1
|
Li Y, Zhu H, Zhou F, Zheng Y, Zhang Y, Zheng Y. Enhanced bioconversion of kitchen food waste into aquaculture feed using a mixed culture of Bacillus licheniformis and Yarrowia lipolytica. Sci Rep 2025; 15:16497. [PMID: 40355544 PMCID: PMC12069639 DOI: 10.1038/s41598-025-98265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
The increasing global population and urbanization have led to a rise in kitchen food waste (KW), posing significant environmental and economic challenges. Converting KW into fish feed offers a sustainable solution for managing KW. This study investigates the conversion of KW to aquatic feed via fermentation, and the innovative use of fermented kitchen waste (FKW) as an alternative protein source in aquaculture feed. Strains L58 and O57, identified as Bacillus licheniformis and Yarrowia lipolytica, were initially screened for high enzymatic activities and salt tolerance. A mixed-strain fermentation approach was employed, with process parameters optimized through central composite designs to maximize soluble protein yield. Fermentation significantly increased the contents of soluble protein, crude protein, and crude fat while reducing total carbohydrates and crude fiber. The total amino acid content increased by 45.5%, with significant gains in 19 amino acids. Feeding trials with juvenile yellow catfish demonstrated that replacing 15-30% of fish meal with FKW significantly improved growth performance, feed utilization, and enhanced the crude protein content in fish flesh. These findings indicate that co-fermenting KW with the two strains efficiently produces high-protein aquaculture feed, offering a sustainable alternative protein source that reduces reliance on fish meal and aids in waste management.
Collapse
Affiliation(s)
- Yun Li
- School of Life Sciences and Food Engineering, Hanshan Normal University, Qiaodong, Chaozhou, 521041, Guangdong, China.
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, 521041, Guangdong, China.
| | - Hui Zhu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Qiaodong, Chaozhou, 521041, Guangdong, China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, 521041, Guangdong, China
| | - Fei Zhou
- School of Life Sciences and Food Engineering, Hanshan Normal University, Qiaodong, Chaozhou, 521041, Guangdong, China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, 521041, Guangdong, China
| | - YuZhong Zheng
- School of Life Sciences and Food Engineering, Hanshan Normal University, Qiaodong, Chaozhou, 521041, Guangdong, China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, 521041, Guangdong, China
| | - Yiyan Zhang
- School of Life Sciences and Food Engineering, Hanshan Normal University, Qiaodong, Chaozhou, 521041, Guangdong, China
| | - Yinhua Zheng
- School of Life Sciences and Food Engineering, Hanshan Normal University, Qiaodong, Chaozhou, 521041, Guangdong, China
| |
Collapse
|
2
|
Wang J, Zhang J, Li X, Xu HY, Yang Y, Zhang J, Feng W, Chen Q, Dong F, Han T. Metabolism of arginine in juvenile largemouth bass (Micropterus salmoides) after oral or intraperitoneal administration of arginine or its substrates. Amino Acids 2025; 57:14. [PMID: 39945913 PMCID: PMC11825607 DOI: 10.1007/s00726-024-03436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/11/2024] [Indexed: 02/16/2025]
Abstract
The main objective of this experiment was to study the metabolism of arginine in juvenile largemouth bass (Micropterus salmoides). A total of 300 healthy fish (average weight of 25 ± 0.5 g) were randomly assigned to ten groups. Experimental fish were orally administered or intraperitoneally injected with 0.9% sodium chloride, arginine, arginine-aspartate, citrulline, and glutamate solutions, respectively. They were euthanized at 10, 30, 60, 120, and 240 min after oral administration or intraperitoneal injection, and various tissue samples were subsequently collected for analysis. The results revealed that serum ornithine and citrulline concentrations of largemouth bass were significantly increased by oral administration of arginine or arginine-aspartate (P < 0.05). Intraperitoneal injection of arginine or arginine-aspartate solution significantly elevated the concentrations of ornithine and citrulline in the serum, liver, kidney, and muscles (P < 0.05). The concentrations of citrulline, ornithine, and arginine in serum and muscle increased significantly at 4 h after intraperitoneal injection of glutamate (P < 0.05). Intraperitoneal injection of citrulline significantly increased the concentrations of ornithine and arginine in the serum and muscles (P < 0.05). The research findings demonstrate that both free and small peptide forms of arginine were rapidly degraded to ornithine due to the high arginase activity in various tissues of largemouth bass. Additionally, the pathway of synthesizing citrulline from glutamate and then arginine from citrulline may exist in largemouth bass, but the exact location of this synthesis process may differ from that found in mammals.
Collapse
Affiliation(s)
- Jiteng Wang
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jingyi Zhang
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xinyu Li
- Guangdong Yuehai Feed Group Co., Ltd, Zhanjiang, 524000, China
- Zhanjiang Yuehai Premix Technology, Co., Ltd, Zhanjiang, 524000, China
| | - Hanying Y Xu
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Yeshun Yang
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiankun Zhang
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Wenping Feng
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qiang Chen
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Fen Dong
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
3
|
Liu Q, Zou X, Zhao M, Guan Q, Xuan Z, Liu L, Gao Z. Integrated transcriptome and metabolome analysis of liver reveals unsynchronized growth mechanisms in blunt-snout bream (Megalobrama amblycephala). BMC Genomics 2025; 26:30. [PMID: 39806290 PMCID: PMC11727267 DOI: 10.1186/s12864-025-11208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Megalobrama amblycephala presents unsynchronized growth, which affects its productivity and profitability. The liver is essential for substance exchange and energy metabolism, significantly influencing the growth of fish. RESULTS To investigate the differential metabolites and genes governing growth, and understand the mechanism underlying their unsynchronized growth, we conducted comprehensive transcriptomic and metabolomic analyses of liver from fast-growing (FG) and slow-growing (SG) M. amblycephala individuals. A total of 2,097 differentially expressed genes (DEGs) were identified between FG and SG, with 830 genes exhibiting significantly higher expression level in FG. KEGG and GO enrichment analysis indicated that the DEGs with higher expression level were significantly correlated with insulin signaling pathway, steroid hormone and lipid metabolism related pathway (PPAR signaling pathway and fatty acid degradation). In the metabolomic analysis, 224 differentially expressed metabolites (DEMs) were detected, of which 128 were significantly more abundant in FG. These more abundant DEMs were prominently enriched in pathways associated with cell proliferation and energy metabolism (Oxidative phosphorylation, mTOR signaling pathway and FoxO signaling pathway). In addition, DEGs and DEMs in adenosine diphosphate (ATP) hydrolysis activity and associate with fatty acid metabolism, glucose metabolism, and amino acid metabolism pathways were both found in the transcriptomic and metabolomic integrated data. These findings suggest that the large amounts of energy generated by fatty acid, glucose metabolism and other energy metabolism pathway promote the rapid growth of FG. CONCLUSIONS This research is the first to integrate metabolomic and transcriptomic analyses of liver to identify key genes, metabolites, and pathways to uncover the molecular and metabolic mechanisms of unsynchronized growth in M. amblycephala. The identified metabolic and genes can be potential targets for selective breeding programs to improve growth performance in aquaculture.
Collapse
Affiliation(s)
- Qi Liu
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
| | - Xue Zou
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Ming Zhao
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Qianqian Guan
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
| | - Zhaoyang Xuan
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
| | - Lusha Liu
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China.
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China.
| | - Zexia Gao
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
4
|
Talukdar S, Ghosh K. Evaluation of growth, nutrient utilization, and metabolic function in rohu, Labeo rohita (Hamilton), fed diets incorporated with fermented Saraca asoca leaf meal. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:3. [PMID: 39757307 DOI: 10.1007/s10695-024-01422-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/18/2024] [Indexed: 01/07/2025]
Abstract
The present study evaluated the potential of Ashoka, Saraca asoca leaf meal (SLM), in carp diets following fermentative processing with a tannase-producing fish gut bacterium, Bacillus subtilis (KP765736). The processing of SLM led to a significant (P < 0.05) reduction in major anti-nutrients (tannin, trypsin inhibitor, and crude fiber), while crude protein content increased. Seven sets of isonitrogenous (35% crude protein) and isocaloric (18.82 kJg-1) diets were prepared using raw (R1, R2, R3) and fermented SLM (F1, F2, F3) at 10%, 20%, and 30% levels by weight replacing fishmeal and de-oiled rice bran in the reference diet (RD). Diets were fed to rohu, Labeo rohita fingerlings (4.01 ± 0.08 g), for 70 days in triplicate. Fish fed diets containing 30% fermented SLM (F3) exhibited significantly (P < 0.05) better growth (241.25%), improved nutrient utilization, and enhanced activities of digestive enzymes compared to raw SLM-fed groups. Furthermore, tannin accumulation in the liver and muscle was significantly lower (P < 0.05) in fish fed fermented SLM diets compared to those fed raw SLM diets. Additionally, tannin contents in the diets were noticed to be positively correlated (P < 0.05) with tannin accumulation in fish tissues and negatively correlated (P < 0.05) with growth. Hepatic and muscle enzymes associated with carbohydrate metabolism in fish fed RD performed similarly to those reared on fermented SLM diets. Conversely, key enzymes involved in protein metabolism, hexose monophosphate shunt, and the tri-carboxylic-acid cycle showed increased activities in fish fed raw SLM diets, indicating dietary stress and a shift from carbohydrate metabolism to protein catabolism. Moreover, protein, glycogen, and amino acids in hepatopancreas and muscle showed a progressive increase with the gradual inclusion of fermented SLM in the diets. In conclusion, this study might suggest incorporating 30% (w/w) fermented SLM in the diets of rohu without interfering with growth, feed utilization, and metabolic function.
Collapse
Affiliation(s)
- Sandipan Talukdar
- Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India
- Department of Zoology, Gorubathan Government College, Fagu, Kalimpong, 735231, West Bengal, India
| | - Koushik Ghosh
- Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India.
| |
Collapse
|
5
|
Navarro-Guillén C, Jerez-Cepa I, Lopes A, Mancera JM, Engrola S. Effects of early-life amino acids supplementation on fish responses to a thermal challenge. J Comp Physiol B 2024; 194:827-842. [PMID: 39269478 PMCID: PMC11511724 DOI: 10.1007/s00360-024-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Nutritional programming is a promising concept for promoting metabolic adaptation of fish to challenging conditions, such as the increase in water temperature. The present work evaluates in ovo arginine or glutamine supplementation as enhancers of zebrafish metabolic or absorptive capacity, respectively, at optimum (28 ºC) and challenging temperatures (32 ºC) in the long-term. Growth performance, free amino acids profile, methylation index and the activity levels of digestive and intermediary metabolism enzymes were analysed to assess the metabolic plasticity induced by an early nutritional intervention. Temperature affected fish larvae growth performance. At the end of the experimental period 28 ºC-fish showed higher dry weight than 32 ºC-fish. The effects of the early supplementation were reflected in the larval free amino acids profile at the end of the experiment. Higher methylation potential was observed in the ARG-fish. In ovo amino acid supplementation modulated the metabolic response in zebrafish larvae, however, the magnitude of this effect differed according to the amino acid and the temperature. Overall, arginine supplementation enhanced carbohydrates metabolism at 32 ºC. In conclusion, the present work suggests that in ovo arginine supplementation may promote a better adaptive response to higher temperatures.
Collapse
Affiliation(s)
- Carmen Navarro-Guillén
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
- Departmento de Biología Marina y Acuicultura, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, Cádiz, Spain
| | - Ismael Jerez-Cepa
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research (INMAR), Universidad de Cádiz, CEI·MAR, Puerto Real, Cádiz, Spain
| | - André Lopes
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research (INMAR), Universidad de Cádiz, CEI·MAR, Puerto Real, Cádiz, Spain
| | - Sofia Engrola
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| |
Collapse
|
6
|
Zhu L, Yuan X, Ji H, Liu R, Xie Y, Li H, Sun J, Yu H, Zhou J, Dong W. A comparative study of dietary amino acid patterns: unveiling growth, composition, and molecular signatures in juvenile Onychostoma macrolepis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1831-1847. [PMID: 38954179 DOI: 10.1007/s10695-024-01372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
The wild Onychostoma macrolepis, a species under national class II protection in China, lacks a specific compound feed for captive rearing. Understanding the dietary amino acid pattern is crucial for optimal feed formulation. This study aimed to investigate the effects of the four different dietary amino acid patterns, i.e., anchovy fishmeal protein (FMP, control group) and muscle protein (MP), whole-body protein (WBP), fish egg protein (FEP) of juvenile Onychostoma macrolepis, on the growth performance, body composition, intestinal morphology, enzyme activities, and the expression levels of gh, igf, mtor genes in juveniles. In a 12-week feeding trial with 240 juveniles (3.46±0.04g), the MP group demonstrated superior outcomes in growth performance (FBW, WGR, SGR), feed utilization efficiency (PER, PRE, FCR). Notably, it exhibited higher crude protein content in whole-body fish, enhanced amino acid composition in the liver, and favorable fatty acid health indices (AI, TI, h/H) in muscle compared to other groups (P < 0.05). Morphologically, the MP and FMP groups exhibited healthy features. Additionally, the MP group displayed significantly higher activities of TPS, ALP, and SOD, along with elevated expression levels of gh, igf, mtor genes, distinguishing it from the other groups (P < 0.05). This study illustrated that the amino acid pattern of MP emerged as a suitable dietary amino acid pattern for juvenile Onychostoma macrolepis. Furthermore, the findings provide valuable insights for formulating effective feeds in conserving and sustainably farming protected species, enhancing the research's broader ecological and aquacultural significance.
Collapse
Affiliation(s)
- Lingwei Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiangtong Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Ruofan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ying Xie
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Handong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Haibo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jishu Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
7
|
Gao X, Lv Y, Dai Q, Zhu L, Liu S, Hu Z, Lu J, Zhou H, Mei Z. Histological and Transcriptomic Insights into the Ovary Development of Hemibarbus labeo Injected with Spawn-Inducing Hormones. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:672-686. [PMID: 38913221 DOI: 10.1007/s10126-024-10335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
Naturally, the ovaries of many farmed fish can only develop to stage IV (mainly including stage IV oocytes, known as full-grown postvitellogenic oocytes). Therefore, spawn-inducing hormone injections are used to promote ovary development and oocyte maturation, facilitating reproduction in the aquaculture industry. The study of spawn-inducing hormones and their underlying neuroendocrine mechanisms has been a recent focus in fish reproductive biology. However, the intra-ovarian regulatory mechanisms of ovary development and oocyte maturation after hormone injection require further investigation. In this study, we explored the histological and transcriptomic map of the ovary of Hemibarbus labeo after hormone injection to reveal changes in the ovary. The gonad index significantly increased after hormone injection for 5.5 h, after which no significant change was observed. Histological analysis showed that the nuclei had moved to one side of the oocytes at 5.5 h after hormone injection. Moreover, the volume of the oocytes increased and their yolk membranes thickened. Oocytes then underwent their first meiotic division at 5.5-11 h after hormone injection. Subsequently, the follicular membrane was ruptured, and ovulation was completed at 11-16.5 h after hormone injection. In addition, we identified 3189 differentially expressed genes (DEGs) on comparing the transcriptomes at different time points after hormone injection. These DEGs were significantly enriched in the GO terms of nervous system process, molecular transducer activity, and extracellular region, and the KEGG pathways of TNF signaling and cytokine-cytokine receptor interaction; these may play important roles in ovary development and oocyte maturation. Within these pathways, genes such as apoe, creb3, jun, junb, il11, and il8 may play important roles in steroid hormone synthesis and ovulation. Conclusively, our results show detailed sequential dynamics of oocyte development and provide new insights into the intra-ovarian regulatory mechanisms of ovarian development and oocyte maturation in H. labeo. These findings may be important for research on improving egg quality and reproduction in aquaculture.
Collapse
Affiliation(s)
- Xinming Gao
- College of Ecology, Lishui University, Lishui , Zhejiang, 323000, China
| | - Yaoping Lv
- College of Ecology, Lishui University, Lishui , Zhejiang, 323000, China.
| | - Qingmin Dai
- College of Ecology, Lishui University, Lishui , Zhejiang, 323000, China
| | - Ling Zhu
- College of Ecology, Lishui University, Lishui , Zhejiang, 323000, China
| | - Siqi Liu
- College of Ecology, Lishui University, Lishui , Zhejiang, 323000, China
| | - Zehui Hu
- Zhejiang Marine Fisheries Research Institute, Zhoushan , Zhejiang, 316100, China
| | - Junkai Lu
- Cixi Aquatic Technology Promotion Center, Ningbo , Zhejiang, 315300, China
| | - Haidong Zhou
- Suichang Aquatic and Agricultural Machinery Technology Extension Station, Lishui , Zhejiang, 323399, China
| | - Zufei Mei
- Jinman Aquatic Seedling Farm, Lishui , Zhejiang, 323006, China
| |
Collapse
|
8
|
Suehs BA, Gatlin DM, Wu G. Glycine nutrition and biochemistry from an aquaculture perspective. Anim Front 2024; 14:17-23. [PMID: 39246842 PMCID: PMC11377068 DOI: 10.1093/af/vfae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Affiliation(s)
- Blaine A Suehs
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA
| | - Delbert M Gatlin
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
He W, Li X, Wu G. Dietary glycine supplementation enhances syntheses of creatine and glutathione by tissues of hybrid striped bass (Morone saxatilis ♀ × Morone chrysops ♂) fed soybean meal-based diets. J Anim Sci Biotechnol 2024; 15:67. [PMID: 38720393 PMCID: PMC11080189 DOI: 10.1186/s40104-024-01024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND We recently reported that supplementing glycine to soybean meal-based diets is necessary for the optimum growth of 5- to 40-g (Phase-I) and 110- to 240-g (Phase-II) hybrid striped bass (HSB), as well as their intestinal health. Although glycine serves as an essential substrate for syntheses of creatine and glutathione (GSH) in mammals (e.g., pigs), little is known about these metabolic pathways or their nutritional regulation in fish. This study tested the hypothesis that glycine supplementation enhances the activities of creatine- and GSH-forming enzymes as well as creatine and GSH availabilities in tissues of hybrid striped bass (HSB; Morone saxatilis♀ × Morone chrysops♂). METHODS Phase-I and Phase-II HSB were fed a soybean meal-based diet supplemented with 0%, 1%, or 2% glycine for 8 weeks. At the end of the 56-d feeding, tissues (liver, intestine, skeletal muscle, kidneys, and pancreas) were collected for biochemical analyses. RESULTS In contrast to terrestrial mammals and birds, creatine synthesis occurred primarily in skeletal muscle from all HSB. The liver was most active in GSH synthesis among the HSB tissues studied. In Phase-I HSB, supplementation with 1% or 2% glycine increased (P < 0.05) concentrations of intramuscular creatine (15%-19%) and hepatic GSH (8%-11%), while reducing (P < 0.05) hepatic GSH sulfide (GSSG)/GSH ratios by 14%-15%, compared with the 0-glycine group; there were no differences (P > 0.05) in these variables between the 1% and 2% glycine groups. In Phase-II HSB, supplementation with 1% and 2% glycine increased (P < 0.05) concentrations of creatine and GSH in the muscle (15%-27%) and liver (11%-20%) in a dose-dependent manner, with reduced ratios of hepatic GSSG/GSH in the 1% or 2% glycine group. In all HSB, supplementation with 1% and 2% glycine dose-dependently increased (P < 0.05) activities of intramuscular arginine:glycine amidinotransferase (22%-41%) and hepatic γ-glutamylcysteine synthetase (17%-37%), with elevated activities of intramuscular guanidinoacetate methyltransferase and hepatic GSH synthetase and GSH reductase in the 1% or 2% glycine group. Glycine supplementation also increased (P < 0.05) concentrations of creatine and activities of its synthetic enzymes in tail kidneys and pancreas, and concentrations of GSH and activities of its synthetic enzymes in the proximal intestine. CONCLUSIONS Skeletal muscle and liver are the major organs for creatine and GSH syntheses in HSB, respectively. Dietary glycine intake regulates creatine and GSH syntheses by both Phase-I and Phase-II HSB in a tissue-specific manner. Based on the metabolic data, glycine is a conditionally essential amino acid for the growing fish.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Xinyu Li
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
Wang C, Liu E, Zhang H, Shi H, Qiu G, Lu S, Han S, Jiang H, Liu H. Dietary Protein Optimization for Growth and Immune Enhancement in Juvenile Hybrid Sturgeon ( Acipenser baerii × A. schrenckii): Balancing Growth Performance, Serum Biochemistry, and Expression of Immune-Related Genes. BIOLOGY 2024; 13:324. [PMID: 38785806 PMCID: PMC11117904 DOI: 10.3390/biology13050324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
This study aimed to evaluate the effects of dietary protein levels on growth performance, serum indices, body amino acid composition, and intestinal gene expression in juvenile hybrid sturgeon (Acipenser baerii × A. schrenckii). Hybrid sturgeons (initial weight 29.21 ± 2.04 g) were fed isolipidic diets containing 30%, 33%, 36%, 39%, 42% or 45% crude protein for 12 weeks (n = 18 tanks, 30 fish/tank). Results showed significant differences between treatments, where weight gain and protein efficiency ratio peaked optimally between 35.9% and 38.3% dietary protein. Serum parameters such as glucose, alanine aminotransferase, aspartate aminotransferase, superoxide dismutase, and lipid peroxidation levels varied significantly with changes in dietary protein levels. Specifically, the highest enzymatic activities and growth parameters were observed in groups fed with 33% to 39% protein, enhancing whole-body concentrations of lysine, leucine, phenylalanine, proline, and glutamic acid. Immune parameters such as immunoglobulin M and lysozyme activity also showed peak levels at higher protein concentrations, particularly notable at 42% for lysozyme and 36% for both component 3 and immunoglobulin M. Gene expression related to immune and growth pathways, including MyD88, TLR1, IL-8, IL-6, NF-κB, and IL1β, was significantly upregulated at protein levels of 33% to 36%, with a noted peak in expression at 39% for TLR1, IL-10, and TOR signaling genes, before diminishing at higher protein levels. Overall, the dietary protein requirement for juvenile hybrid sturgeon ranges from 35.9% to 38.3% crude protein.
Collapse
Affiliation(s)
- Chang’an Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (C.W.)
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Entong Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hui Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Honghe Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guangwen Qiu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Shaoxia Lu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (C.W.)
| | - Shicheng Han
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (C.W.)
| | - Haibo Jiang
- College of Animal Science, Guizhou University, Guiyang 550000, China
| | - Hongbai Liu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (C.W.)
| |
Collapse
|
11
|
Suhaimi H, Abdul Rahman MI, Ashaari A, Ikhwanuddin M, Wan Rasdi N. Adaptation and potential culture of wild Amphipods and Mysids as potential live feed in aquaculture: a review. PeerJ 2024; 12:e17092. [PMID: 38563012 PMCID: PMC10984187 DOI: 10.7717/peerj.17092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Live foods such as phytoplankton and zooplankton are essential food sources in aquaculture. Due to their small size, they are suitable for newly hatched larvae. Artemia and rotifer are commonly used live feeds in aquaculture; each feed has a limited dietary value, which is unsuitable for all cultured species. Whereas, copepod and cladocerans species exhibit favorable characteristics that make them viable candidates as sources of essential nutrients for hatchery operations. Due to their jerking movements, it stimulates the feeding response of fish larvae, and their various sizes make them suitable for any fish and crustacean. Even though Artemia is the best live feed due to its proficient nutritional quality, the cost is very expensive, which is about half of the production cost. A recent study suggests the use of amphipods and mysids as alternative live feeds in aquaculture. High nutritional value is present in amphipods and mysids, especially proteins, lipids, and essential fatty acids that are required by fish larvae during early development. Amphipods and mysids are considered abundant in the aquatic ecosystem and have been used by researchers in water toxicity studies. However, the culture of amphipods and mysids has been poorly studied. There is only a small-scale culture under laboratory conditions for scientific research that has been performed. Thus, further research is required to find a way to improve the mass culture of amphipods and mysids that can benefit the aquaculture industry. This review article is intended to provide the available information on amphipods and mysids, including reproductive biology, culture method, nutritional value, feed enhancement, and the importance of them as potential live feed in aquaculture. This article is useful as a guideline for researchers, hatchery operators, and farmers.
Collapse
Affiliation(s)
- Hidayu Suhaimi
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | | | - Aisyah Ashaari
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mhd Ikhwanuddin
- Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Nadiah Wan Rasdi
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
12
|
Sun M, De Cuyper A, Bosch G, Dierenfeld ES, Hendriks WH, Janssens GPJ. Protein quality of a small mammal prey and its body organs for felids. J Anim Sci 2024; 102:skae180. [PMID: 38980729 PMCID: PMC11247530 DOI: 10.1093/jas/skae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024] Open
Abstract
This study evaluated the protein quality of small mammalian prey and its body organs by analyzing amino acid (AA) composition and digestibility of wild adult rats and their body organs (skin/fur, bone, muscle, intestine, liver, kidney, spleen, brain, heart, and lung) utilizing an in vitro digestion method. The average dry matter (DM) digestibility of whole rats was 89.9%. The digestibility of total AA (TAA), total indispensable AA (TIAA), and total dispensable AA (TDAA) in whole rats was 85.6, 87.0, and 87.6%, respectively. Differences in DM digestibility were observed among rat organs, ranging from 59.0% in bone to 99.8% in muscle (P < 0.001). Highly digestible organs generally exhibited AA digestibility exceeding 90%, except for cysteine (Cys) in the intestine and kidney (83.8% and 88.9%, respectively). The digestibility of AAs in skin/fur ranged from 19.7% for Cys to 81.0% for glycine (Gly). In bone, the digestibility spanned from 56.9% for Gly to 81.1% for tyrosine (Tyr). Additionally, examining the digestible indispensable AA score (DIAAS) gives us an idea of the protein quality of small mammalian prey and their body organs. Our results complement information on AA supply and digestion during prey ingestion by felids.
Collapse
Affiliation(s)
- Mengmeng Sun
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Annelies De Cuyper
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Guido Bosch
- Department of Animal Science, Animal Nutrition Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Ellen S Dierenfeld
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Ellen S. Dierenfeld LLC, Saint Louis, MO 63128, USA
| | - Wouter H Hendriks
- Department of Animal Science, Animal Nutrition Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Geert P J Janssens
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
13
|
He W, Connolly ED, Wu G. Characteristics of the Digestive Tract of Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:15-38. [PMID: 38625523 DOI: 10.1007/978-3-031-54192-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
As for other mammals, the digestive system of dogs (facultative carnivores) and cats (obligate carnivores) includes the mouth, teeth, tongue, pharynx, esophagus, stomach, small intestine, large intestine, and accessory digestive organs (salivary glands, pancreas, liver, and gallbladder). These carnivores have a relatively shorter digestive tract but longer canine teeth, a tighter digitation of molars, and a greater stomach volume than omnivorous mammals such as humans and pigs. Both dogs and cats have no detectable or a very low activity of salivary α-amylase but dogs, unlike cats, possess a relatively high activity of pancreatic α-amylase. Thus, cats select low-starch foods but dogs can consume high-starch diets. In contrast to many mammals, the vitamin B12 (cobalamin)-binding intrinsic factor for the digestion and absorption of vitamin B12 is produced in: (a) dogs primarily by pancreatic ductal cells and to a lesser extent the gastric mucosa; and (b) cats exclusively by the pancreatic tissue. Amino acids (glutamate, glutamine, and aspartate) are the main metabolic fuels in enterocytes of the foregut. The primary function of the small intestine is to digest and absorb dietary nutrients, and its secondary function is to regulate the entry of dietary nutrients into the blood circulation, separate the external from the internal milieu, and perform immune surveillance. The major function of the large intestine is to ferment undigested food (particularly fiber and protein) and to absorb water, short-chain fatty acids (serving as major metabolic fuels for epithelial cells of the large intestine), as well as vitamins. The fermentation products, water, sloughed cells, digestive secretions, and microbes form feces and then pass into the rectum for excretion via the anal canal. The microflora influences colonic absorption and cell metabolism, as well as feces quality. The digestive tract is essential for the health, survival, growth, and development of dogs and cats.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Erin D Connolly
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
14
|
Li P, Wu G. Characteristics of Nutrition and Metabolism in Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:55-98. [PMID: 38625525 DOI: 10.1007/978-3-031-54192-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Domestic dogs and cats have evolved differentially in some aspects of nutrition, metabolism, chemical sensing, and feeding behavior. The dogs have adapted to omnivorous diets containing taurine-abundant meat and starch-rich plant ingredients. By contrast, domestic cats must consume animal-sourced foods for survival, growth, and development. Both dogs and cats synthesize vitamin C and many amino acids (AAs, such as alanine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and serine), but have a limited ability to form de novo arginine and vitamin D3. Compared with dogs, cats have greater endogenous nitrogen losses and higher dietary requirements for AAs (particularly arginine, taurine, and tyrosine), B-complex vitamins (niacin, thiamin, folate, and biotin), and choline; exhibit greater rates of gluconeogenesis; are less sensitive to AA imbalances and antagonism; are more capable of concentrating urine through renal reabsorption of water; and cannot tolerate high levels of dietary starch due to limited pancreatic α-amylase activity. In addition, dogs can form sufficient taurine from cysteine (for most breeds); arachidonic acid from linoleic acid; eicosapentaenoic acid and docosahexaenoic acid from α-linolenic acid; all-trans-retinol from β-carotene; and niacin from tryptophan. These synthetic pathways, however, are either absent or limited in all cats due to (a) no or low activities of key enzymes (including pyrroline-5-carboxylate synthase, cysteine dioxygenase, ∆6-desaturase, β-carotene dioxygenase, and quinolinate phosphoribosyltransferase) and (b) diversion of intermediates to other metabolic pathways. Dogs can thrive on one large meal daily, select high-fat over low-fat diets, and consume sweet substances. By contrast, cats eat more frequently during light and dark periods, select high-protein over low-protein diets, refuse dry food, enjoy a consistent diet, and cannot taste sweetness. This knowledge guides the feeding and care of dogs and cats, as well as the manufacturing of their foods. As abundant sources of essential nutrients, animal-derived foodstuffs play important roles in optimizing the growth, development, and health of the companion animals.
Collapse
Affiliation(s)
- Peng Li
- North American Renderers Association, Alexandria, VA, 22314, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
15
|
Wu G. Roles of Nutrients in the Brain Development, Cognitive Function, and Mood of Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:177-202. [PMID: 38625529 DOI: 10.1007/978-3-031-54192-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The brain is the central commander of all physical activities and the expression of emotions in animals. Its development and cognitive health critically depend on the neural network that consists of neurons, glial cells (namely, non-neuronal cells), and neurotransmitters (communicators between neurons). The latter include proteinogenic amino acids (e.g., L-glutamate, L-aspartate, and glycine) and their metabolites [e.g., γ-aminobutyrate, D-aspartate, D-serine, nitric oxide, carbon monoxide, hydrogen sulfide, and monoamines (e.g., dopamine, norepinephrine, epinephrine, and serotonin)]. In addition, some non-neurotransmitter metabolites of amino acids, such as taurine, creatine, and carnosine, also play important roles in brain development, cognitive health, behavior, and mood of dogs and cats. Much evidence shows that cats require dietary ω3 (α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid) and ω6 (linoleic acid and arachidonic acid) polyunsaturated fatty acids for the development of the central nervous system. As an essential component of membranes of neurons and glial cells, cholesterol is also crucial for cognitive development and function. In addition, vitamins and minerals are required for the metabolism of AAs, lipids, and glucose in the nervous system, and also act as antioxidants. Thus, inadequate nutrition will lead to mood disorders. Some amino acids (e.g., arginine, glycine, methionine, serine, taurine, tryptophan, and tyrosine) can help to alleviate behavioral and mood disorders (e.g., depression, anxiety and aggression). As abundant providers of all these functional amino acids and lipids, animal-sourced foods (e.g., liver, intestinal mucosa, and meat) play important roles in brain development, cognitive function, and mood of dogs and cats. This may explain, in part, why dogs and cats prefer to eat visceral organs of their prey. Adequate provision of nutrients in all phases of the life cycle (pregnancy, lactation, postnatal growth, and adulthood) is essential for optimizing neurological health, while preventing cognitive dysfunction and abnormal behavior.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
16
|
Perez ÉS, Duran BOS, Zanella BTT, Dal-Pai-Silva M. Review: Understanding fish muscle biology in the indeterminate growth species pacu (Piaractus mesopotamicus). Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111502. [PMID: 37572733 DOI: 10.1016/j.cbpa.2023.111502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The muscle phenotype of fish is regulated by numerous factors that, although widely explored, still need to be fully understood. In this context, several studies aimed to unravel how internal and external stimuli affect the muscle growth of these vertebrates. The pacu (Piaractus mesopotamicus) is a species of indeterminate muscular growth that quickly reaches high body weight. For this reason, it adds great importance to the productive sector, along with other round fish. In this context, we aimed to compile studies on fish biology and skeletal muscle growth, focusing on studies by our research group that used pacu as an experimental model along with other species. Based on these studies, new muscle phenotype regulators were identified and explored in vivo, in vitro, and in silico studies, which strongly contribute to advances in understanding muscle growth mechanisms with future applications in the productive sector.
Collapse
Affiliation(s)
- Érika Stefani Perez
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
17
|
Ma Y, Su Z, Chen F, Xu C, Jiang K, An W, Zhang G, Xie D, Wang S, Dong Y, Li Y. Terrestrial Compound Protein Replacing Dietary Fishmeal Improved Digestive Enzyme Activity, Immune Response, Intestinal Microflora Composition, and Protein Metabolism of Golden Pompano ( Trachinotus ovatus). AQUACULTURE NUTRITION 2023; 2023:2716724. [PMID: 37829512 PMCID: PMC10567510 DOI: 10.1155/2023/2716724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
Terrestrial compound protein (Cpro) can be potentially used to replace fishmeal (FM) in the marine carnivorous teleost, golden pompano (Trachinotus ovatus). Four isonitrogenous (45%) and isolipidic (12%) diets named FM30, AP80, PP80, and CP80 were formulated. FM30 (control) contained 30% FM and 25% basic protein, while AP80, PP80, and CP80 only contained 6% FM, where 80% FM and 25% basic protein of control diet were completely replaced by animal protein, plant protein, and Cpro, respectively. After golden pompano juveniles (initial weight: 10.32 ± 0.09 g) were, respectively, fed the four diets in floating sea cages for 10 weeks, the growth performance, intestinal digestive enzyme activity, and immune responses, protein metabolism indices of the CP80 group were similar to or better than those of the FM30 group (P > 0.05), and significantly better than those of the AP80 and PP80 groups. Specifically, the weight gain (WG), feed conversion ratio (FCR), activity of alanine transaminase (ALT), growth hormone (GH), and insulin-like growth factor-1 (IGF-1) contents of serum, mRNA level of interleukin-10 (il-10), zonula occludens-2 (zo-2), claudin-3, claudin-12, and eukaryotic translation initiation factor 4G (eif4g) were significantly higher, and the activity of α-amylase (AMS), lipase (LPS) in the foregut and midgut, interleukin-8 (il-8) expression in the intestine was significantly lower than that in the CP80 group, compared with those in AP80 and PP80 groups (P < 0.05). Moreover, the intestinal microflora composition of golden pompano fed with the CP80 diet was improved. Specifically, at the phylum level, the relative abundance of harmful bacterial strains cyanobacteria and TM7 of CP80 group was similar to those of FM30 group (P > 0.05), but was significantly lower than those of AP80 and PP80 groups (P < 0.05). At the genus level, the beneficial bacterial strains Agrobacterium and Blantia of CP80 group were also similar to those of FM30 group (P < 0.05), which were significantly higher than those of AP80 and PP80 groups, but the beneficial bacterial strains Bifidobacterium and Devosia of CP80 group were significantly higher than that in the other groups (P < 0.05). Besides, in diet CP80, the contents of amino acids and anti-nutritional factor, as well as the in vitro digestion rate were comparable to those of FM30, and the anti-nutritional factor content was between AP80 and PP80; total essential amino acids (EAAs) and methionine contents were higher than those in AP80, the glycine content was higher than that in PP80. Taken together, these results indicated that the CP80 diet had better amino acid composition and relatively low content of anti-nutritional factors, as well as high-digestion rate, and thus leads to the fish fed CP80 displaying improved effects in digestive enzyme activity, immune response, protein metabolism, and intestinal microbiota composition, which may be the important reasons to explain why that 80% of FM can be replaced by Cpro in the diet of golden pompano.
Collapse
Affiliation(s)
- Yongcai Ma
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zeliang Su
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Fang Chen
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Chao Xu
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Kunsheng Jiang
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenqiang An
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Guanrong Zhang
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Dizhi Xie
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yewei Dong
- College of Animal Science and Technology of Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuanyou Li
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
18
|
Hissen KL, He W, Wu G, Criscitiello MF. Immunonutrition: facilitating mucosal immune response in teleost intestine with amino acids through oxidant-antioxidant balance. Front Immunol 2023; 14:1241615. [PMID: 37841275 PMCID: PMC10570457 DOI: 10.3389/fimmu.2023.1241615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
Comparative animal models generate fundamental scientific knowledge of immune responses. However, these studies typically are conducted in mammals because of their biochemical and physiological similarity to humans. Presently, there has been an interest in using teleost fish models to study intestinal immunology, particularly intestinal mucosa immune response. Instead of targeting the pathogen itself, a preferred approach for managing fish health is through nutrient supplementation, as it is noninvasive and less labor intensive than vaccine administrations while still modulating immune properties. Amino acids (AAs) regulate metabolic processes, oxidant-antioxidant balance, and physiological requirements to improve immune response. Thus, nutritionists can develop sustainable aquafeeds through AA supplementation to promote specific immune responses, including the intestinal mucosa immune system. We propose the use of dietary supplementation with functional AAs to improve immune response by discussing teleost fish immunology within the intestine and explore how oxidative burst is used as an immune defense mechanism. We evaluate immune components and immune responses in the intestine that use oxidant-antioxidant balance through potential selection of AAs and their metabolites to improve mucosal immune capacity and gut integrity. AAs are effective modulators of teleost gut immunity through oxidant-antioxidant balance. To incorporate nutrition as an immunoregulatory means in teleost, we must obtain more tools including genomic, proteomic, nutrition, immunology, and macrobiotic and metabonomic analyses, so that future studies can provide a more holistic understanding of the mucosal immune system in fish.
Collapse
Affiliation(s)
- Karina L. Hissen
- Comparative Immunogenetics Laboratory Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Wenliang He
- Amino Acid Laboratory, Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Guoyao Wu
- Amino Acid Laboratory, Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Michael F. Criscitiello
- Comparative Immunogenetics Laboratory Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
19
|
Xie S, Li X, Yang Y, Guo C, Zhang X, Zhu T, Luo J, Yang Z, Zhao W, Cui Y, Jiao L, Zhou Q, Tocher DR, Jin M. Effects of dietary isoleucine level on growth and expression of genes related to nutritional and physiological metabolism of swimming crab (Portunus trituberculatus). AQUACULTURE 2023; 574:739700. [DOI: 10.1016/j.aquaculture.2023.739700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Natnan ME, Low CF, Chong CM, Bunawan H, Baharum SN. Oleic acid as potential immunostimulant in metabolism pathways of hybrid grouper fingerlings (Epinephelus fuscoguttatus × Epinephelus lanceolatus) infected with Vibrio vulnificus. Sci Rep 2023; 13:12830. [PMID: 37553472 PMCID: PMC10409752 DOI: 10.1038/s41598-023-40096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 08/04/2023] [Indexed: 08/10/2023] Open
Abstract
Grouper culture has been expanding in Malaysia due to the huge demand locally and globally. However, due to infectious diseases such as vibriosis, the fish mortality rate increased, which has affected the production of grouper. Therefore, this study focuses on the metabolic profiling of surviving infected grouper fed with different formulations of fatty acid diets that acted as immunostimulants for the fish to achieve desirable growth and health performance. After a six-week feeding trial and one-week post-bacterial challenge, the surviving infected grouper was sampled for GC-MS analysis. For metabolite extraction, a methanol/chloroform/water (2:2:1.8) extraction method was applied to the immune organs (spleen and liver) of surviving infected grouper. The distribution patterns of metabolites between experimental groups were then analyzed using a metabolomics platform. A total of 50 and 81 metabolites were putatively identified from the spleen and liver samples, respectively. Our further analysis identified glycine, serine, and threonine metabolism, and alanine, aspartate and glutamate metabolism had the most impacted pathways, respectively, in spleen and liver samples from surviving infected grouper. The metabolites that were highly abundant in the spleen found in these pathways were glycine (20.9%), l-threonine (1.0%) and l-serine (0.8%). Meanwhile, in the liver l-glutamine (1.8%) and aspartic acid (0.6%) were found to be highly abundant. Interestingly, among the fish diet groups, grouper fed with oleic acid diet produced more metabolites with a higher percent area compared to the control diets. The results obtained from this study elucidate the use of oleic acid as an immunostimulant in fish feed formulation affects more various immune-related metabolites than other formulated feed diets for vibriosis infected grouper.
Collapse
Affiliation(s)
- Maya Erna Natnan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Chen-Fei Low
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Chou-Min Chong
- Laboratory of Immunogenomics, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hamidun Bunawan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
21
|
Chomová N, Pavloková S, Sondorová M, Mudroňová D, Fečkaninová A, Popelka P, Koščová J, Žitňan R, Franc A. Development and evaluation of a fish feed mixture containing the probiotic Lactiplantibacillus plantarum prepared using an innovative pellet coating method. Front Vet Sci 2023; 10:1196884. [PMID: 37377950 PMCID: PMC10291687 DOI: 10.3389/fvets.2023.1196884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Due to the intensification of fish farming and the associated spread of antimicrobial resistance among animals and humans, it is necessary to discover new alternatives in the therapy and prophylaxis of diseases. Probiotics appear to be promising candidates because of their ability to stimulate immune responses and suppress the growth of pathogens. Methods The aim of this study was to prepare fish feed mixtures with various compositions and, based on their physical characteristics (sphericity, flow rate, density, hardness, friability, and loss on drying), choose the most suitable one for coating with the selected probiotic strain Lactobacillus plantarum R2 Biocenol™ CCM 8674 (new nom. Lactiplantibacillus plantarum). The probiotic strain was examined through sequence analysis for the presence of plantaricin- related genes. An invented coating technology based on a dry coating with colloidal silica followed by starch hydrogel containing L. plantarum was applied to pellets and tested for the viability of probiotics during an 11-month period at different temperatures (4°C and 22°C). The release kinetics of probiotics in artificial gastric juice and in water (pH = 2 and pH = 7) were also determined. Chemical and nutritional analyses were conducted for comparison of the quality of the control and coated pellets. Results and discussion The results showed a gradual and sufficient release of probiotics for a 24-hour period, from 104 CFU at 10 mi up to 106 at the end of measurement in both environments. The number of living probiotic bacteria was stable during the whole storage period at 4°C (108), and no significant decrease in living probiotic bacteria was observed. Sanger sequencing revealed the presence of plantaricin A and plantaricin EF. Chemical analysis revealed an increase in multiple nutrients compared to the uncoated cores. These findings disclose that the invented coating method with a selected probiotic strain improved nutrient composition and did not worsen any of the physical characteristics of pellets. Applied probiotics are also gradually released into the environment and have a high survival rate when stored at 4°C for a long period of time. The outputs of this study confirm the potential of prepared and tested probiotic fish mixtures for future use in in vivo experiments and in fish farms for the prevention of infectious diseases.
Collapse
Affiliation(s)
- Natália Chomová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Sylvie Pavloková
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Miriam Sondorová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Adriána Fečkaninová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Peter Popelka
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Jana Koščová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Rudolf Žitňan
- Research Institute for Animal Production, National Agricultural and Food Center, Nitra, Slovakia
| | - Aleš Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| |
Collapse
|
22
|
Furuya WM, da Cruz TP, Gatlin DM. Amino Acid Requirements for Nile Tilapia: An Update. Animals (Basel) 2023; 13:ani13050900. [PMID: 36899757 PMCID: PMC10000143 DOI: 10.3390/ani13050900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
This review aims to consolidate the relevant published data exploring the amino acid (AA) requirements of Nile tilapia, Oreochromis niloticus, and to reach a new set of recommendations based on those data. There are still inconsistencies in lysine, sulfur-containing AA, threonine, tryptophan, branched-chain AA, and total aromatic AA recommendations in data that have appeared since 1988. This review finds that strain, size, basal diet composition, and assessment method may have contributed to the inconsistencies in AA recommendations. Currently, the expansion of precision AA nutrition diets for Nile tilapia is receiving more attention because of the demand for flexibility in widespread ingredient substitutions which will allow compliance with environmentally sustainable principles. Such approaches involve changes in diet ingredient composition with possible inclusions of non-bound essential and non-essential AAs. Increasing the inclusion of non-bound AAs into Nile tilapia diets may modify protein dynamics and influence AA requirements. Emerging evidence indicates that not only essential but also some non-essential amino acids regulate growth performance, fillet yield, and flesh quality, as well as reproductive performance, gut morphology, intestinal microbiota, and immune responses. Thus, this review considers current AA recommendations for Nile tilapia and proposes refinements that may better serve the needs of the tilapia industry.
Collapse
Affiliation(s)
- Wilson Massamitu Furuya
- Department of Animal Science, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil
- Correspondence: ; Tel.: +55-42-3220-3082
| | - Thais Pereira da Cruz
- Animal Science Graduate Degree Program, State University of Maringá, Maringá 87020-900, Brazil
| | - Delbert Monroe Gatlin
- Department of Ecology and Conservation Biology, Texas A&M University System, College Station, TX 77840, USA
| |
Collapse
|
23
|
Mu H, Yang C, Zhang Y, Chen S, Wang P, Yan B, Zhang Q, Wei C, Gao H. Dietary β-Hydroxy- β-Methylbutyrate Supplementation Affects Growth Performance, Digestion, TOR Pathway, and Muscle Quality in Kuruma Shrimp ( Marsupenaeus japonicas) Fed a Low Protein Diet. AQUACULTURE NUTRITION 2023; 2023:9889533. [PMID: 36860981 PMCID: PMC9973151 DOI: 10.1155/2023/9889533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
An 8-week feeding trial was performed to evaluate the effects of dietary β-hydroxy-β-methylbutyrate (HMB) supplementation on growth performance and muscle quality of kuruma shrimp (Marsupenaeus japonicas) (initial weight: 2.00 ± 0.01 g) fed a low protein diet. The positive control diet (HP) with 490 g/kg protein and negative control diet (LP) with 440 g/kg protein were formulated. Based on the LP, 0.25, 0.5, 1, 2 and 4 g/kg β-hydroxy-β-methylbutyrate calcium were supplemented to design the other five diets named as HMB0.25, HMB0.5, HMB1, HMB2 and HMB4, respectively. Results showed that compared with the shrimp fed LP, the HP, HMB1 and HMB2 groups had significantly higher weight gain and specific growth rate, while significantly lower feed conversion ratio (p < 0.05). Meanwhile, intestinal trypsin activity was significantly elevated in the above three groups than that of the LP group. Higher dietary protein level and HMB inclusion upregulated the expressions of target of rapamycin, ribosomal protein S6 kinase, phosphatidylinositol 3-kinase, and serine/threonine-protein kinase in shrimp muscle, accompanied by the increases in most muscle free amino acids contents. Supplementation of 2 g/kg HMB in a low protein diet improved muscle hardness and water holding capacity of shrimp. Total collagen content in shrimp muscle increased with increasing dietary HMB inclusion. Additionally, dietary inclusion of 2 g/kg HMB significantly elevated myofiber density and sarcomere length, while reduced myofiber diameter. In conclusion, supplementation of 1-2 g/kg HMB in a low protein diet improved the growth performance and muscle quality of kuruma shrimp, which may be ascribed to the increased trypsin activity and activated TOR pathway, as well as elevated muscle collagen content and changed myofiber morphology caused by dietary HMB.
Collapse
Affiliation(s)
- Hua Mu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Chenbin Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shengdi Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Panpan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Qingqi Zhang
- Ganyu Jiaxin Fishery Technical Development Co., Ltd., Lianyungang 222100, China
| | - Chaoqing Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| |
Collapse
|
24
|
He W, Li X, Wu G. Dietary glycine supplementation improves the growth performance of 110- to 240-g (phase II) hybrid striped bass (Morone saxatilis ♀× Morone chrysops ♂) fed soybean meal-based diets. J Anim Sci 2023; 101:skad400. [PMID: 38038705 PMCID: PMC10734566 DOI: 10.1093/jas/skad400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023] Open
Abstract
We recently reported that supplementing glycine to soybean meal (SBM)-based diets is necessary for optimum growth of 5- to 40-g (phase I) hybrid striped bass (HSB). The present study tested the hypothesis that supplementing glycine to SBM-based diets may enhance the growth of 110- to 240-g (phase II) HSB. HSB (the initial body weight of approximately 110 g) were fed an SBM (58%)-based diet supplemented with 0%, 1%, or 2% of glycine, with l-alanine serving as the isonitrogenous control. There were four tanks per dietary group, with four fish per tank. The fish were fed their respective diets to apparent satiation twice daily. The feed intake and body weight of fish were recorded daily and every 2 wk, respectively. At the end of the 56-d feeding trial, plasma and tissue samples were collected to determine amino acid concentrations and histological alterations, and tissues were used to measure the oxidation of l-glutamate, l-glutamine, l-aspartate, and glycine. Results showed that dietary supplementation with 1% and 2% glycine dose-dependently increased (P < 0.05) the concentration of glycine in the plasma of HSB by 48% and 99%, respectively. Compared with the 0%-glycine group, dietary supplementation with 1% glycine did not affect (P > 0.05) the feed intake of HSB but increased (P < 0.05) their final body weight, weight gain, and gain:feed ratio during the whole period by 13%, 29%, and 21%, respectively. Compared with the 1% glycine group, dietary supplementation with 2% glycine increased (P < 0.05) the feed intake, final body weight, and weight gain of HSB by 13%, 7%, and 14%, respectively. Compared with the 0%-glycine group, fish fed with the 1%-glycine and 2%-glycine diets had a greater (P < 0.05) villus height in the proximal intestine, when compared with the 0%-glycine group. Collectively, these results indicated that SBM-based diets did not provide sufficient glycine for phase II HSB (110 to 240 g) and that dietary glycine supplementation is essential for their optimum growth and intestinal structure.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Xinyu Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
25
|
Li X, He W, Wu G. Dietary glycine supplementation enhances the growth performance of hybrid striped bass (Morone saxatilis ♀× Morone chrysops ♂) fed soybean meal-based diets. J Anim Sci 2023; 101:skad345. [PMID: 37801645 PMCID: PMC10635675 DOI: 10.1093/jas/skad345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
This study was conducted to test the hypothesis that supplementing 1% and 2% glycine to soybean meal (SBM)-based diets can improve the growth performance of juvenile hybrid striped bass (HSB). The basal diets contained 15% fishmeal and 58% SBM (DM basis). Alanine was used as the isonitrogenous control in different diets. All diets contained 44% crude protein and 10% lipids (DM basis). There were four tanks (15 fish per tank) per dietary group, with the mean of the initial body weight (BW) of fish being 5.3 g. Fish were fed to apparent satiation twice daily, and their BW was recorded every 2 wk. The trial lasted for 8 wk. Results indicated that the BW, weight gain, protein efficiency ratio, and retention of dietary lipids in fish were enhanced (P < 0.05) by dietary supplementation with 1% or 2% glycine. In addition, dietary supplementation with glycine did not affect (P > 0.05) the feed intake of fish but increased (P < 0.05) the retention of dietary nitrogen, most amino acids, and phosphorus in the body, compared to the 0% glycine group. Dietary supplementation with 1% and 2% glycine dose-dependently augmented (P < 0.05) the villus height of the proximal intestine and reduced the submucosal thickness of the gut, while preventing submucosal and lamina propria hemorrhages. Compared with the 0% glycine group, dietary supplementation with 1% or 2% glycine decreased (P < 0.05) the proportion of skeletal-muscle fibers with diameters of 40 to 60 µm but increased (P < 0.05) the proportion of skeletal-muscle fibers with diameters of 80 to 100 µm and > 100 µm. Collectively, these findings indicate that glycine in SBM-based diets is inadequate for maximum growth of juvenile HSB and that dietary supplementation with 1% or 2% glycine is required to improve their weight gain and feed efficiency. Glycine is a conditionally essential amino acid for this fish.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
26
|
Ji Y, Hou Y, Blachier F, Wu Z. Editorial: Amino acids in intestinal growth and health. Front Nutr 2023; 10:1172548. [PMID: 37032780 PMCID: PMC10073646 DOI: 10.3389/fnut.2023.1172548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- *Correspondence: Yongqing Hou
| | - François Blachier
- The National Institute for Agriculture, Alimentation and Environment, Nutrition Physiology and Ingestive Behavior Unit, Université Paris-Saclay/AgroParistech/INRAE, Paris, France
- François Blachier
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Zhenlong Wu
| |
Collapse
|
27
|
Jang BI, Olowe OS, Cho SH. Evaluation of the Optimal Protein Required in Granulated Microdiets for Rockfish ( Sebastes schlegeli) Larvae. AQUACULTURE NUTRITION 2022; 2022:2270384. [PMID: 36860461 PMCID: PMC9973165 DOI: 10.1155/2022/2270384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/18/2023]
Abstract
Protein is an essential nutrient that supports fish growth, and the inadequacy in formulating their diets with an optimum protein level can deteriorate their growth performance. The protein requirement in granulated microdiets was estimated for rockfish (Sebastes schlegeli) larvae. Five granulated microdiets (CP42, CP46, CP50, CP54, and CP58) containing 42% to 58% crude protein levels with a 4% increment at a constant gross energy level (18.4 kJ/g diets) were prepared. The formulated microdiets were also compared with imported microdiets, Inve (IV) and love larva (LL) from Belgium and Japan, respectively, and a locally marketed feed (crumble). At the cessation of the study, the survival of larval fish was not different (P > 0.05), but the weight gain (%) of fish fed the CP54, IV, and LL diets was significantly (P < 0.0001) higher than that of larval fish fed the CP58, CP50, CP46, and CP42 diets. The crumble diet achieved the poorest weight gain of larval fish. Furthermore, the total length of rockfish larvae fed the IV and LL diets was significantly (P < 0.0001) longer than that of the fish fed all other diets. The chemical composition of the fish's whole body, except for ash content, was not influenced by the experimental diets. The experimental diets affected essential amino acid profiles, such as histidine, leucine, and threonine, and nonessential amino acid profiles, such as alanine, glutamic acid, and proline of the whole body of larval fish. Conclusively, based on the broken line analysis of weight gain of larval rockfish, protein requirement in granulated microdiets was estimated to be 54.0%.
Collapse
Affiliation(s)
- Bok Il Jang
- Chunhajeil Feed, Haman-gun, Gyeongsangnam-do, Republic of Korea
| | - Olumide Samuel Olowe
- Department of Convergence Education of Maritime & Ocean Culture-Contents, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Sung Hwoan Cho
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| |
Collapse
|
28
|
Effects of Submerged Macrophytes on the Growth, Morphology, Nutritional Value, and Flavor of Cultured Largemouth Bass ( Micropterus salmoides). Molecules 2022; 27:molecules27154927. [PMID: 35956873 PMCID: PMC9370443 DOI: 10.3390/molecules27154927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
Aquaculture environment plays important roles in regulating the growth, morphology, nutrition, and flavor of aquatic products. The present study investigated growth, morphology, nutrition, and flavor formation in largemouth bass (Micropterus salmoides) cultured in the ponds with (EM group) and without (M group) the submerged macrophytes (Elodea nuttallii). Fish in the EM group showed a significantly greater body length, higher growth rate, and lower hepatosomatic index than those in the M group (p< 0.05). Moreover, compared with fish in the M group, those in the EM group showed improved muscle quality with significantly elevated levels of crude protein, total free and hydrolysable amino acids, and polyunsaturated fatty acids (p < 0.05). Specifically, certain amino acids related to flavor (Glu, Asp, Ala, and Arg) and valuable fatty acids (C18:2, C18:3n3, C20:3n3, and C22:6) were more abundant in the EM group (p < 0.05). In addition, the levels of 19 volatile (p < 0.05) were significantly higher in the EM group than in the M group. Therefore, E. nuttallii significantly improved growth, morphological traits, nutritional components, and characteristic flavor in largemouth bass, indicating the superior nutritional value and palatability of fish cultured with submerged macrophytes.
Collapse
|
29
|
Teodósio R, Aragão C, Conceição LEC, Dias J, Engrola S. Metabolic Fate Is Defined by Amino Acid Nature in Gilthead Seabream Fed Different Diet Formulations. Animals (Basel) 2022; 12:1713. [PMID: 35804612 PMCID: PMC9264960 DOI: 10.3390/ani12131713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
The sustainability of the Aquaculture industry relies on optimising diets to promote nitrogen retention and maximise fish growth. The aim of this study was to assess how different dietary formulations influence the bioavailability and metabolic fate of distinct amino acids in gilthead seabream juveniles. Amino acids (lysine, tryptophan, and methionine) were selected based on their ketogenic and/or glucogenic nature. Seabream were fed practical diets with different protein (44 and 40%) and lipid contents (21 and 18%): 44P21L, 44P18L, 40P21L, and 40P18L. After three weeks of feeding, the fish were tube-fed the correspondent diet labelled with 14C-lysine, 14C-tryptophan, or 14C-methionine. The amino acid utilisation was determined based on the evacuation, retention in gut, liver, and muscle, and the catabolism of the tracer. The metabolic fate of amino acids was mainly determined by their nature. Tryptophan was significantly more evacuated than lysine or methionine, indicating a lower availability for metabolic purposes. Methionine was more retained in muscle, indicating its higher availability. Lysine was mainly catabolised, suggesting that catabolism is preferentially ketogenic, even when this amino acid is deficient in diets. This study underpins the importance of optimising diets considering the amino acids' bioavailability and metabolic fate to maximise protein retention in fish.
Collapse
Affiliation(s)
- Rita Teodósio
- Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (R.T.); (C.A.)
- Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Claúdia Aragão
- Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (R.T.); (C.A.)
- Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Luís E. C. Conceição
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal; (L.E.C.C.); (J.D.)
| | - Jorge Dias
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal; (L.E.C.C.); (J.D.)
| | - Sofia Engrola
- Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (R.T.); (C.A.)
| |
Collapse
|
30
|
The Inclusion of Jujube By-Products in Animal Feed: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14137882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Given the increasing demands for the quality and safety of animal-derived foods and the strict regulations on the use of antibiotics in animal feed, the use of functional feed additives has attracted increasing research and development. Jujube fruit is an energy-rich food with antioxidant, antibacterial, and antidiarrheal properties. With the expanding areas of cultivation to jujube trees and the intensive processing of jujube in Asia, especially in China, a large number of jujube by-products are produced. These by-products are used widely in animal feed for pigs, chicken, cattle, goats, and fish, as they improve growth performance, promote digestive tract health, and enhance the quality of animal products. This article reviews the nutritional components and benefits of jujube by-products and their potential incorporation in animal feed. The aim of this review is to introduce jujube by-products as a novel supplement or partial dietary replacement in the animal feed industry.
Collapse
|
31
|
An NMR-Based Metabolomics Assessment of the Effect of Combinations of Natural Feed Items on Juvenile Red Drum, Sciaenops ocellatus. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study evaluated the effects of seven diets composed of natural feed components (chopped fish, shrimp, and squid) alone or in combination on the liver metabolite profile of juvenile red drum (Sciaenops ocellatus) cultured in a 24-tank recirculating aquaculture system over the course of 12 weeks using Nuclear Magnetic Resonance (NMR)-based metabolomics. Experimental diets included fish (F), shrimp (SH), squid (SQ), fish and shrimp (FSH), fish and squid (FSQ), shrimp and squid (SHSQ), fish, shrimp, and squid (FSHSQ). A commercial fishmeal-based pelleted diet was used as a control. Fish were fed isocalorically. Red drum liver samples were collected at five different time points: T0, before the start of the trial (n = 12), and subsequently every 3 weeks over the course of 12 weeks (T3, T6, T9, T12), with n = 9 fish/diet/time point. Polar liver extracts were analyzed by NMR-based metabolomics. Multivariate statistical analyses (PCA, PLS-DA) revealed that red drum fed the F diet had a distinct liver metabolite profile from fish fed the other diets, with those fed SH, SQ and the combination diets displaying greater similarities in their metabolome. Results show that 19 metabolites changed significantly among the different dietary treatments, including amino acids and amino acid derivatives, quaternary amines and methylamines, carbohydrates and phospholipids. Specifically, γ-butyrobetaine, N-formimino-L-glutamate (FIGLU), sarcosine and beta-alanine were among the most discriminating metabolites. Significant correlations were found between metabolites and six growth performance parameters (final body weight, total length, condition factor, liver weight, hepatosomatic index, and eviscerated weight). Metabolites identified in this study constitute potential candidates for supplementation in fish feeds for aquaculture and optimization of existing formulations. Additionally, we identified a quaternary amine, γ-butyrobetaine as a potential biomarker of shrimp consumption in red drum. These results warrant further investigation and biomarker validation and have the potential for broader applicability outside of the aquaculture field in future investigations in wild red drum populations and potentially other carnivorous marine fishes.
Collapse
|
32
|
Nutrition and Metabolism: Foundations for Animal Growth, Development, Reproduction, and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:1-24. [PMID: 34807434 DOI: 10.1007/978-3-030-85686-1_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Consumption of high-quality animal protein plays an important role in improving human nutrition, growth, development, and health. With an exponential growth of the global population, demands for animal-sourced protein are expected to increase by 60% between 2021 and 2050. In addition to the production of food protein and fiber (wool), animals are useful models for biomedical research to prevent and treat human diseases and serve as bioreactors to produce therapeutic proteins. For a high efficiency to transform low-quality feedstuffs and forages into high-quality protein and highly bioavailable essential minerals in diets of humans, farm animals have dietary requirements for energy, amino acids, lipids, carbohydrates, minerals, vitamins, and water in their life cycles. All nutrients interact with each other to influence the growth, development, and health of mammals, birds, fish, and crustaceans, and adequate nutrition is crucial for preventing and treating their metabolic disorders (including metabolic diseases) and infectious diseases. At the organ level, the small intestine is not only the terminal site for nutrient digestion and absorption, but also intimately interacts with a diverse community of intestinal antigens and bacteria to influence gut and whole-body health. Understanding the species and metabolism of intestinal microbes, as well as their interactions with the intestinal immune systems and the host intestinal epithelium can help to mitigate antimicrobial resistance and develop prebiotic and probiotic alternatives to in-feed antibiotics in animal production. As abundant sources of amino acids, bioactive peptides, energy, and highly bioavailable minerals and vitamins, animal by-product feedstuffs are effective for improving the growth, development, health, feed efficiency, and survival of livestock and poultry, as well as companion and aquatic animals. The new knowledge covered in this and related volumes of Adv Exp Med Biol is essential to ensure sufficient provision of animal protein for humans, while helping reduce greenhouse gas emissions, minimize the urinary and fecal excretion of nitrogenous and other wastes to the environment, and sustain animal agriculture (including aquaculture).
Collapse
|
33
|
Functional Molecules of Intestinal Mucosal Products and Peptones in Animal Nutrition and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:263-277. [PMID: 34807446 DOI: 10.1007/978-3-030-85686-1_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is growing interest in the use of intestinal mucosal products and peptones (partial protein hydrolysates) to enhance the food intake, growth, development, and health of animals. The mucosa of the small intestine consists of the epithelium, the lamina propria, and the muscularis mucosa. The diverse population of cells (epithelial, immune, endocrine, neuronal, vascular, and elastic cells) in the intestinal mucosa contains not only high-quality food protein (e.g., collagen) but also a wide array of low-, medium-, and high-molecular-weight functional molecules with enormous nutritional, physiological, and immunological importance. Available evidence shows that intestinal mucosal products and peptones provide functional substances, including growth factors, enzymes, hormones, large peptides, small peptides, antimicrobials, cytokines, bioamines, regulators of nutrient metabolism, unique amino acids (e.g., taurine and 4-hydroxyproline), and other bioactive substances (e.g., creatine and glutathione). Therefore, dietary supplementation with intestinal mucosal products and peptones can cost-effectively improve feed intake, immunity, health (the intestine and the whole body), well-being, wound healing, growth performance, and feed efficiency in livestock, poultry, fish, and crustaceans. In feeding practices, an inclusion level of an intestinal mucosal product or a mucosal peptone product at up to 5% (as-fed basis) is appropriate in the diets of these animals, as well as companion and zoo animals.
Collapse
|
34
|
Wu G, Bazer FW, Satterfield MC, Gilbreath KR, Posey EA, Sun Y. L-Arginine Nutrition and Metabolism in Ruminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:177-206. [PMID: 34807443 DOI: 10.1007/978-3-030-85686-1_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
L-Arginine (Arg) plays a central role in the nitrogen metabolism (e.g., syntheses of protein, nitric oxide, polyamines, and creatine), blood flow, nutrient utilization, and health of ruminants. This amino acid is produced by ruminal bacteria and is also synthesized from L-glutamine, L-glutamate, and L-proline via the formation of L-citrulline (Cit) in the enterocytes of young and adult ruminants. In pre-weaning ruminants, most of the Cit formed de novo by the enterocytes is used locally for Arg production. In post-weaning ruminants, the small intestine-derived Cit is converted into Arg primarily in the kidneys and, to a lesser extent, in endothelial cells, macrophages, and other cell types. Under normal feeding conditions, Arg synthesis contributes 65% and 68% of total Arg requirements for nonpregnant and late pregnany ewes fed a diet with ~12% crude protein, respectively, whereas creatine production requires 40% and 36% of Arg utilized by nonpregnant and late pregnant ewes, respectively. Arg has not traditionally been considered a limiting nutrient in diets for post-weaning, gestating, or lactating ruminants because it has been assumed that these animals can synthesize sufficient Arg to meet their nutritional and physiological needs. This lack of a full understanding of Arg nutrition and metabolism has contributed to suboptimal efficiencies for milk production, reproductive performance, and growth in ruminants. There is now considerable evidence that dietary supplementation with rumen-protected Arg (e.g., 0.25-0.5% of dietary dry matter) can improve all these production indices without adverse effects on metabolism or health. Because extracellular Cit is not degraded by microbes in the rumen due to the lack of uptake, Cit can be used without any encapsulation as an effective dietary source for the synthesis of Arg in ruminants, including dairy and beef cows, as well as sheep and goats. Thus, an adequate amount of supplemental rumen-protected Arg or unencapsulated Cit is necessary to support maximum survival, growth, lactation, reproductive performance, and feed efficiency, as well as optimum health and well-being in all ruminants.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| | - Fuller W Bazer
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - M Carey Satterfield
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kyler R Gilbreath
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Erin A Posey
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
35
|
Hepatic Glucose Metabolism and Its Disorders in Fish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:207-236. [PMID: 34807444 DOI: 10.1007/978-3-030-85686-1_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbohydrate, which is the most abundant nutrient in plant-sourced feedstuffs, is an economically indispensable component in commercial compound feeds for fish. This nutrient can enhance the physical quality of diets and allow for pellet expansion during extrusion. There is compelling evidence that an excess dietary intake of starch causes hepatic disorders, thereby further reducing the overall food consumption and growth performance of fish species. Among the severe metabolic disturbances are glycogenic hepatopathy (hepatomegaly caused by the excessive accumulation of glycogen in hepatocytes) and hepatic steatosis (the accumulation of large vacuoles of triacylglycerols in hepatocytes). The development of those disorders is mainly due to the limited ability of fish to oxidize glucose and control blood glucose concentration. The prolonged elevations of blood glucose increase glucose intake by the liver, and excess glucose is stored either as glycogen through glycogenesis in hepatocytes or as triglycerides via lipogenesis in tissues, depending on the species. In some fish species (e.g., largemouth bass), the liver has a low ability to regulate glycolysis, gluconeogenesis, and glycogen breakdown in response to high starch intake. For most species of fish, the liver size increases with lipid or glycogen accumulation when they have a high starch intake. It is a challenge to develop the same set of diagnostic criteria for all fish species as their physiology or metabolic patterns differ. Although glycogenic hepatopathy appears to be a common disease in carnivorous fish, it has been under-recognized in many studies. As a result, understanding these diseases and their pathogeneses in different fish species is crucial for manufacturing cost-effective pellet diets to promote the health, growth, survival, and feed efficiency of fish in future.
Collapse
|
36
|
Jia S, Li X, He W, Wu G. Protein-Sourced Feedstuffs for Aquatic Animals in Nutrition Research and Aquaculture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:237-261. [PMID: 34807445 DOI: 10.1007/978-3-030-85686-1_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aquatic animals have particularly high requirements for dietary amino acids (AAs) for health, survival, growth, development, and reproduction. These nutrients are usually provided from ingested proteins and may also be derived from supplemental crystalline AA. AAs are the building blocks of protein (a major component of tissue growth) and, therefore, are the determinants of the growth performance and feed efficiency of farmed fish. Because protein is generally the most expensive ingredient in aqua feeds, much attention has been directed to ensure that dietary protein feedstuff is of high quality and cost-effective for feeding fish, crustaceans, and other aquatic animals worldwide. Due to the rapid development of aquaculture worldwide and a limited source of fishmeal (the traditionally sole or primary source of AAs for aquatic animals), alternative protein sources must be identified to feed aquatic animals. Plant-sourced feedstuffs for aquatic animals include soybean meal, extruded soybean meal, fermented soybean meal, soybean protein concentrates, soybean protein isolates, leaf meal, hydrolyzed plant protein, wheat, wheat hydrolyzed protein, canola meal, cottonseed meal, peanut meal, sunflower meal, peas, rice, dried brewers grains, and dried distillers grains. Animal-sourced feedstuffs include fishmeal, fish paste, bone meal, meat and bone meal, poultry by-product meal, chicken by-product meal, chicken visceral digest, spray-dried poultry plasma, spray-dried egg product, hydrolyzed feather meal, intestine-mucosa product, peptones, blood meal (bovine or poultry), whey powder with high protein content, cheese powder, and insect meal. Microbial sources of protein feedstuffs include yeast protein and single-cell microbial protein (e.g., algae); they have more balanced AA profiles than most plant proteins for animal feeding. Animal-sourced ingredients can be used as a single source of dietary protein or in complementary combinations with plant and microbial sources of proteins. All protein feedstuffs must adequately provide functional AAs for aquatic animals.
Collapse
Affiliation(s)
- Sichao Jia
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Xinyu Li
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
37
|
|
38
|
Hydroxyproline in animal metabolism, nutrition, and cell signaling. Amino Acids 2021; 54:513-528. [PMID: 34342708 DOI: 10.1007/s00726-021-03056-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
trans-4-Hydroxy-L-proline is highly abundant in collagen (accounting for about one-third of body proteins in humans and other animals). This imino acid (loosely called amino acid) and its minor analogue trans-3-hydroxy-L-proline in their ratio of approximately 100:1 are formed from the post-translational hydroxylation of proteins (primarily collagen and, to a much lesser extent, non-collagen proteins). Besides their structural and physiological significance in the connective tissue, both trans-4-hydroxy-L-proline and trans-3-hydroxy-L-proline can scavenge reactive oxygen species and have both structural and physiological significance in animals. The formation of trans-4-hydroxy-L-proline residues in protein kinases B and DYRK1A, eukaryotic elongation factor 2 activity, and hypoxia-inducible transcription factor plays an important role in regulating their phosphorylation and catalytic activation as well as cell signaling in animal cells. These biochemical events contribute to the modulation of cell metabolism, growth, development, responses to nutritional and physiological changes (e.g., dietary protein intake and hypoxia), and survival. Milk, meat, skin hydrolysates, and blood, as well as whole-body collagen degradation provide a large amount of trans-4-hydroxy-L-proline. In animals, most (nearly 90%) of the collagen-derived trans-4-hydroxy-L-proline is catabolized to glycine via the trans-4-hydroxy-L-proline oxidase pathway, and trans-3-hydroxy-L-proline is degraded via the trans-3-hydroxy-L-proline dehydratase pathway to ornithine and glutamate, thereby conserving dietary and endogenously synthesized proline and arginine. Supplementing trans-4-hydroxy-L-proline or its small peptides to plant-based diets can alleviate oxidative stress, while increasing collagen synthesis and accretion in the body. New knowledge of hydroxyproline biochemistry and nutrition aids in improving the growth, health and well-being of humans and other animals.
Collapse
|
39
|
Che D, Nyingwa PS, Ralinala KM, Maswanganye GMT, Wu G. Amino Acids in the Nutrition, Metabolism, and Health of Domestic Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:217-231. [PMID: 33770409 DOI: 10.1007/978-3-030-54462-1_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Domestic cats (carnivores) require high amounts of dietary amino acids (AAs) for normal growth, development, and reproduction. Amino acids had been traditionally categorised as nutritionally essential (EAAs) or nonessential (NEAAs), depending on whether they are synthesized de novo in the body. This review will focus on AA nutrition and metabolism in cats. Like other mammals, cats do not synthesize the carbon skeletons of twelve proteinogenic AAs: Arg, Cys, His, Ile, Leu, Lys, Met, Phe, Thr, Trp, Tyr, and Val. Like other feline carnivores but unlike many mammals, cats do not synthesize citrulline and have a very limited ability to produce taurine from Cys. Except for Leu and Lys that are strictly ketogenic AAs, most EAAs are both glucogenic and ketogenic AAs. All the EAAs (including taurine) must be provided in diets for cats. These animals are sensitive to dietary deficiencies of Arg and taurine, which rapidly result in life-threatening hyperammonemia and retinal damage, respectively. Although the National Research Council (NCR, Nutrient requirements of dogs and cats. National Academies Press, Washington, DC, 2006) does not recommend dietary requirements of cats for NEAAs, much attention should be directed to this critical issue of nutrition. Cats can synthesize de novo eight proteinogenic AAs: Ala, Asn, Asp, Gln, Glu, Gly, Pro, and Ser, as well as some nonproteinogenic AAs, such as γ-aminobutyrate, ornithine, and β-alanine with important physiological functions. Some of these AAs (e.g., Gln, Glu, Pro, and Gly) are crucial for intestinal integrity and health. Except for Gln, AAs in the arterial blood of cats may not be available to the mucosa of the small intestine. Plant-source foodstuffs lack taurine and generally contain inadequate Met and Cys and, therefore, should not be fed to cats in any age group. Besides meat, animal-source foodstuffs (including ruminant meat & bone meal, poultry by-product meal, porcine mucosal protein, and chicken visceral digest) are good sources of proteinogenic AAs and taurine for cats. Meeting dietary requirements for both EAAs and NEAAs in proper amounts and balances is crucial for improving the health, wellbeing, longevity, and reproduction of cats.
Collapse
Affiliation(s)
- Dongsheng Che
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Pakama S Nyingwa
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Khakhathi M Ralinala
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gwen M T Maswanganye
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
40
|
Composition of Amino Acids in Foodstuffs for Humans and Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:189-210. [PMID: 34251645 DOI: 10.1007/978-3-030-74180-8_11] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amino acids (AAs) are the building blocks of proteins that have both structural and metabolic functions in humans and other animals. In mammals, birds, fish, and crustaceans, proteinogenic AAs are alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. All animals can synthesize de novo alanine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and serine, whereas most mammals (including humans and pigs) can synthesize de novo arginine. Results of extensive research over the past three decades have shown that humans and other animals have dietary requirements for AAs that are synthesizable de novo in animal cells. Recent advances in analytical methods have allowed us to determine all proteinogenic AAs in foods consumed by humans, livestock, poultry, fish, and crustaceans. Both plant- and animal-sourced foods contain high amounts of glutamate, glutamine, aspartate, asparagine, and branched-chain AAs. Cysteine, glycine, lysine, methionine, proline, threonine, and tryptophan generally occur in low amounts in plant products but are enriched in animal products. In addition, taurine and creatine (essential for the integrity and function of tissues) are absent from plants but are abundant in meat and present in all animal-sourced foods. A combination of plant- and animal products is desirable for the healthy diets of humans and omnivorous animals. Furthermore, animal-sourced feedstuffs can be included in the diets of farm and companion animals to cost-effectively improve their growth performance, feed efficiency, and productivity, while helping to sustain the global animal agriculture (including aquaculture).
Collapse
|
41
|
Li X, Han T, Zheng S, Wu G. Nutrition and Functions of Amino Acids in Aquatic Crustaceans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:169-198. [PMID: 33770407 DOI: 10.1007/978-3-030-54462-1_9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Crustaceans (e.g., shrimp and crabs) are a good source of protein-rich foods for human consumption. They are the second largest aquaculture species worldwide. Understanding the digestion of dietary protein, as well as the absorption, metabolism and functions of amino acids (AAs) and small peptides is essential to produce cost-effective and sustainable aquafeeds. Hepatopancreas (the midgut gland) is the main site for the digestion of dietary protein as well as the absorption of small peptides and AAs into the hemolymph. Besides serving as the building blocks of protein, AAs (particularly aspartate, glutamate, glutamine and alanine) are the primary metabolic fuels for the gut and extra-hepatopancreas tissues (e.g., kidneys and skeletal muscle) of crustaceans. In addition, AAs are precursors for the syntheses of glucose, lipids, H2S, and low-molecular-weight molecules (e.g., nitric oxide, glutathione, polyamines, histamine, and hormones) with enormous biological importance, such as physical barrier, immunological and antioxidant defenses. Therefore, both nutritionally essential and nonessential AAs are needed in diets to improve the growth, development, molt rate, survival, and reproduction of crustaceans. There are technical difficulties and challenges in the use of crystalline AAs for research and practical production due to the loss of free AAs during feed processing, the leaching of in-feed free AAs to the surrounding water environment, and asynchronous absorption with peptide-bounded AAs. At present, much knowledge about AA metabolism and functions in crustaceans is based on studies of mammals and fish species. Basic research in this area is necessary to lay a solid foundation for improving the balances and bioavailability of AAs in the diets for optimum growth, health and wellbeing of crustaceans, while preventing and treating their metabolic diseases. This review highlights recent advances in AA nutrition and metabolism in aquatic crustacean species at their different life stages. The new knowledge is expected to guide the development of the next generation of their improved diets.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Tao Han
- Department of Animal Science, Texas A&M University, College Station, TX, USA.,Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Shixuan Zheng
- Guangdong Yuehai Feeds Group Co., Ltd., Zhanjiang, Guangdong, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
42
|
Oxidation of Energy Substrates in Tissues of Fish: Metabolic Significance and Implications for Gene Expression and Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:67-83. [PMID: 34251639 DOI: 10.1007/978-3-030-74180-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fish are useful animal models for studying effects of nutrients and environmental factors on gene expression (including epigenetics), toxicology, and carcinogenesis. To optimize the response of the animals to substances of interest (including toxins and carcinogens), water pollution, or climate changes, it is imperative to understand their fundamental biochemical processes. One of these processes concerns energy metabolism for growth, development, and survival. We have recently shown that tissues of hybrid striped bass (HSB), zebrafish, and largemouth bass (LMB) use amino acids (AAs; such as glutamate, glutamine, aspartate, alanine, and leucine) as major energy sources. AAs contribute to about 80% of ATP production in the liver, proximal intestine, kidney, and skeletal muscle tissue of the fish. Thus, as for mammals (including humans), AAs are the primary metabolic fuels in the proximal intestine of fish. In contrast, glucose and fatty acids are only minor metabolic fuels in the fish. Fish tissues have high activities of glutamate dehydrogenase, glutamate-oxaloacetate transaminase, and glutamate-pyruvate transaminase, as well as high rates of glutamate uptake. In contrast, the activities of hexokinase, pyruvate dehydrogenase, and carnitine palmitoyltransferase 1 in all the tissues are relatively low. Furthermore, unlike mammals, the skeletal muscle (the largest tissue) of HSB and LMB has a limited uptake of long-chain fatty acids and barely oxidizes fatty acids. Our findings explain differences in the metabolic patterns of AAs, glucose, and lipids among various tissues in fish. These new findings have important implications for understanding metabolic significance of the tissue-specific oxidation of AAs (particularly glutamate and glutamine) in gene expression (including epigenetics), nutrition, and health, as well as carcinogenesis in fish, mammals (including humans), and other animals.
Collapse
|
43
|
He W, Furukawa K, Toyomizu M, Nochi T, Bailey CA, Wu G. Interorgan Metabolism, Nutritional Impacts, and Safety of Dietary L-Glutamate and L-Glutamine in Poultry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:107-128. [PMID: 34251641 DOI: 10.1007/978-3-030-74180-8_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
L-glutamine (Gln) is the most abundant amino acid (AA) in the plasma and skeletal muscle of poultry, and L-glutamate (Glu) is among the most abundant AAs in the whole bodies of all avian tissues. During the first-pass through the small intestine into the portal circulation, dietary Glu is extensively oxidized to CO2, but dietary Gln undergoes limited catabolism in birds. Their extra-intestinal tissues (e.g., skeletal muscle, kidneys, and lymphoid organs) have a high capacity to degrade Gln. To maintain Glu and Gln homeostasis in the body, they are actively synthesized from branched-chain AAs (abundant AAs in both plant and animal proteins) and glucose via interorgan metabolism involving primarily the skeletal muscle, heart, adipose tissue, and brain. In addition, ammonia (produced from the general catabolism of AAs) and α-ketoglutarate (α-KG, derived primarily from glucose) serve as substrates for the synthesis of Glu and Gln in avian tissues, particularly the liver. Over the past 20 years, there has been growing interest in Glu and Gln metabolism in the chicken, which is an agriculturally important species and also a useful model for studying some aspects of human physiology and diseases. Increasing evidence shows that the adequate supply of dietary Glu and Gln is crucial for the optimum growth, anti-oxidative responses, productivity, and health of chickens, ducklings, turkeys, and laying fowl, particularly under stress conditions. Like mammals, poultry have dietary requirements for both Glu and Gln. Based on feed intake, tissue integrity, growth performance, and health status, birds can tolerate up to 12% Glu and 3.5% Gln in diets (on the dry matter basis). Glu and Gln are quantitatively major nutrients for chickens and other avian species to support their maximum growth, production, and feed efficiency, as well as their optimum health and well-being.
Collapse
Affiliation(s)
- Wenliang He
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Kyohei Furukawa
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA.,Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masaaki Toyomizu
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomonori Nochi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Christopher A Bailey
- Departments of Poultry Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
44
|
Herring CM, Bazer FW, Wu G. Amino Acid Nutrition for Optimum Growth, Development, Reproduction, and Health of Zoo Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:233-253. [PMID: 33770410 DOI: 10.1007/978-3-030-54462-1_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins are large polymers of amino acids (AAs) linked via peptide bonds, and major components for the growth and development of tissues in zoo animals (including mammals, birds, and fish). The proteinogenic AAs are alanine, arginine, aspartate, asparagine, cysteine, glutamate, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. Except for glycine, they are all present in the L-isoform. Some carnivores may also need taurine (a nonproteinogenic AA) in their diet. Adequate dietary intakes of AAs are necessary for the growth, development, reproduction, health and longevity of zoo animals. Extensive research has established dietary nutrient requirements for humans, domestic livestock and companion animals. However, this is not true for many exotic or endangered species found in zoos due to the obstacles that accompany working with these species. Information on diets and nutrient profiles of free-ranging animals is needed. Even with adequate dietary intake of crude protein, dietary AAs may still be unbalanced, which can lead to nutrition-related diseases and disorders commonly observed in captive zoo species, such as dilated cardiomyopathy, urolithiasis, gut dysbiosis, and hormonal imbalances. There are differences in AA metabolism among carnivores, herbivores and omnivores. It is imperative to consider these idiosyncrasies when formulating diets based on established nutritional requirements of domestic species. With optimal health, populations of zoo animals will have a vastly greater chance of thriving in captivity. For endangered species especially, maintaining stable captive populations is crucial for conservation. Thus, adequate provision of AAs in diets plays a crucial role in the management, sustainability and expansion of healthy zoo animals.
Collapse
Affiliation(s)
- Cassandra M Herring
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|