S.C.); (J.T.)
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Huimin Duan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (X.Z.); (H.D.); (H.J.); (W.L.); (Z.C.); (S.C.); (J.T.)
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (N.Z.); (Y.M.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yasir Majeed
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (N.Z.); (Y.M.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Hui Jin
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (X.Z.); (H.D.); (H.J.); (W.L.); (Z.C.); (S.C.); (J.T.)
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Wei Li
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (X.Z.); (H.D.); (H.J.); (W.L.); (Z.C.); (S.C.); (J.T.)
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Zhuo Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (X.Z.); (H.D.); (H.J.); (W.L.); (Z.C.); (S.C.); (J.T.)
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Shu Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (X.Z.); (H.D.); (H.J.); (W.L.); (Z.C.); (S.C.); (J.T.)
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Jinghua Tang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (X.Z.); (H.D.); (H.J.); (W.L.); (Z.C.); (S.C.); (J.T.)
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Yu Zhang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (X.Z.); (H.D.); (H.J.); (W.L.); (Z.C.); (S.C.); (J.T.)
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (N.Z.); (Y.M.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Ali AM, Salem HM. Salinity-induced desertification in oasis ecosystems: challenges and future directions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:696. [PMID: 38963444 DOI: 10.1007/s10661-024-12804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
Salinity-induced desertification is a pressing environmental issue that poses a significant threat to the sustainability of oasis ecosystems worldwide. These ecosystems are vital to the livelihoods of millions of people living in hyper-arid, arid and semi-arid regions, providing essential resources such as food, water and other necessities. However, overexploitation of natural resources, changes in land use and climate change have led to the degradation of these ecosystems, resulting in soil salinisation, waterlogging and other adverse effects. Combating salinity-induced desertification requires a comprehensive approach that addresses both the underlying causes of ecosystem degradation and the direct consequences for local communities. The strategy may include measures for sustainable land use, reforestation and water conservation. It is also essential to involve local communities in these activities and to ensure that their perspectives are heard. The aim of this article is to examine the causes and processes of salinity-induced desertification in oasis ecosystems and the implications for their sustainability. It also examines strategies that are being used to prevent desertification and promote sustainable oasis management. This article aims to raise awareness of this critical issue and to promote action towards a more sustainable future.
Collapse
Affiliation(s)
- Ali M Ali
- Department of Soil Fertility and Microbiology, Desert Research Center, Cairo, Egypt.
| | - Haytham M Salem
- Department of Soil and Water Systems, Twin Falls Research and Extension Center, University of Idaho, P.O. Box 1827, Twin Falls, ID, 83303, USA
- Department of Soil and Water Conservation, Desert Research Center, Cairo, 11753, Egypt
| |
Collapse
|
4
|
Khan MM, Rahman MM, Hasan MM, Amin MF, Matin MQI, Faruq G, Alkeridis LA, Gaber A, Hossain A. Assessment of the salt tolerance of diverse bread wheat ( Triticum aestivum L.) genotypes during the early growth stage under hydroponic culture conditions. Heliyon 2024; 10:e29042. [PMID: 38601562 PMCID: PMC11004879 DOI: 10.1016/j.heliyon.2024.e29042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Objectives Soil salinity affects the growth of crop plants, leading to reduced productivity, and is a major challenge for wheat production worldwide. Various adaptations and mitigation approaches in combination with tolerant wheat genotypes can be useful for the sustainability of crop production in saline environments. However, the development of salt-tolerant wheat genotypes is one of the best and most efficient solutions for obtaining desirable yields. Considering these issues, an investigation was carried out under hydroponic nutrient culture conditions to assess the genetic variability and selection of salt-tolerant wheat genotypes by categorizing inequitable morphophysiological and genetic variability as well as multivariate analysis. Methods To meet the objectives of this study, 100 wheat genotypes were tested hydroponically in 0 (control) and 15 dS m-1 salt solutions. Conclusion For all the wheat genotypes grown under saline conditions, the shoot length (SL), root length (RL), shoot fresh weight (SFW), root fresh weight (RFW), total fresh weight (TFW), shoot dry weight (SDW), root dry weight (RDW), and total dry weight (TDW) decreased significantly. Furthermore, significant variation was observed among the genotypes in terms of their characteristics only under saline conditions. In the case of genetic diversity analysis, a high genotypic coefficient of variation (GCV), phenotypic coefficient of variation (PCV), genetic advance in the percentage of the mean (GAM) and high heritability (h2b) were recorded for all tested wheat genotypes based on the SDW, RDW and TDW. Correlation analysis for both genotypic and phenotypic relationships revealed strong positive correlations for TDW, SDW, TFW and SFW. Principal component analysis (PCA) revealed that TDW, TFW, SDW, and SFW were the most discriminative variables for the wheat genotypes, which was confirmed by discriminant function analysis (DFA). PCA-biplot analysis also revealed significant positive correlations between SDW and SFW and between TDW and TFW. Hierarchical cluster analysis was performed for ten clusters based on the relative performance of the genotypes, where the genotypes were characterized into salt-tolerant, medium-salt-tolerant, medium-salt-susceptible and salt-susceptible groups. Among the genotypes, G11, G25 and G29 under cluster VII were categorized as salt tolerant based on their outstanding performance in terms of characteristics only under saline conditions. D2 analysis proved that the wheat genotypes of this cluster were highly divergent from the other cluster genotypes; as a result, these genotypes might be utilized as parents in the development of salt-tolerant wheat genotypes. The current study concluded that SDW and TDW could be employed as criteria for selecting and defining salt-tolerant genotypes during the early growth stage of wheat.
Collapse
Affiliation(s)
- Md Mustafa Khan
- Regional Station, Bangladesh Wheat and Maize Research Institute, Gazipur, 1701, Bangladesh
| | - Md Mahbubur Rahman
- Regional Station, Bangladesh Wheat and Maize Research Institute, Gazipur, 1701, Bangladesh
| | - Md Mahamudul Hasan
- Regional Station, Bangladesh Wheat and Maize Research Institute, Gazipur, 1701, Bangladesh
| | - Mohammad Forhad Amin
- Regional Station, Bangladesh Wheat and Maize Research Institute, Gazipur, 1701, Bangladesh
| | | | - Golam Faruq
- Wheat Breeding Division, Bangladesh Wheat and Maize Research Institute, Nashipur, Dinajpur, 5200, Bangladesh
| | - Lamya Ahmed Alkeridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ahmed Gaber
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- Department of Biology, Faculty of Science, Taif University, B.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Akbar Hossain
- Soil Science Division, Bangladesh Wheat and Maize Research Institute, Nashipur, Dinajpur, 5200, Bangladesh
| |
Collapse
|
5
|
Mahmood MZ, Odeibat HA, Ahmad R, Gatasheh MK, Shahzad M, Abbasi AM. Low apoplastic Na + and intracellular ionic homeostasis confer salinity tolerance upon Ca 2SiO 4 chemigation in Zea mays L. under salt stress. FRONTIERS IN PLANT SCIENCE 2024; 14:1268750. [PMID: 38235192 PMCID: PMC10791904 DOI: 10.3389/fpls.2023.1268750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
Salinity is known to have a greater impact on shoot growth than root growth. Na+ buildup in plant tissue under salt stress has been proposed as one of the main issues that causes growth inhibition in crops via ionic imbalances, osmotic stress and pH disturbances. However, the evidence for apoplastic Na+ buildup and the role of silicon in Na+ accumulation at the subcellular level is still enigmatic. The current study focuses on the accumulation of Na+ in the apoplast and symplast of younger and older leaves of two maize varieties (Iqbal as salt-tolerant and Jalal as salt-sensitive) using hydroponic culture along with silicon supplementation under short-term salinity stress. Subcellular ion analysis indicated that silicon nutrition decreased Na+ concentration in both apoplastic washing fluid and symplastic fluid of maize under salt stress. The addition of silicon under NaCl treatment resulted in considerable improvement in fresh biomass, relative water content, chlorophyll content, and concentration of important subcellular ions (i.e., Ca2+, Mg2+, and K+). Knowledge of subcellular ion analysis is essential for solving the mechanisms underlying vital cellular functions e.g. in the current study, the soluble Na+ concentration in the apoplast of older leaves was found to be significantly greater (36.1 mM) in the salt-sensitive variety under NaCl treatment, which was 42.4% higher when compared to the Na+ concentration in the salt-tolerant variety under the same treatment which can influence permeability of cell membrane, signal transduction pathways and provides insights into how ion compartmentalization can contributes to salt tolerance. Calcium silicate enrichment can contribute to increased growth and improved ionic homeostasis by minimizing leaf electrolyte leakage, improving mechanical functions of cell wall and reducing water loss, and improved photosynthetic function. In current investigation, increased water content and intracellular ionic homeostasis along with reduced concentration of Na+ in the maize leaf apoplast suggest that calcium silicate can be used to ameliorate the adverse effects of salt stress and obtain yield using marginal saline lands.
Collapse
Affiliation(s)
- Moniba Zahid Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Hamza Ahmad Odeibat
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rafiq Ahmad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mansour K. Gatasheh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Shahzad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
6
|
Jia L, Liu L, Zhang Y, Fu W, Liu X, Wang Q, Tanveer M, Huang L. Microplastic stress in plants: effects on plant growth and their remediations. FRONTIERS IN PLANT SCIENCE 2023; 14:1226484. [PMID: 37636098 PMCID: PMC10452891 DOI: 10.3389/fpls.2023.1226484] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023]
Abstract
Microplastic (MP) pollution is becoming a global problem due to the resilience, long-term persistence, and robustness of MPs in different ecosystems. In terrestrial ecosystems, plants are exposed to MP stress, thereby affecting overall plant growth and development. This review article has critically analyzed the effects of MP stress in plants. We found that MP stress-induced reduction in plant physical growth is accompanied by two complementary effects: (i) blockage of pores in seed coat or roots to alter water and nutrient uptake, and (ii) induction of drought due to increased soil cracking effects of MPs. Nonetheless, the reduction in physiological growth under MP stress is accompanied by four complementary effects: (i) excessive production of ROS, (ii) alteration in leaf and root ionome, (iii) impaired hormonal regulation, and (iv) decline in chlorophyll and photosynthesis. Considering that, we suggested that targeting the redox regulatory mechanisms could be beneficial in improving tolerance to MPs in plants; however, antioxidant activities are highly dependent on plant species, plant tissue, MP type, and MP dose. MP stress also indirectly reduces plant growth by altering soil productivity. However, MP-induced negative effects vary due to the presence of different surface functional groups and particle sizes. In the end, we suggested the utilization of agronomic approaches, including the application of growth regulators, biochar, and replacing plastic mulch with crop residues, crop diversification, and biological degradation, to ameliorate the effects of MP stress in plants. The efficiency of these methods is also MP-type-specific and dose-dependent.
Collapse
Affiliation(s)
- Li Jia
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Lining Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wenxuan Fu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Qianqian Wang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
7
|
Imtiaz K, Ahmed M, Annum N, Tester M, Saeed NA. AtCIPK16, a CBL-interacting protein kinase gene, confers salinity tolerance in transgenic wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1127311. [PMID: 37008481 PMCID: PMC10060804 DOI: 10.3389/fpls.2023.1127311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Globally, wheat is the major source of staple food, protein, and basic calories for most of the human population. Strategies must be adopted for sustainable wheat crop production to fill the ever-increasing food demand. Salinity is one of the major abiotic stresses involved in plant growth retardation and grain yield reduction. In plants, calcineurin-B-like proteins form a complicated network with the target kinase CBL-interacting protein kinases (CIPKs) in response to intracellular calcium signaling as a consequence of abiotic stresses. The AtCIPK16 gene has been identified in Arabidopsis thaliana and found to be significantly upregulated under salinity stress. In this study, the AtCIPK16 gene was cloned in two different plant expression vectors, i.e., pTOOL37 having a UBI1 promoter and pMDC32 having a 2XCaMV35S constitutive promoter transformed through the Agrobacterium-mediated transformation protocol, in the local wheat cultivar Faisalabad-2008. Based on their ability to tolerate different levels of salt stress (0, 50, 100, and 200 mM), the transgenic wheat lines OE1, OE2, and OE3 expressing AtCIPK16 under the UBI1 promoter and OE5, OE6, and OE7 expressing the same gene under the 2XCaMV35S promoter performed better at 100 mM of salinity stress as compared with the wild type. The AtCIPK16 overexpressing transgenic wheat lines were further investigated for their K+ retention ability in root tissues by utilizing the microelectrode ion flux estimation technique. It has been demonstrated that after 10 min of 100 mM NaCl application, more K+ ions were retained in the AtCIPK16 overexpressing transgenic wheat lines than in the wild type. Moreover, it could be concluded that AtCIPK16 functions as a positive elicitor in sequestering Na+ ions into the cell vacuole and retaining more cellular K+ under salt stress to maintain ionic homeostasis.
Collapse
Affiliation(s)
- Khadija Imtiaz
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Moddassir Ahmed
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Nazish Annum
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Mark Tester
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nasir A. Saeed
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| |
Collapse
|
8
|
Zhang L, Freschi G, Rouphael Y, De Pascale S, Lucini L. The differential modulation of secondary metabolism induced by a protein hydrolysate and a seaweed extract in tomato plants under salinity. FRONTIERS IN PLANT SCIENCE 2023; 13:1072782. [PMID: 36726679 PMCID: PMC9884811 DOI: 10.3389/fpls.2022.1072782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Climate change and abiotic stress challenges in crops are threatening world food production. Among others, salinity affects the agricultural sector by significantly impacting yield losses. Plant biostimulants have received increasing attention in the agricultural industry due to their ability to improve health and resilience in crops. The main driving force of these products lies in their ability to modulate plant metabolic processes involved in the stress response. This study's purpose was to investigate the effect of two biostimulant products, including a protein hydrolysate (Clever HX®) and a seaweed extract with high amino acids content (Ascovip®), and their combination, on the metabolomics profile of tomato crops grown under salt stress (150 mM NaCl). Several stress indicators (leaf relative water content, membrane stability index, and photosynthesis activity) and leaf mineral composition after salinity stress exposure were assessed to evaluate stress mitigation, together with growth parameters (shoot and root biomasses). After that, an untargeted metabolomics approach was used to investigate the mechanism of action of the biostimulants and their link with the increased resilience to stress. The application of the biostimulants used reduced the detrimental effect of salinity. In saline conditions, protein hydrolysate improved shoot dry weight while seaweed extracts improved root dry weight. Regarding stress indicators, the application of the protein hydrolysate was found to alleviate the membrane damage caused by salinity stress compared to untreated plants. Surprisingly, photosynthetic activity significantly improved after treatment with seaweed extracts, suggesting a close correlation between root development, root water assimilation capacity and photosynthetic activity. Considering the metabolic reprogramming after plant biostimulants application, protein hydrolysates and their combination with seaweed extracts reported a distinctive metabolic profile modulation, mainly in secondary metabolite, lipids and fatty acids, and phytohormones biosynthetic pathways. However, treatment with seaweed extract reported a similar metabolic reprogramming trend compared to salinity stress. Our findings indicate a different mechanism of action modulated by protein hydrolysate and seaweed extract, suggesting stronger activity as a stress mitigator of protein hydrolysate in tomato crops under salinity stress.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
9
|
Uzair M, Ali M, Fiaz S, Attia K, Khan N, Al-Doss AA, Ramzan Khan M, Ali Z. The Characterization of Wheat Genotypes for Salinity Tolerance Using Morpho-Physiological Indices under Hydroponic Conditions. Saudi J Biol Sci 2022; 29:103299. [PMID: 35574282 PMCID: PMC9092983 DOI: 10.1016/j.sjbs.2022.103299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022] Open
Abstract
Salinity affects plant growth, development, yield, and is a big challenge for wheat growth across the globe. Possible feasible solution is creation of salt-tolerant material, genetic variation is a criterion to developing genetically superior individuals. To assess the genetic variation for salt tolerance, nationally and internationally-derived 81 wheat genotypes were selected and evaluated in 0- and 150-mM salt in nutritional culture at seedling stage. Results indicate that salinity levels reveal significant (p ≤ 0.01) differences for fresh root weight (RW), shoot length (SL), fresh shoot weight (SW), total plant length (TL), total fresh weight (TW), root/shoot weight ratio (RSWR), root/shoot length ratio (RSLR), and relative growth rate for weight (RGR-Wt). While, there was no difference for root length (RL). Hierarchical Clustering and Pairwise correlation analysis showed TW, RGR-Wt, SL, SW, and RW were positively correlated among themselves, whereas RL had poor correlations with all the traits except TL and RSLR. Hence, selection of SL can improve the performance of other parameters. Based on PCA analysis, SW and RGR-Wt were the major discriminative components for wheat genotypes. Present study explained that shoot related parameters could be used as a selection criterion to categorize salt-tolerant genotypes. Outperforming genotypes 1104 and 1106 in saline conditions could be used as parents in creation of salt-tolerant wheat genotypes, and parameters such as SL, SW, TW, and RGR-Wt for early screening will be important for creating salt-tolerant and high yielding wheat genotypes.
Collapse
Affiliation(s)
- Muhammad Uzair
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad 45500, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad 38000, Pakistan
- Corresponding authors at: National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China (M. Uzair). Department of Plant Breeding and Genetics, University of Agriculture Faisalabad 38000, Pakistan (Z. Ali).
| | - Mohsin Ali
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Haripur 22620, Khyber Pakhtunkhwa, Pakistan
| | - Kotb Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Abdullah A. Al-Doss
- Biotechnology Lab, Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 2455-11451, Saudi Arabia
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad 45500, Pakistan
| | - Zulfiqar Ali
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad 38000, Pakistan
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan 60000, Pakistan
- Corresponding authors at: National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China (M. Uzair). Department of Plant Breeding and Genetics, University of Agriculture Faisalabad 38000, Pakistan (Z. Ali).
| |
Collapse
|
10
|
Sheteiwy MS, Ulhassan Z, Qi W, Lu H, AbdElgawad H, Minkina T, Sushkova S, Rajput VD, El-Keblawy A, Jośko I, Sulieman S, El-Esawi MA, El-Tarabily KA, AbuQamar SF, Yang H, Dawood M. Association of jasmonic acid priming with multiple defense mechanisms in wheat plants under high salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:886862. [PMID: 36061773 PMCID: PMC9429808 DOI: 10.3389/fpls.2022.886862] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/04/2022] [Indexed: 05/14/2023]
Abstract
Salinity is a global conundrum that negatively affects various biometrics of agricultural crops. Jasmonic acid (JA) is a phytohormone that reinforces multilayered defense strategies against abiotic stress, including salinity. This study investigated the effect of JA (60 μM) on two wheat cultivars, namely ZM9 and YM25, exposed to NaCl (14.50 dSm-1) during two consecutive growing seasons. Morphologically, plants primed with JA enhanced the vegetative growth and yield components. The improvement of growth by JA priming is associated with increased photosynthetic pigments, stomatal conductance, intercellular CO2, maximal photosystem II efficiency, and transpiration rate of the stressed plants. Furthermore, wheat cultivars primed with JA showed a reduction in the swelling of the chloroplast, recovery of the disintegrated thylakoids grana, and increased plastoglobuli numbers compared to saline-treated plants. JA prevented dehydration of leaves by increasing relative water content and water use efficiency via reducing water and osmotic potential using proline as an osmoticum. There was a reduction in sodium (Na+) and increased potassium (K+) contents, indicating a significant role of JA priming in ionic homeostasis, which was associated with induction of the transporters, viz., SOS1, NHX2, and HVP1. Exogenously applied JA mitigated the inhibitory effect of salt stress in plants by increasing the endogenous levels of cytokinins and indole acetic acid, and reducing the abscisic acid (ABA) contents. In addition, the oxidative stress caused by increasing hydrogen peroxide in salt-stressed plants was restrained by JA, which was associated with increased α-tocopherol, phenolics, and flavonoids levels and triggered the activities of superoxide dismutase and ascorbate peroxidase activity. This increase in phenolics and flavonoids could be explained by the induction of phenylalanine ammonia-lyase activity. The results suggest that JA plays a key role at the morphological, biochemical, and genetic levels of stressed and non-stressed wheat plants which is reflected in yield attributes. Hierarchical cluster analysis and principal component analyses showed that salt sensitivity was associated with the increments of Na+, hydrogen peroxide, and ABA contents. The regulatory role of JA under salinity stress was interlinked with increased JA level which consequentially improved ion transporting, osmoregulation, and antioxidant defense.
Collapse
Affiliation(s)
- Mohamed S. Sheteiwy
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| | - Zaid Ulhassan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Weicong Qi
- Institute of Agriculture Resources and Environment, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, China
| | - Haiying Lu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Haiying Lu
| | - Hamada AbdElgawad
- Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef, Egypt
| | - Tatiana Minkina
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| | - Vishnu D. Rajput
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, United Arab Emirates
| | - Izabela Jośko
- Faculty of Agrobioengineering, Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences, Lublin, Poland
| | - Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, Khartoum North, Sudan
| | | | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
- Khaled A. El-Tarabily
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Synan F. AbuQamar
| | - Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Mona Dawood
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
11
|
Parvin K, Hasanuzzaman M, Mohsin SM, Nahar K, Fujita M. Coumarin improves tomato plant tolerance to salinity by enhancing antioxidant defence, glyoxalase system and ion homeostasis. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:181-192. [PMID: 33135242 DOI: 10.1111/plb.13208] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Salinity is a severe threat to crop growth, development and even to world food sustainability. Plant possess natural antioxidant defense tactics to mitigate salinity-induced oxidative stress. Phenolic compounds are non-enzymatic antioxidants with specific roles in protecting plant cells against stress-mediated reactive oxygen species (ROS) generation. Coumarin (COU) is one of these compounds, however, to date, little is known about antioxidative roles of exogenous COU in enhancing plant tolerance mechanisms under salt stress. The involvement of COU in increasing tomato salt tolerance was examined in the present study using COU as a pre-treatment at 20 or 30 µM for 2 days against salt stress (100 or 160 NaCl; 5 days). The COU-mediated stimulation of plant antioxidant defence and glyoxalase systems to suppress salt-induced ROS and methylglyoxal (MG) toxicity, respectively, were the main hypotheses examined in the present study. Addition of COU suppressed salt-induced excess accumulation of ROS and MG, and significantly reduced membrane damage, lipid peroxidation and Na+ toxicity. These results demonstrate COU-improved plant growth, biomass content, photosynthetic pigment content, water retention and mineral homeostasis upon imposition of salinity. Finally, this present study suggests that COU has potential roles as a phytoprotectant in stimulating plant antioxidative mechanisms and improving glyoxalase enzyme activity under salinity stress.
Collapse
Affiliation(s)
- K Parvin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kita-gun, Kagawa, Japan
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - M Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - S M Mohsin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kita-gun, Kagawa, Japan
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - K Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - M Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kita-gun, Kagawa, Japan
| |
Collapse
|
12
|
Amin I, Rasool S, Mir MA, Wani W, Masoodi KZ, Ahmad P. Ion homeostasis for salinity tolerance in plants: a molecular approach. PHYSIOLOGIA PLANTARUM 2021; 171:578-594. [PMID: 32770745 DOI: 10.1111/ppl.13185] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 05/07/2023]
Abstract
Soil salinity is one of the major environmental stresses faced by the plants. Sodium chloride is the most important salt responsible for inducing salt stress by disrupting the osmotic potential. Due to various innate mechanisms, plants adapt to the sodic niche around them. Genes and transcription factors regulating ion transport and exclusion such as salt overly sensitive (SOS), Na+ /H+ exchangers (NHXs), high sodium affinity transporter (HKT) and plasma membrane protein (PMP) are activated during salinity stress and help in alleviating cells of ion toxicity. For salt tolerance in plants signal transduction and gene expression is regulated via transcription factors such as NAM (no apical meristem), ATAF (Arabidopsis transcription activation factor), CUC (cup-shaped cotyledon), Apetala 2/ethylene responsive factor (AP2/ERF), W-box binding factor (WRKY) and basic leucine zipper domain (bZIP). Cross-talk between all these transcription factors and genes aid in developing the tolerance mechanisms adopted by plants against salt stress. These genes and transcription factors regulate the movement of ions out of the cells by opening various membrane ion channels. Mutants or knockouts of all these genes are known to be less salt-tolerant compared to wild-types. Using novel molecular techniques such as analysis of genome, transcriptome, ionome and metabolome of a plant, can help in expanding the understanding of salt tolerance mechanism in plants. In this review, we discuss the genes responsible for imparting salt tolerance under salinity stress through transport dynamics of ion balance and need to integrate high-throughput molecular biology techniques to delineate the issue.
Collapse
Affiliation(s)
- Insha Amin
- Molecular Biology Lab, Division of Veterinary Biochemistry, FVSc & A.H., SKUAST, Shuhama, India
| | - Saiema Rasool
- Department of School Education, Govt. of Jammu & Kashmir, Srinagar, 190001, India
| | - Mudasir A Mir
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Wasia Wani
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Khalid Z Masoodi
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Botany, S. P. College, Srinagar, Jammu and Kashmir, 190001, India
| |
Collapse
|
13
|
Wu Y, Liu N, Hu L, Liao W, Tang Z, Xiao X, Lyu J, Xie J, Calderón-Urrea A, Yu J. 5-Aminolevulinic Acid Improves Morphogenesis and Na + Subcellular Distribution in the Apical Cells of Cucumis sativus L. Under Salinity Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:636121. [PMID: 33815443 PMCID: PMC8012848 DOI: 10.3389/fpls.2021.636121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/22/2021] [Indexed: 05/31/2023]
Abstract
Soil salinity causes damage to plants and a reduction in output. A natural plant growth regulator, 5-aminolevulinic acid (ALA), has been shown to promote plant growth under abiotic stress conditions. In the present study, we assessed the effects of exogenously applied ALA (25 mg L-1) on the root architecture and Na+ distribution of cucumber (Cucumis sativus L.) seedlings under moderate NaCl stress (50 mmol L-1). The results showed that exogenous ALA improved root length, root volume, root surface area, and cell activity in the root tips, which were inhibited under salt stress. In addition, although salinity stress increased the subcellular Na+ contents, such as those of the cell wall, nucleus, plastid, and mitochondria, ALA treatment reduced these Na+ contents, except the soluble fraction. Molecular biological analysis revealed that ALA application upregulated both the SOS1 and HA3 transcriptional and translational levels, which suggested that the excretion of Na+ into the cytoplasm cloud was promoted by exogenous ALA. Meanwhile, exogenously applied ALA also upregulated the gene and protein expression of NHX1 and VHA-A under salinity stress, which suggested that the compartmentalization of Na+ to the vacuole was enhanced. Overall, exogenous ALA mitigated the damage caused by NaCl in cucumber by enhancing Na+ redistribution and increasing the cytoactivity of root cells.
Collapse
Affiliation(s)
- Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Na Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Alejandro Calderón-Urrea
- Department of Biology, College of Science and Mathematics, California State University, Fresno, Fresno, CA, United States
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
14
|
Hussain MS, Naeem MS, Tanvir MA, Nawaz MF, Abd-Elrahman A. Eco-physiological evaluation of multipurpose tree species to ameliorate saline soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:969-981. [PMID: 33455421 DOI: 10.1080/15226514.2020.1871321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salinity is a widespread soil and underground water contaminant threatening food security and economic stability. Phytoremediation is an efficient and environmental-friendly solution to mitigate salinity impacts. The present study was conducted to evaluate the phytoremediation potential of five multipurpose trees: Vachellia nilotica, Concorpus erectus, Syzygium cumini, Tamarix aphylla and Eucalyptus cammaldulensis under four salinity treatments: Control, 10, 20 and 30 dS m-1. Salinity negatively impacted all the tested species. However, E. cammaldulensis and T. aphylla exhibited the lowest reduction (28%) and (35%) in plant height respectively along with a minimal reduction in leaf gas exchange while V. nilotica, S. cumini and C. erectus showed severe dieback. Similarly, the antioxidant enzymes increased significantly in E. cammaldulensis and T. aphylla as Superoxide Dismutase (87% and 79%), Catalase (66% and 67%) and Peroxidase (89% and 81%), respectively. Furthermore, both of these species maintained optimum Na/K ratio reducing the highest levels of soil ECe and SAR, suggesting the best phytoremediation potential. The present study identifies that E. cammaldulensis and T. aphylla showed effective tolerance mechanisms and the highest salt sequestration; therefore, may be used for phyto-amelioration of salinity impacted lands. Novelty statement Although previous studies evaluated the tolerance potential of many tree species, comparative and physiochemical evaluation of multipurpose tree species has been remained unexplored. In this scenario, eco-physiological characterization of multipurpose tree species may inform tree species for phytoremediation of saline soils according to the level of salinity. Optimizing tree species selection also improves the success of wood for energy and revenue generation while restoring degraded soils.
Collapse
Affiliation(s)
- Muhammad Safdar Hussain
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shahbaz Naeem
- Department of Agronomy, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ayyoub Tanvir
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Amr Abd-Elrahman
- School of Forest Resources and Conservation Institute of Food and Agriculture, Gulf Coast Research and Education Center, University of Florida, Plant City, FL, USA
| |
Collapse
|