1
|
Flower L, Vozza EG, Bryant CE, Summers C. Role of inflammasomes in acute respiratory distress syndrome. Thorax 2025; 80:255-263. [PMID: 39884849 PMCID: PMC12015084 DOI: 10.1136/thorax-2024-222596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Acute respiratory distress syndrome (ARDS) is present in >10% of all people admitted to critical care and is associated with severe morbidity and mortality. Despite more than half a century since its first description, no efficacious pharmacological therapies have been developed, and little progress has been made in improving clinical outcomes. Neutrophils are the principal drivers of ARDS, with their priming and subsequent aberrant downstream functions, including interleukin (IL) 1β and IL-18 secretion, central to the disease pathogenesis. The dominant pathways through which IL-1β and IL-18 are believed to be elaborated are multimeric protein structures called inflammasomes that consist of sensor proteins, adaptor proteins and an effector enzyme. The inflammasome's initial activation depends on one of a variety of damage-associated (DAMP) or pathogen-associated (PAMP) molecular patterns. However, once activated, a common downstream inflammatory pathway is initiated regardless of the specific DAMP or PAMP involved. Several inflammasomes exist in humans. The nucleotide-binding domain leucine-rich repeat (NLR) family, pyrin domain-containing 3 (NLRP3), inflammasome is the best described in the context of ARDS and is known to be activated in both infective and sterile cases. The NLR family, caspase activation and recruitment domain-containing 4 (NLRC4) and absent in melanoma 2 (AIM2) inflammasomes have also been implicated in various ARDS settings, as have inflammasome-independent pathways. Further work is required to understand human biology as much of our knowledge is extrapolated from rodent experimental models. Experimental lung injury models have demonstrated beneficial responses to inflammasome, IL-1β and IL-18 blockade. However, findings have yet to be successfully translated into humans with ARDS, likely due to an underappreciation of the central role of the neutrophil inflammasome. A thorough understanding of inflammasome pathways is vital for critical care clinicians and researchers and for the development of beneficial therapies. In this review, we describe the central role of the inflammasome in the development of ARDS and its potential for immunomodulation, highlighting key areas for future research.
Collapse
Affiliation(s)
- Luke Flower
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Emilio G Vozza
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Clare E Bryant
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Charlotte Summers
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
2
|
Challagundla N, Saha B, Agrawal-Rajput R. Insights into inflammasome regulation: cellular, molecular, and pathogenic control of inflammasome activation. Immunol Res 2022; 70:578-606. [PMID: 35610534 DOI: 10.1007/s12026-022-09286-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Maintenance of immune homeostasis is an intricate process wherein inflammasomes play a pivotal role by contributing to innate and adaptive immune responses. Inflammasomes are ensembles of adaptor proteins that can trigger a signal following innate sensing of pathogens or non-pathogens eventuating in the inductions of IL-1β and IL-18. These inflammatory cytokines substantially influence the antigen-presenting cell's costimulatory functions and T helper cell differentiation, contributing to adaptive immunity. As acute and chronic disease conditions may accompany parallel tissue damage, we analyze the critical role of extracellular factors such as cytokines, amyloids, cholesterol crystals, etc., intracellular metabolites, and signaling molecules regulating inflammasome activation/inhibition. We develop an operative framework for inflammasome function and regulation by host cell factors and pathogens. While inflammasomes influence the innate and adaptive immune components' interplay modulating the anti-pathogen adaptive immune response, pathogens may target inflammasome inhibition as a survival strategy. As trapped between health and diseases, inflammasomes serve as promising therapeutic targets and their modus operandi serves as a scientific rationale for devising better therapeutic strategies.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Lab-5, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Reena Agrawal-Rajput
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
3
|
Tupik JD, Markov Madanick JW, Ivester HM, Allen IC. Detecting DNA: An Overview of DNA Recognition by Inflammasomes and Protection against Bacterial Respiratory Infections. Cells 2022; 11:1681. [PMID: 35626718 PMCID: PMC9139316 DOI: 10.3390/cells11101681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
The innate immune system plays a key role in modulating host immune defense during bacterial disease. Upon sensing pathogen-associated molecular patterns (PAMPs), the multi-protein complex known as the inflammasome serves a protective role against bacteria burden through facilitating pathogen clearance and bacteria lysis. This can occur through two mechanisms: (1) the cleavage of pro-inflammatory cytokines IL-1β/IL-18 and (2) the initiation of inflammatory cell death termed pyroptosis. In recent literature, AIM2-like Receptor (ALR) and Nod-like Receptor (NLR) inflammasome activation has been implicated in host protection following recognition of bacterial DNA. Here, we review current literature synthesizing mechanisms of DNA recognition by inflammasomes during bacterial respiratory disease. This process can occur through direct sensing of DNA or indirectly by sensing pathogen-associated intracellular changes. Additionally, DNA recognition may be assisted through inflammasome-inflammasome interactions, specifically non-canonical inflammasome activation of NLRP3, and crosstalk with the interferon-inducible DNA sensors Stimulator of Interferon Genes (STING) and Z-DNA Binding Protein-1 (ZBP1). Ultimately, bacterial DNA sensing by inflammasomes is highly protective during respiratory disease, emphasizing the importance of inflammasome involvement in the respiratory tract.
Collapse
Affiliation(s)
- Juselyn D. Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (J.D.T.); (J.W.M.M.); (H.M.I.)
| | - Justin W. Markov Madanick
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (J.D.T.); (J.W.M.M.); (H.M.I.)
| | - Hannah M. Ivester
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (J.D.T.); (J.W.M.M.); (H.M.I.)
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (J.D.T.); (J.W.M.M.); (H.M.I.)
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
4
|
Pereira JM, Xu S, Leong JM, Sousa S. The Yin and Yang of Pneumolysin During Pneumococcal Infection. Front Immunol 2022; 13:878244. [PMID: 35529870 PMCID: PMC9074694 DOI: 10.3389/fimmu.2022.878244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Pneumolysin (PLY) is a pore-forming toxin produced by the human pathobiont Streptococcus pneumoniae, the major cause of pneumonia worldwide. PLY, a key pneumococcal virulence factor, can form transmembrane pores in host cells, disrupting plasma membrane integrity and deregulating cellular homeostasis. At lytic concentrations, PLY causes cell death. At sub-lytic concentrations, PLY triggers host cell survival pathways that cooperate to reseal the damaged plasma membrane and restore cell homeostasis. While PLY is generally considered a pivotal factor promoting S. pneumoniae colonization and survival, it is also a powerful trigger of the innate and adaptive host immune response against bacterial infection. The dichotomy of PLY as both a key bacterial virulence factor and a trigger for host immune modulation allows the toxin to display both "Yin" and "Yang" properties during infection, promoting disease by membrane perforation and activating inflammatory pathways, while also mitigating damage by triggering host cell repair and initiating anti-inflammatory responses. Due to its cytolytic activity and diverse immunomodulatory properties, PLY is integral to every stage of S. pneumoniae pathogenesis and may tip the balance towards either the pathogen or the host depending on the context of infection.
Collapse
Affiliation(s)
- Joana M. Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Molecular and Cellular (MC) Biology PhD Program, ICBAS - Instituto de Ciência Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA, United States
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Xu D, Wu X, Peng L, Chen T, Huang Q, Wang Y, Ye C, Peng Y, Hu D, Fang R. The Critical Role of NLRP6 Inflammasome in Streptococcus pneumoniae Infection In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22083876. [PMID: 33918100 PMCID: PMC8069100 DOI: 10.3390/ijms22083876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) causes severe pulmonary diseases, leading to high morbidity and mortality. It has been reported that inflammasomes such as NLR family pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2) play an important role in the host defense against S. pneumoniae infection. However, the role of NLRP6 in vivo and in vitro against S. pneumoniae remains unclear. Therefore, we investigated the role of NLRP6 in regulating the S. pneumoniae-induced inflammatory signaling pathway in vitro and the role of NLRP6 in the host defense against S. pneumoniae in vivo by using NLRP6−/− mice. The results showed that the NLRP6 inflammasome regulated the maturation and secretion of IL-1β, but it did not affect the induction of IL-1β transcription in S. pneumoniae-infected macrophages. Furthermore, the activation of caspase-1, caspase-11, and gasdermin D (GSDMD) as well as the oligomerization of apoptosis-associated speck-like protein (ASC) were also mediated by NLRP6 in S. pneumoniae-infected macrophages. However, the activation of NLRP6 reduced the expression of NF-κB and ERK signaling pathways in S. pneumoniae-infected macrophages. In vivo study showed that NLRP6−/− mice had a higher survival rate, lower number of bacteria, and milder inflammatory response in the lung compared with wild-type (WT) mice during S. pneumoniae infection, indicating that NLRP6 plays a negative role in the host defense against S. pneumoniae. Furthermore, increased bacterial clearance in NLRP6 deficient mice was modulated by the recruitment of macrophages and neutrophils. Our study provides a new insight on S. pneumoniae-induced activation of NLRP6 and suggests that blocking NLRP6 could be considered as a potential therapeutic strategy to treat S. pneumoniae infection.
Collapse
Affiliation(s)
- Dongyi Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Xingping Wu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Tingting Chen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Qingyuan Huang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Yu Wang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Yuanyi Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Dongliang Hu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
- Department of Zoonoses, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence: ; Tel./Fax: +86-23-68251196
| |
Collapse
|
6
|
Surabhi S, Cuypers F, Hammerschmidt S, Siemens N. The Role of NLRP3 Inflammasome in Pneumococcal Infections. Front Immunol 2020; 11:614801. [PMID: 33424869 PMCID: PMC7793845 DOI: 10.3389/fimmu.2020.614801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammasomes are innate immune sensors that regulate caspase-1 mediated inflammation in response to environmental, host- and pathogen-derived factors. The NLRP3 inflammasome is highly versatile as it is activated by a diverse range of stimuli. However, excessive or chronic inflammasome activation and subsequent interleukin-1β (IL-1β) release are implicated in the pathogenesis of various autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease, and diabetes. Accordingly, inflammasome inhibitor therapy has a therapeutic benefit in these diseases. In contrast, NLRP3 inflammasome is an important defense mechanism against microbial infections. IL-1β antagonizes bacterial invasion and dissemination. Unfortunately, patients receiving IL-1β or inflammasome inhibitors are reported to be at a disproportionate risk to experience invasive bacterial infections including pneumococcal infections. Pneumococci are typical colonizers of immunocompromised individuals and a leading cause of community-acquired pneumonia worldwide. Here, we summarize the current limited knowledge of inflammasome activation in pneumococcal infections of the respiratory tract and how inflammasome inhibition may benefit these infections in immunocompromised patients.
Collapse
Affiliation(s)
| | | | | | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Yuk JM, Silwal P, Jo EK. Inflammasome and Mitophagy Connection in Health and Disease. Int J Mol Sci 2020; 21:ijms21134714. [PMID: 32630319 PMCID: PMC7370205 DOI: 10.3390/ijms21134714] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
The inflammasome is a large intracellular protein complex that activates inflammatory caspase-1 and induces the maturation of interleukin (IL)-1β and IL-18. Mitophagy plays an essential role in the maintenance of mitochondrial homeostasis during stress. Previous studies have indicated compelling evidence of the crosstalk between inflammasome and mitophagy. Mitophagy regulation of the inflammasome, or vice versa, is crucial for various biological functions, such as controlling inflammation and metabolism, immune and anti-tumor responses, and pyroptotic cell death. Uncontrolled regulation of the inflammasome often results in pathological inflammation and pyroptosis, and causes a variety of human diseases, including metabolic and inflammatory diseases, infection, and cancer. Here, we discuss how improved understanding of the interactions between inflammasome and mitophagy can lead to novel therapies against various disease pathologies, and how the inflammasome-mitophagy connection is currently being targeted pharmacologically by diverse agents and small molecules. A deeper understanding of the inflammasome-mitophagy connection will provide new insights into human health and disease through the balance between mitochondrial clearance and pathology.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Correspondence: ; Tel.: +82-42-580-8243
| |
Collapse
|
8
|
Truncated Pneumolysin from Streptococcus pneumoniae as a TLR4-Antagonizing New Drug for Chronic Inflammatory Conditions. Cells 2020; 9:cells9051183. [PMID: 32397494 PMCID: PMC7290803 DOI: 10.3390/cells9051183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 11/17/2022] Open
Abstract
Microbial proteins have recently been found to have more benefits in clinical disease treatment because of their better-developed strategy and properties than traditional medicine. In this study, we investigated the effectiveness of a truncated peptide synthesized from the C-terminal sequence of pneumolysin, i.e., C70PLY4, in Streptococcus pneumoniae, in treating chronic inflammatory conditions. It has been shown that C70PLY4 significantly blocks the transendothelial migration of neutrophils and attenuates the formation of atherosclerotic plaque and the secretion of soluble forms of the intercellular adhesion molecule-1 (ICAM-1), the vascular cell adhesion molecule 1 (VCAM-1), and E-selectin in high-fat-diet/streptozotocin-induced inflammatory rats. The mechanism and the docking simulation analysis further indicated that C70PLY4 might serve as a Toll-like receptor 4 (TLR4) antagonist by competing for the binding site of MD2, an indispensable protein for lipopolysaccharide (LPS)–TLR4 interaction signaling, on the TLR4 structure. Moreover, compared to the full-length PLY, C70PLY4 seems to have no cytotoxicity in human vascular endothelial cells. Our study elucidated a possible therapeutic efficacy of C70PLY4 in reducing chronic inflammatory conditions and clarified the underlying mechanism. Thus, our findings identify a new drug candidate that, by blocking TLR4 activity, could be an effective treatment for patients with chronic inflammatory diseases.
Collapse
|
9
|
Hirschfeld C, Gómez-Mejia A, Bartel J, Hentschker C, Rohde M, Maaß S, Hammerschmidt S, Becher D. Proteomic Investigation Uncovers Potential Targets and Target Sites of Pneumococcal Serine-Threonine Kinase StkP and Phosphatase PhpP. Front Microbiol 2020; 10:3101. [PMID: 32117081 PMCID: PMC7011611 DOI: 10.3389/fmicb.2019.03101] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Like eukaryotes, different bacterial species express one or more Ser/Thr kinases and phosphatases that operate in various signaling networks by catalyzing phosphorylation and dephosphorylation of proteins that can immediately regulate biochemical pathways by altering protein function. The human pathogen Streptococcus pneumoniae encodes a single Ser/Thr kinase-phosphatase couple known as StkP-PhpP, which has shown to be crucial in the regulation of cell wall synthesis and cell division. In this study, we applied proteomics to further understand the physiological role of pneumococcal PhpP and StkP with an emphasis on phosphorylation events on Ser and Thr residues. Therefore, the proteome of the non-encapsulated D39 strain (WT), a kinase (ΔstkP), and phosphatase mutant (ΔphpP) were compared in a mass spectrometry based label-free quantification experiment. Results show that a loss of function of PhpP causes an increased abundance of proteins in the phosphate uptake system Pst. Quantitative proteomic data demonstrated an effect of StkP and PhpP on the two-component systems ComDE, LiaRS, CiaRH, and VicRK. To obtain further information on the function, targets and target sites of PhpP and StkP we combined the advantages of phosphopeptide enrichment using titanium dioxide and spectral library based data evaluation for sensitive detection of changes in the phosphoproteome of the wild type and the mutant strains. According to the role of StkP in cell division we identified several proteins involved in cell wall synthesis and cell division that are apparently phosphorylated by StkP. Unlike StkP, the physiological function of the co-expressed PhpP is poorly understood. For the first time we were able to provide a list of previously unknown putative targets of PhpP. Under these new putative targets of PhpP are, among others, five proteins with direct involvement in cell division (DivIVA, GpsB) and peptidoglycan biosynthesis (MltG, MreC, MacP).
Collapse
Affiliation(s)
- Claudia Hirschfeld
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Alejandro Gómez-Mejia
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Hentschker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Gaydos J, McNally A, Burnham EL. The impact of alcohol use disorders on pulmonary immune cell inflammatory responses to Streptococcus pneumoniae. Alcohol 2019; 80:119-130. [PMID: 30195043 DOI: 10.1016/j.alcohol.2018.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
Abstract
Community-acquired pneumonia due to Streptococcus pneumoniae occurs commonly in alcohol use disorders (AUDs). Pneumonia in the AUD patient is associated with poorer outcomes, and specific therapies to mitigate disease severity in these patients do not exist. Numerous investigations have attributed increased severity of pneumonia in AUDs to aberrant function of the alveolar macrophage (AM), a lung immune cell critical in host defense initiation. No studies have examined the response of human AMs to S. pneumoniae in AUDs. We hypothesized that the inflammatory mediators released by AMs after S. pneumoniae stimulation would differ quantitatively in individuals with AUDs compared to non-AUD participants. We further postulated that AM inflammatory mediators would be diminished after exposure to the antioxidant, N-acetylcysteine (NAC). For comparison, responses of peripheral blood mononuclear cells (PBMCs) to pneumococcal protein were also examined. Otherwise healthy participants with AUDs and smoking-matched controls underwent bronchoalveolar lavage and peripheral blood sampling to obtain AMs and PBMCs, respectively. Freshly collected cells were cultured with increasing doses of heat-killed S. pneumoniae protein, with and without exposure to N-acetylcysteine. Cell culture supernatants were collected, and inflammatory mediators were measured, including interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. IFN-γ and IL-6 were significantly higher in unstimulated AM cell culture supernatants from subjects with AUDs. After stimulation with pneumococcal protein, a dose-response and time-dependent increase in pro-inflammatory cytokine production by both AMs and PBMCs was also observed; differences were not observed between AUD and non-AUD subjects. Addition of NAC to pneumococcal-stimulated AMs and PBMCs was generally associated with diminished cytokine production, with the exception of IL-1β that was elevated in AM culture supernatants from subjects with AUDs. Our observations suggest that AUDs contribute to basal alterations in AM pro-inflammatory cytokine elaboration, but did not support consistent differences in pneumococcal-stimulated AM or PBMC inflammatory mediator secretion that were referable to AUDs.
Collapse
|
11
|
van den Broek MFL, De Boeck I, Kiekens F, Boudewyns A, Vanderveken OM, Lebeer S. Translating Recent Microbiome Insights in Otitis Media into Probiotic Strategies. Clin Microbiol Rev 2019; 32:e00010-18. [PMID: 31270125 PMCID: PMC6750133 DOI: 10.1128/cmr.00010-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microbiota of the upper respiratory tract (URT) protects the host from bacterial pathogenic colonization by competing for adherence to epithelial cells and by immune response regulation that includes the activation of antimicrobial and (anti-)inflammatory components. However, environmental or host factors can modify the microbiota to an unstable community that predisposes the host to infection or inflammation. One of the URT diseases most often encountered in children is otitis media (OM). The role of pathogenic bacteria like Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the pathogenesis of OM is well documented. Results from next-generation-sequencing (NGS) studies reveal other bacterial taxa involved in OM, such as Turicella and Alloiococcus Such studies can also identify bacterial taxa that are potentially protective against URT infections, whose beneficial action needs to be substantiated in relevant experimental models and clinical trials. Of note, lactic acid bacteria (LAB) are members of the URT microbiota and associated with a URT ecosystem that is deemed healthy, based on NGS and some experimental and clinical studies. These observations have formed the basis of this review, in which we describe the current knowledge of the molecular and clinical potential of LAB in the URT, which is currently underexplored in microbiome and probiotic research.
Collapse
Affiliation(s)
- Marianne F L van den Broek
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Ilke De Boeck
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Olivier M Vanderveken
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Feng S, Chen T, Lei G, Hou F, Jiang J, Huang Q, Peng Y, Ye C, Hu DL, Fang R. Absent in melanoma 2 inflammasome is required for host defence against Streptococcus pneumoniae infection. Innate Immun 2019; 25:412-419. [PMID: 31266383 PMCID: PMC6900643 DOI: 10.1177/1753425919860252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Streptococcus pneumoniae, a leading cause of invasive
pneumococcal disease, is responsible for high mortality and morbidity worldwide.
A previous study showed that the NLR family pyrin domain containing 3 (NLRP3)
and absent in melanoma 2 (AIM2) inflammasomes are essential for caspase-1
activation and IL-1β production in the host response to S.
pneumoniae infection. The function of NLRP3 in host innate immunity
to S. pneumoniae was studied in vivo and
in vitro. However, the role of AIM2 in host defence against
S. pneumoniae remains unclear. Here, we show that
AIM2-deficient (AIM2–/–) mice display increased susceptibility to
intra-nasal infection with S. pneumoniae in comparison to wild
type mice and that this susceptibility was associated with defective IL-1β
production. Macrophages from AIM2–/– mice infected with S.
pneumoniae showed impaired secretion of IL-1β as well as activation
of the inflammasome, as determined by the oligomerisation of
apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1
activation. Taken together, these results indicate that the AIM2 inflammasome is
essential for caspase-1-dependent cytokine IL-1β production and eventual
protection from pneumococcal infection in mice.
Collapse
Affiliation(s)
- Siwei Feng
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Tingting Chen
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Guihua Lei
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Fengqing Hou
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Jiali Jiang
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Qingyuan Huang
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Yuanyi Peng
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Chao Ye
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Dong-Liang Hu
- 1 College of Animal Science and Technology, Southwest University, PR China.,2 Department of Zoonoses, Kitasato University School of Veterinary Medicine, Japan
| | - Rendong Fang
- 1 College of Animal Science and Technology, Southwest University, PR China
| |
Collapse
|
13
|
Abstract
Community-acquired pneumonia (CAP) is a leading cause of morbidity and mortality worldwide. Despite broad literature including basic and translational scientific studies, many gaps in our understanding of host-pathogen interactions remain. In this review, pathogen virulence factors that drive lung infection and injury are discussed in relation to their associated host immune pathways. CAP epidemiology is considered, with a focus on Staphylococcus aureus and Streptococcus pneumoniae as primary pathogens. Bacterial factors involved in nasal colonization and subsequent virulence are illuminated. A particular emphasis is placed on bacterial pore-forming toxins, host cell death, and inflammasome activation. Identified host-pathogen interactions are then examined by linking pathogen factors to aberrant host response pathways in the context of acute lung injury in both primary and secondary infection. While much is known regarding bacterial virulence and host immune responses, CAP management is still limited to mostly supportive care. It is likely that improvements in therapy will be derived from combinatorial targeting of both pathogen virulence factors and host immunomodulation.
Collapse
|
14
|
Tereshchenko SY, Smolnikova MV. Congenitally impaired pattern-recognition receptors in pathogenesis of pediatric invasive and recurrent pneumococcal infection. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2019; 9:229-238. [DOI: 10.15789/2220-7619-2019-2-229-238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Here we review currently available data showing that innate immune signs predisposing to recurrent and invasive pneumococcal infections were identified in children. Streptococcus pneumoniae (pneumococcus) belongs to Grampositive bacteria being the major cause of morbidity and mortality in infants, especially in developing countries and in communities with low socioeconomic status. Due to the lack of anti-pneumococcal vaccination, the significant proportion of pneumococcus carriers develop non-invasive (pneumonia, otitis media, sinusitis) and severe invasive (bacteremia/septicemia, meningitis) pneumococcal infection. A great deal of diverse factors related to pneumococcus biological features (virulence factors) as well individualized host-specific immunity are implicated in efficient bacterial penetration across the mucous membranes. The TLR signaling system plays a crucial role in the human nonspecific defense upon the first encounter with the pathogen. Various TLRs comprise the first pattern recognition receptor fami ly ever described which sense ligands derived from the outer bacterial wall. The complement system is the ancient innate immunity component mainly involved in intravascular elimination of bacterial agents. In addition, the complement proteins serve as a bridge between innate and adaptive immunity, ensuring optimal conditions for B- and T-cell maturation and differentiation. Because pneumococcus secretes the IgA protease, a local protective effects related to IgA antibodies might not be so prominent. Therefore, B-cell immunodeficiency and impaired complement system hold a lead place among congenital causes resulting in severe and recurrent pneumococcal infections in children. Thus, based on available data, we concluded that impaired B-cell function, the complement components deficiency as well as receptor-recognition receptors (TLR-2, -9, -4, MYD88 adapter protein, TLR cascade enzymes: IRAK4, NEMO, NOD-like receptors: NOD2, NLRP3; C-type lectins: MBL, Dextin-2, and, possibly, ficoline) play the most important role among congenital immunodeficiencies predisposing to invasive and recurrent pneumococcal infections play the most important role among congenital immunodeficiencies predisposing to invasive and recurrent pneumococcal infections, and should be used as a rationale for immunological surveillance and organizing immunogenetics screening in these patients.
Collapse
|
15
|
de Porto AP, Liu Z, de Beer R, Florquin S, de Boer OJ, Hendriks RW, van der Poll T, de Vos AF. Btk inhibitor ibrutinib reduces inflammatory myeloid cell responses in the lung during murine pneumococcal pneumonia. Mol Med 2019; 25:3. [PMID: 30646846 PMCID: PMC6332549 DOI: 10.1186/s10020-018-0069-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Background Streptococcus pneumoniae is a major causative agent in community-acquired pneumonia and sepsis. Overwhelming lung inflammation during pneumococcal pneumonia may hamper lung function. Ibrutinib is an irreversible inhibitor of Bruton’s tyrosine kinase (Btk), a key signaling protein controlling the activation of various immune cells, including macrophages and neutrophils. The aim of this study was to determine whether ibrutinib treatment ameliorates acute lung inflammation during pneumococcal pneumonia. Methods Mice were treated orally with ibrutinib and the effect on acute pulmonary inflammation elicited by the gram-positive bacterial cell wall component lipoteichoic acid (LTA) and during ceftriaxone-treated pneumococcal pneumonia was assessed. Results Treatment with ibrutinib prior to and after intranasal LTA instillation reduced alveolar macrophage activation, neutrophil influx, cytokine release and plasma leakage into the lung. Postponed treatment with ibrutinib supplementing antibiotic therapy during ongoing pneumococcal pneumonia did not impair bacterial killing in lung, blood and spleen. In this setting, ibrutinib reduced alveolar macrophage and systemic neutrophil activation and substantially diminished further monocyte and neutrophil influx in the lung. In vitro, ibrutinib inhibited macrophage TNF secretion and neutrophil activation upon LTA and pneumococcal stimulation. Conclusions Taken together, these data indicate that the Btk inhibitor ibrutinib reduces inflammatory myeloid cell responses during acute pulmonary inflammation evoked by LTA and antibiotic-treated pneumococcal pneumonia and suggest that ibrutinib has the potential to inhibit ongoing lung inflammation in an acute infectious setting. Electronic supplementary material The online version of this article (10.1186/s10020-018-0069-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander P de Porto
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-132, 1105, AZ, Amsterdam, the Netherlands. .,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Amsterdam, the Netherlands.
| | - Zhe Liu
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-132, 1105, AZ, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Amsterdam, the Netherlands
| | - Regina de Beer
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-132, 1105, AZ, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Amsterdam, the Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Onno J de Boer
- Department of Pathology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-132, 1105, AZ, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Amsterdam, the Netherlands.,Division of Infectious Diseases, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-132, 1105, AZ, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Blood‒Brain Barrier Pathology and CNS Outcomes in Streptococcus pneumoniae Meningitis. Int J Mol Sci 2018; 19:ijms19113555. [PMID: 30423890 PMCID: PMC6275034 DOI: 10.3390/ijms19113555] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is a major meningitis-causing pathogen globally, bringing about significant morbidity and mortality, as well as long-term neurological sequelae in almost half of the survivors. Subsequent to nasopharyngeal colonisation and systemic invasion, translocation across the blood‒brain barrier (BBB) by S. pneumoniae is a crucial early step in the pathogenesis of meningitis. The BBB, which normally protects the central nervous system (CNS) from deleterious molecules within the circulation, becomes dysfunctional in S. pneumoniae invasion due to the effects of pneumococcal toxins and a heightened host inflammatory environment of cytokines, chemokines and reactive oxygen species intracranially. The bacteria‒host interplay within the CNS likely determines not only the degree of BBB pathological changes, but also host survival and the extent of neurological damage. This review explores the relationship between S. pneumoniae bacteria and the host inflammatory response, with an emphasis on the BBB and its roles in CNS protection, as well as both the acute and long-term pathogenesis of meningitis.
Collapse
|
17
|
Brooks LRK, Mias GI. Streptococcus pneumoniae's Virulence and Host Immunity: Aging, Diagnostics, and Prevention. Front Immunol 2018; 9:1366. [PMID: 29988379 PMCID: PMC6023974 DOI: 10.3389/fimmu.2018.01366] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae is an infectious pathogen responsible for millions of deaths worldwide. Diseases caused by this bacterium are classified as pneumococcal diseases. This pathogen colonizes the nasopharynx of its host asymptomatically, but overtime can migrate to sterile tissues and organs and cause infections. Pneumonia is currently the most common pneumococcal disease. Pneumococcal pneumonia is a global health concern and vastly affects children under the age of five as well as the elderly and individuals with pre-existing health conditions. S. pneumoniae has a large selection of virulence factors that promote adherence, invasion of host tissues, and allows it to escape host immune defenses. A clear understanding of S. pneumoniae's virulence factors, host immune responses, and examining the current techniques available for diagnosis, treatment, and disease prevention will allow for better regulation of the pathogen and its diseases. In terms of disease prevention, other considerations must include the effects of age on responses to vaccines and vaccine efficacy. Ongoing work aims to improve on current vaccination paradigms by including the use of serotype-independent vaccines, such as protein and whole cell vaccines. Extending our knowledge of the biology of, and associated host immune response to S. pneumoniae is paramount for our improvement of pneumococcal disease diagnosis, treatment, and improvement of patient outlook.
Collapse
Affiliation(s)
- Lavida R. K. Brooks
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, United States
| | - George I. Mias
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, United States
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
18
|
Kudryashova E, Seveau SM, Kudryashov DS. Targeting and inactivation of bacterial toxins by human defensins. Biol Chem 2017; 398:1069-1085. [PMID: 28593905 DOI: 10.1515/hsz-2017-0106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/18/2017] [Indexed: 11/15/2022]
Abstract
Defensins, as a prominent family of antimicrobial peptides (AMP), are major effectors of the innate immunity with a broad range of immune modulatory and antimicrobial activities. In particular, defensins are the only recognized fast-response molecules that can neutralize a broad range of bacterial toxins, many of which are among the deadliest compounds on the planet. For a decade, the mystery of how a small and structurally conserved group of peptides can neutralize a heterogeneous group of toxins with little to no sequential and structural similarity remained unresolved. Recently, it was found that defensins recognize and target structural plasticity/thermodynamic instability, fundamental physicochemical properties that unite many bacterial toxins and distinguish them from the majority of host proteins. Binding of human defensins promotes local unfolding of the affected toxins, destabilizes their secondary and tertiary structures, increases susceptibility to proteolysis, and leads to their precipitation. While the details of toxin destabilization by defensins remain obscure, here we briefly review properties and activities of bacterial toxins known to be affected by or resilient to defensins, and discuss how recognized features of defensins correlate with the observed inactivation.
Collapse
|