1
|
Döhner K, Serrero MC, Viejo-Borbolla A, Sodeik B. A Hitchhiker's Guide Through the Cell: The World According to the Capsids of Alphaherpesviruses. Annu Rev Virol 2024; 11:215-238. [PMID: 38954634 DOI: 10.1146/annurev-virology-100422-022751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The nucleoplasm, the cytosol, the inside of virions, and again the cytosol comprise the world in which the capsids of alphaherpesviruses encounter viral and host proteins that support or limit them in performing their tasks. Here, we review the fascinating conundrum of how specific protein-protein interactions late in alphaherpesvirus infection orchestrate capsid nuclear assembly, nuclear egress, and cytoplasmic envelopment, but target incoming capsids to the nuclear pores in naive cells to inject the viral genomes into the nucleoplasm for viral transcription and replication. Multiple capsid interactions with viral and host proteins have been characterized using viral mutants and assays that reconstitute key stages of the infection cycle. Keratinocytes, fibroblasts, mucosal epithelial cells, neurons, and immune cells employ cell type-specific intrinsic and cytokine-induced resistance mechanisms to restrict several stages of the viral infection cycle. However, concomitantly, alphaherpesviruses have evolved countermeasures to ensure efficient capsid function during infection.
Collapse
Affiliation(s)
- Katinka Döhner
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany;
| | - Manutea Christophe Serrero
- Department of Biomedicine and Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany;
| | - Abel Viejo-Borbolla
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany;
| | - Beate Sodeik
- DZIF German Centre for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany;
| |
Collapse
|
2
|
Šudomová M, Hassan STS. Flavonoids with Anti-Herpes Simplex Virus Properties: Deciphering Their Mechanisms in Disrupting the Viral Life Cycle. Viruses 2023; 15:2340. [PMID: 38140581 PMCID: PMC10748012 DOI: 10.3390/v15122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The herpes simplex virus (HSV) is a double-stranded DNA human virus that causes persistent infections with recurrent outbreaks. HSV exists in two forms: HSV-1, responsible for oral herpes, and HSV-2, primarily causing genital herpes. Both types can lead to significant complications, including neurological issues. Conventional treatment, involving acyclovir and its derivatives, faces challenges due to drug resistance. This underscores the imperative for continual research and development of new drugs, with a particular emphasis on exploring the potential of natural antivirals. Flavonoids have demonstrated promise in combating various viruses, including those within the herpesvirus family. This review, delving into recent studies, reveals the intricate mechanisms by which flavonoids decode their antiviral capabilities against HSV. By disrupting key stages of the viral life cycle, such as attachment to host cells, entry, DNA replication, latency, and reactivation, flavonoids emerge as formidable contenders in the ongoing battle against HSV infections.
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic;
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
3
|
Hassan STS, Šudomová M. Molecular Mechanisms of Flavonoids against Tumor Gamma-Herpesviruses and Their Correlated Cancers-A Focus on EBV and KSHV Life Cycles and Carcinogenesis. Int J Mol Sci 2022; 24:ijms24010247. [PMID: 36613688 PMCID: PMC9820319 DOI: 10.3390/ijms24010247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are cancer-causing viruses that belong to human gamma-herpesviruses. They are DNA viruses known to establish lifelong infections in humans, with the ability to develop various types of cancer. Drug resistance remains the main barrier to achieving effective therapies for viral infections and cancer. Thus, new medications with dual antiviral and anticancer actions are highly needed. Flavonoids are secondary metabolites biosynthesized by plants with diverse therapeutic effects on human health. In this review, we feature the potential role of flavonoids (flavones, protoflavones, isoflavones, flavanones, flavonols, dihydroflavonols, catechins, chalcones, anthocyanins, and other flavonoid-type compounds) in controlling gamma-herpesvirus-associated cancers by blocking EBV and KSHV infections and inhibiting the formation and growth of the correlated tumors, such as nasopharyngeal carcinoma, Burkitt's lymphoma, gastric cancer, extranodal NK/T-cell lymphoma, squamous cell carcinoma, Kaposi sarcoma, and primary effusion lymphoma. The underlying mechanisms via targeting EBV and KSHV life cycles and carcinogenesis are highlighted. Moreover, the effective concentrations or doses are emphasized.
Collapse
Affiliation(s)
- Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
- Correspondence:
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic
| |
Collapse
|
4
|
Hassan STS, Šudomová M, Mazurakova A, Kubatka P. Insights into Antiviral Properties and Molecular Mechanisms of Non-Flavonoid Polyphenols against Human Herpesviruses. Int J Mol Sci 2022; 23:ijms232213891. [PMID: 36430369 PMCID: PMC9693824 DOI: 10.3390/ijms232213891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Herpesviruses are one of the most contagious DNA viruses that threaten human health, causing severe diseases, including, but not limited to, certain types of cancer and neurological complications. The overuse and misuse of anti-herpesvirus drugs are key factors leading to drug resistance. Therefore, targeting human herpesviruses with natural products is an attractive form of therapy, as it might improve treatment efficacy in therapy-resistant herpesviruses. Plant polyphenols are major players in the health arena as they possess diverse bioactivities. Hence, in this article, we comprehensively summarize the recent advances that have been attained in employing plant non-flavonoid polyphenols, such as phenolic acids, tannins and their derivatives, stilbenes and their derivatives, lignans, neolignans, xanthones, anthraquinones and their derivatives, curcuminoids, coumarins, furanocoumarins, and other polyphenols (phloroglucinol) as promising anti-herpesvirus drugs against various types of herpesvirus such as alpha-herpesviruses (herpes simplex virus type 1 and 2 and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus). The molecular mechanisms of non-flavonoid polyphenols against the reviewed herpesviruses are also documented.
Collapse
Affiliation(s)
- Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
- Correspondence: ; Tel.: +420-774-630-604
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic
| | - Alena Mazurakova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
5
|
Šudomová M, Berchová-Bímová K, Mazurakova A, Šamec D, Kubatka P, Hassan STS. Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses 2022; 14:v14030592. [PMID: 35336999 PMCID: PMC8949561 DOI: 10.3390/v14030592] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Human herpesviruses (HHVs) are large DNA viruses with highly infectious characteristics. HHVs can induce lytic and latent infections in their host, and most of these viruses are neurotropic, with the capacity to generate severe and chronic neurological diseases of the peripheral nervous system (PNS) and central nervous system (CNS). Treatment of HHV infections based on strategies that include natural products-derived drugs is one of the most rapidly developing fields of modern medicine. Therefore, in this paper, we lend insights into the recent advances that have been achieved during the past five years in utilizing flavonoids as promising natural drugs for the treatment of HHVs infections of the nervous system such as alpha-herpesviruses (herpes simplex virus type 1, type 2, and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein–Barr virus and Kaposi sarcoma-associated herpesvirus). The neurological complications associated with infections induced by the reviewed herpesviruses are emphasized. Additionally, this work covers all possible mechanisms and pathways by which flavonoids induce promising therapeutic actions against the above-mentioned herpesviruses.
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic;
| | - Kateřina Berchová-Bímová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Alena Mazurakova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dunja Šamec
- Department of Food Technology, University Center Koprivnica, University North, Trga Dr. Žarka Dolinara 1, 48 000 Koprivnica, Croatia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-774-630-604
| |
Collapse
|
6
|
Song X, Wang Y, Li F, Cao W, Zeng Q, Qin S, Wang Z, Jia J, Xiao J, Hu X, Liu K, Wang Y, Ren Z. Hsp90 Inhibitors Inhibit the Entry of Herpes Simplex Virus 1 Into Neuron Cells by Regulating Cofilin-Mediated F-Actin Reorganization. Front Microbiol 2022; 12:799890. [PMID: 35082770 PMCID: PMC8785254 DOI: 10.3389/fmicb.2021.799890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 11/15/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a common neurotropic virus, the herpes simplex encephalitis (HSE) caused by which is considered to be the most common sporadic but fatal encephalitis. Traditional antiviral drugs against HSV-1 are limited to nucleoside analogs targeting viral factors. Inhibition of heat shock protein 90 (Hsp90) has potent anti-HSV-1 activities via numerous mechanisms, but the effects of Hsp90 inhibitors on HSV-1 infection in neuronal cells, especially in the phase of virus entry, are still unknown. In this study, we aimed to investigate the effects of the Hsp90 inhibitors on HSV-1 infection of neuronal cells. Interestingly, we found that Hsp90 inhibitors promoted viral adsorption but inhibited subsequent penetration in neuronal cell lines and primary neurons, which jointly confers the antiviral activity of the Hsp90 inhibitors. Mechanically, Hsp90 inhibitors mainly impaired the interaction between Hsp90 and cofilin, resulting in reduced cofilin membrane distribution, which led to F-actin polymerization to promote viral attachment. However, excessive polymerization of F-actin inhibited subsequent viral penetration. Consequently, unidirectional F-actin polymerization limits the entry of HSV-1 virions into neuron cells. Our research extended the molecular mechanism of Hsp90 in HSV-1 infection in neuron cells and provided a theoretical basis for developing antiviral drugs targeting Hsp90.
Collapse
Affiliation(s)
- Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Wenyan Cao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Qiongzhen Zeng
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Shurong Qin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Ji Xiao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao Hu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Kaisheng Liu
- The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Rice SA. Release of HSV-1 Cell-Free Virions: Mechanisms, Regulation, and Likely Role in Human-Human Transmission. Viruses 2021; 13:v13122395. [PMID: 34960664 PMCID: PMC8704881 DOI: 10.3390/v13122395] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type 1, or HSV-1, is a widespread human pathogen that replicates in epithelial cells of the body surface and then establishes latent infection in peripheral neurons. When HSV-1 replicates, viral progeny must be efficiently released to spread infection to new target cells. Viral spread occurs via two major routes. In cell-cell spread, progeny virions are delivered directly to cellular junctions, where they infect adjacent cells. In cell-free release, progeny virions are released into the extracellular milieu, potentially allowing the infection of distant cells. Cell-cell spread of HSV-1 has been well studied and is known to be important for in vivo infection and pathogenesis. In contrast, HSV-1 cell-free release has received less attention, and its significance to viral biology is unclear. Here, I review the mechanisms and regulation of HSV-1 cell-free virion release. Based on knowledge accrued in other herpesviral systems, I argue that HSV-1 cell-free release is likely to be tightly regulated in vivo. Specifically, I hypothesize that this process is generally suppressed as the virus replicates within the body, but activated to high levels at sites of viral reactivation, such as the oral mucosa and skin, in order to promote efficient transmission of HSV-1 to new human hosts.
Collapse
Affiliation(s)
- Stephen A Rice
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Draganova EB, Valentin J, Heldwein EE. The Ins and Outs of Herpesviral Capsids: Divergent Structures and Assembly Mechanisms across the Three Subfamilies. Viruses 2021; 13:v13101913. [PMID: 34696343 PMCID: PMC8539031 DOI: 10.3390/v13101913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Human herpesviruses, classified into three subfamilies, are double-stranded DNA viruses that establish lifelong latent infections within most of the world’s population and can cause severe disease, especially in immunocompromised people. There is no cure, and current preventative and therapeutic options are limited. Therefore, understanding the biology of these viruses is essential for finding new ways to stop them. Capsids play a central role in herpesvirus biology. They are sophisticated vehicles that shelter the pressurized double-stranded-DNA genomes while ensuring their delivery to defined cellular destinations on the way in and out of the host cell. Moreover, the importance of capsids for multiple key steps in the replication cycle makes their assembly an attractive therapeutic target. Recent cryo-electron microscopy reconstructions of capsids from all three subfamilies of human herpesviruses revealed not only conserved features but also remarkable structural differences. Furthermore, capsid assembly studies have suggested subfamily-specific roles of viral capsid protein homologs. In this review, we compare capsid structures, assembly mechanisms, and capsid protein functions across human herpesvirus subfamilies, highlighting the differences.
Collapse
Affiliation(s)
- Elizabeth B. Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Jonathan Valentin
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32603, USA;
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA;
- Correspondence:
| |
Collapse
|
9
|
The journey of herpesvirus capsids and genomes to the host cell nucleus. Curr Opin Virol 2021; 50:147-158. [PMID: 34464845 DOI: 10.1016/j.coviro.2021.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023]
Abstract
Starting a herpesviral infection is a steeplechase across membranes, cytosol, and nuclear envelopes and against antiviral defence mechanisms. Here, we highlight recent insights on capsid stabilization at the portals during assembly, early capsid-host interactions ensuring nuclear targeting of incoming capsids, and genome uncoating. After fusion with a host membrane, incoming capsids recruit microtubule motors for traveling to the centrosome, and by unknown mechanisms get forward towards the nucleus. The interaction of capsid-associated tegument proteins with nucleoporins orients the capsid portal towards the nuclear pore, and presumably after removal of the portal caps the genomes that have been packaged under pressure can be injected into the nucleoplasm for transcription and replication. Some cell types disarm the incoming capsids or silence the incoming genomes to reduce the likelihood of infection.
Collapse
|
10
|
Su C, Wu L, Chai Y, Qi J, Tan S, Gao GF, Song H, Yan J. Molecular basis of EphA2 recognition by gHgL from gammaherpesviruses. Nat Commun 2020; 11:5964. [PMID: 33235207 PMCID: PMC7687889 DOI: 10.1038/s41467-020-19617-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
The human γ-herpesviruses Kaposi sarcoma associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are associated with many human malignancies. Viral glycoprotein H (gH) and glycoprotein L (gL) are crucial for the cell tropism by binding to specific receptors. Recently, EphA2 was identified as the specific entry receptor for both KSHV and EBV. Here, we characterized the crystal structures of KSHV gHgL or EBV gHgL in complex with the ligand binding domain (LBD) of EphA2. Both KSHV and EBV gHgL bind to the channel and peripheral regions of LBD primarily using gL. Extensive interactions with more contacts contribute to the higher affinity of KSHV gHgL to LBD than that of EBV gHgL. These binding characteristics were verified using cell-based fusion assays with mutations in key EphA2 residues. Our experiments suggest that multiple animal γ-herpesviruses could use EphA2 as an entry receptor, implying a potential threat to human health.
Collapse
Affiliation(s)
- Chao Su
- grid.22935.3f0000 0004 0530 8290College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Lili Wu
- grid.9227.e0000000119573309CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yan Chai
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianxun Qi
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shuguang Tan
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - George F. Gao
- grid.22935.3f0000 0004 0530 8290College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.9227.e0000000119573309Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hao Song
- grid.9227.e0000000119573309Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jinghua Yan
- grid.9227.e0000000119573309CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
11
|
Menotti L, Avitabile E. Herpes Simplex Virus Oncolytic Immunovirotherapy: The Blossoming Branch of Multimodal Therapy. Int J Mol Sci 2020; 21:ijms21218310. [PMID: 33167582 PMCID: PMC7664223 DOI: 10.3390/ijms21218310] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses are smart therapeutics against cancer due to their potential to replicate and produce the needed therapeutic dose in the tumor, and to their ability to self-exhaust upon tumor clearance. Oncolytic virotherapy strategies based on the herpes simplex virus are reaching their thirties, and a wide variety of approaches has been envisioned and tested in many different models, and on a range of tumor targets. This huge effort has culminated in the primacy of an oncolytic HSV (oHSV) being the first oncolytic virus to be approved by the FDA and EMA for clinical use, for the treatment of advanced melanoma. The path has just been opened; many more cancer types with poor prognosis await effective and innovative therapies, and oHSVs could provide a promising solution, especially as combination therapies and immunovirotherapies. In this review, we analyze the most recent advances in this field, and try to envision the future ahead of oHSVs.
Collapse
|
12
|
Kamel M, Pavulraj S, Fauler B, Mielke T, Azab W. Equid Herpesvirus-1 Exploits the Extracellular Matrix of Mononuclear Cells to Ensure Transport to Target Cells. iScience 2020; 23:101615. [PMID: 33015592 PMCID: PMC7521387 DOI: 10.1016/j.isci.2020.101615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/27/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Mononuclear cells are the first line of defense against microbial infection. Yet, several viruses have evolved different mechanisms to overcome host defenses to ensure their spread. Here, we show unique mechanisms of how equid herpesvirus-1 manipulates peripheral blood mononuclear cells (PBMC) to travel further in the body. (1) "PBMC-hitching": at the initial contact, herpesviruses lurk in the extracellular matrix (ECM) of PBMC without entering the cells. The virus exploits the components of the ECM to bind, transport, and then egress to infect other cells. (2) "Intracellular delivery": transendothelial migration is a physiological mechanism where mononuclear cells can transmigrate through the endothelial cells. The virus was intangible and probably did not interfere with such a mechanism where the infected PBMC can probably deliver the virus inside the endothelium. (3) "Classical-fusion": this process is well mastered by herpesviruses due to a set of envelope glycoproteins that facilitate cell-cell fusion and virus spread.
Collapse
Affiliation(s)
- Mohamed Kamel
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.,Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Cairo, Egypt
| | - Selvaraj Pavulraj
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Beatrix Fauler
- Max-Planck-Institut für Molekulare Genetik, Mikroskopie und Kryo-Elektronenmikroskopie Servicegruppe, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Thorsten Mielke
- Max-Planck-Institut für Molekulare Genetik, Mikroskopie und Kryo-Elektronenmikroskopie Servicegruppe, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| |
Collapse
|
13
|
Pavulraj S, Kamel M, Stephanowitz H, Liu F, Plendl J, Osterrieder N, Azab W. Equine Herpesvirus Type 1 Modulates Cytokine and Chemokine Profiles of Mononuclear Cells for Efficient Dissemination to Target Organs. Viruses 2020; 12:v12090999. [PMID: 32911663 PMCID: PMC7551999 DOI: 10.3390/v12090999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/31/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022] Open
Abstract
Equine herpesvirus type 1 (EHV-1) causes encephalomyelopathy and abortion, for which cell-associated viremia and subsequent virus transfer to and replication in endothelial cells (EC) are responsible and prerequisites. Viral and cellular molecules responsible for efficient cell-to-cell spread of EHV-1 between peripheral blood mononuclear cells (PBMC) and EC remain unclear. We have generated EHV-1 mutants lacking ORF1, ORF2, and ORF17 genes, either individually or in combination. Mutant viruses were analyzed for their replication properties in cultured equine dermal cells, PBMC infection efficiency, virus-induced changes in the PBMC proteome, and cytokine and chemokine expression profiles. ORF1, ORF2, and ORF17 are not essential for virus replication, but ORF17 deletion resulted in a significant reduction in plaque size. Deletion of ORF2 and ORF17 gene significantly reduced cell-to-cell virus transfer from virus-infected PBMC to EC. EHV-1 infection of PBMC resulted in upregulation of several pathways such as Ras signaling, oxidative phosphorylation, platelet activation and leukocyte transendothelial migration. In contrast, chemokine signaling, RNA degradation and apoptotic pathways were downregulated. Deletion of ORF1, ORF2 and ORF17 modulated chemokine signaling and MAPK pathways in infected PBMC, which may explain the impairment of virus spread between PBMC and EC. The proteomic results were further confirmed by chemokine assays, which showed that virus infection dramatically reduced the cytokine/chemokine release in infected PBMC. This study uncovers cellular proteins and pathways influenced by EHV-1 after PBMC infection and provide an important resource for EHV-1 pathogenesis. EHV-1-immunomodulatory genes could be potential targets for the development of live attenuated vaccines or therapeutics against virus infection.
Collapse
Affiliation(s)
- Selvaraj Pavulraj
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany; (S.P.); (M.K.); (N.O.)
| | - Mohamed Kamel
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany; (S.P.); (M.K.); (N.O.)
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Cairo, Egypt
| | - Heike Stephanowitz
- Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.S.); (F.L.)
| | - Fan Liu
- Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.S.); (F.L.)
| | - Johanna Plendl
- Institut für Veterinäranatomie, Freie Universität Berlin, Koserstraße 20, 14195 Berlin, Germany;
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany; (S.P.); (M.K.); (N.O.)
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany; (S.P.); (M.K.); (N.O.)
- Correspondence: ; Tel.: +49-30-838-50087
| |
Collapse
|
14
|
Wang Y, Song X, Wang Y, Huang L, Luo W, Li F, Qin S, Wang Y, Xiao J, Wu Y, Jin F, Kitazato K, Wang Y. Dysregulation of cofilin-1 activity-the missing link between herpes simplex virus type-1 infection and Alzheimer's disease. Crit Rev Microbiol 2020; 46:381-396. [PMID: 32715819 DOI: 10.1080/1040841x.2020.1794789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial disease triggered by environmental factors in combination with genetic predisposition. Infectious agents, in particular herpes simplex virus type 1 (HSV-1), are gradually being recognised as important factors affecting the development of AD. However, the mechanism linking HSV-1 and AD remains unknown. Of note, HSV-1 manipulates the activity of cofilin-1 to ensure their efficient infection in neuron cells. Cofilin-1, the main regulator of actin cytoskeleton reorganization, is implicating for the plastic of dendritic spines and axon regeneration of neuronal cells. Moreover, dysfunction of cofilin-1 is observed in most AD patients, as well as in mice with AD and ageing. Further, inhibition of cofilin-1 activity ameliorates the host cognitive impairment in an animal model of AD. Together, dysregulation of cofilin-1 led by HSV-1 infection is a potential link between HSV-1 and AD. Herein, we critically summarize the role of cofilin-1-mediated actin dynamics in both HSV-1 infection and AD, respectively. We also propose several hypotheses regarding the connecting roles of cofilin-1 dysregulation in HSV-1 infection and AD. Our review provides a foundation for future studies targeting individuals carrying HSV-1 in combination with cofilin-1 to promote a more individualised approach for treatment and prevention of AD.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Yun Wang
- Department of Obstetrics and gynecology, The First affiliated hospital of Jinan University, Guangzhou, PR China
| | - Lianzhou Huang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Weisheng Luo
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Yuan Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Ji Xiao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Kaio Kitazato
- Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| |
Collapse
|
15
|
Su X, Wang Q, Wen Y, Jiang S, Lu L. Protein- and Peptide-Based Virus Inactivators: Inactivating Viruses Before Their Entry Into Cells. Front Microbiol 2020; 11:1063. [PMID: 32523582 PMCID: PMC7261908 DOI: 10.3389/fmicb.2020.01063] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Infectious diseases caused by human immunodeficiency virus (HIV) and other highly pathogenic enveloped viruses, have threatened the global public health. Most antiviral drugs act as passive defenders to inhibit viral replication inside the cell, while a few of them function as gate keepers to combat viruses outside the cell, including fusion inhibitors, e.g., enfuvirtide, and receptor antagonists, e.g., maraviroc, as well as virus inactivators (including attachment inhibitors). Different from fusion inhibitors and receptor antagonists that must act in the presence of target cells, virus inactivators can actively inactivate cell-free virions in the blood, through interaction with one or more sites in the envelope glycoproteins (Envs) on virions. Notably, a number of protein- and peptide-based virus inactivators (PPVIs) under development are expected to have a better utilization rate than the current antiviral drugs and be safer for in vivo human application than the chemical-based virus inactivators. Here we have highlighted recent progress in developing PPVIs against several important enveloped viruses, including HIV, influenza virus, Zika virus (ZIKV), dengue virus (DENV), and herpes simplex virus (HSV), and the potential use of PPVIs for urgent treatment of infection by newly emerging or re-emerging viruses.
Collapse
Affiliation(s)
- Xiaojie Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
16
|
He W, Auclert LZ, Zhai X, Wong G, Zhang C, Zhu H, Xing G, Wang S, He W, Li K, Wang L, Han GZ, Veit M, Zhou J, Su S. Interspecies Transmission, Genetic Diversity, and Evolutionary Dynamics of Pseudorabies Virus. J Infect Dis 2020; 219:1705-1715. [PMID: 30590733 DOI: 10.1093/infdis/jiy731] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/22/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pseudorabies virus (PRV) causes Aujeszky's disease in pigs and can be transmitted to other mammals, including humans. In the current study, we systematically studied the interspecies transmission and evolutionary history of PRV. METHODS We performed comprehensive analysis on the phylodynamics, selection, and structural biology to summarize the phylogenetic and adaptive evolution of PRV based on all available full-length and major glycoprotein sequences. RESULTS PRV can be divided into 2 main clades with frequent interclade and intraclade recombination. Clade 2.2 (variant PRV) is currently the most prevalent genotype worldwide, and most commonly involved in cross-species transmission events (including humans). We also found that the population size of clade 2.2 has increased since 2011, and the effective reproduction number was >1 from 2011 to 2016, indicating that PRV may be still circulating in swine herds and is still a risk in relation with cross-species transmission in China. Of note, we identified amino acid sites in some important glycoproteins gB, gC, gD, and gE that may be associated with PRV adaptation to new hosts and immune escape to vaccines. CONCLUSIONS Our study provides important genetic insight into the interspecies transmission and evolution of PRV within and between different hosts that warrant additional surveillance.
Collapse
Affiliation(s)
- Wanting He
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | | | - Xiaofeng Zhai
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | - Gary Wong
- College of Life Sciences, Nanjing Normal University, Hangzhou.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Cheng Zhang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | - Henan Zhu
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Gang Xing
- Key laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou
| | - Shilei Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | - Wei He
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | - Kemang Li
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| | - Liang Wang
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Guan-Zhu Han
- Institut Pasteur of Shanghai, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Germany
| | - Jiyong Zhou
- Key laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou
| | - Shuo Su
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University
| |
Collapse
|
17
|
Wyler E, Franke V, Menegatti J, Kocks C, Boltengagen A, Praktiknjo S, Walch-Rückheim B, Bosse J, Rajewsky N, Grässer F, Akalin A, Landthaler M. Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. Nat Commun 2019; 10:4878. [PMID: 31653857 PMCID: PMC6814756 DOI: 10.1038/s41467-019-12894-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
Herpesvirus infection initiates a range of perturbations in the host cell, which remain poorly understood at the level of individual cells. Here, we quantify the transcriptome of single human primary fibroblasts during the first hours of lytic infection with HSV-1. By applying a generalizable analysis scheme, we define a precise temporal order of early viral gene expression and propose a set-wise emergence of viral genes. We identify host cell genes and pathways relevant for infection by combining three different computational approaches: gene and pathway overdispersion analysis, prediction of cell-state transition probabilities, as well as future cell states. One transcriptional program, which correlates with increased resistance to infection, implicates the transcription factor NRF2. Consequently, Bardoxolone methyl and Sulforaphane, two known NRF2 agonists, impair virus production, suggesting that NRF2 activation restricts viral infection. Our study provides insights into early stages of HSV-1 infection and serves as a general blueprint for the investigation of heterogeneous cell states in virus infection.
Collapse
Affiliation(s)
- Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Vedran Franke
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Jennifer Menegatti
- Institute of Virology, Saarland University Medical School, Kirrbergerstrasse Haus, 4766421, Homburg/Saar, Germany
| | - Christine Kocks
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Anastasiya Boltengagen
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Samantha Praktiknjo
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Barbara Walch-Rückheim
- Institute of Virology and Center of Human und Molecular Biology, Saarland University, Saarbrücken, Germany
| | - Jens Bosse
- Heinrich Pette Institute (HPI), Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Friedrich Grässer
- Institute of Virology, Saarland University Medical School, Kirrbergerstrasse Haus, 4766421, Homburg/Saar, Germany
| | - Altuna Akalin
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
- IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.
| |
Collapse
|
18
|
Dey P, Bergmann T, Cuellar-Camacho JL, Ehrmann S, Chowdhury MS, Zhang M, Dahmani I, Haag R, Azab W. Multivalent Flexible Nanogels Exhibit Broad-Spectrum Antiviral Activity by Blocking Virus Entry. ACS NANO 2018; 12:6429-6442. [PMID: 29894156 DOI: 10.1021/acsnano.8b01616] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The entry process of viruses into host cells is complex and involves stable but transient multivalent interactions with different cell surface receptors. The initial contact of several viruses begins with attachment to heparan sulfate (HS) proteoglycans on the cell surface, which results in a cascade of events that end up with virus entry. The development of antiviral agents based on multivalent interactions to shield virus particles and block initial interactions with cellular receptors has attracted attention in antiviral research. Here, we designed nanogels with different degrees of flexibility based on dendritic polyglycerol sulfate to mimic cellular HS. The designed nanogels are nontoxic and broad-spectrum, can multivalently interact with viral glycoproteins, shield virus surfaces, and efficiently block infection. We also visualized virus-nanogel interactions as well as the uptake of nanogels by the cells through clathrin-mediated endocytosis using confocal microscopy. As many human viruses attach to the cells through HS moieties, we introduce our flexible nanogels as robust inhibitors for these viruses.
Collapse
Affiliation(s)
- Pradip Dey
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
- Polymer Science Unit , Indian Association for the Cultivation of Science , 2A and 2B Raja S.C. Mullick Road , Kolkata 700032 , India
| | - Tobias Bergmann
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin , Freie Universität Berlin , Robert-von-Ostertag-Str. 7-13 , 14163 Berlin , Germany
| | - Jose Luis Cuellar-Camacho
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Svenja Ehrmann
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Mohammad Suman Chowdhury
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Minze Zhang
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin , Freie Universität Berlin , Robert-von-Ostertag-Str. 7-13 , 14163 Berlin , Germany
| | - Ismail Dahmani
- Institute of Biochemistry and Biology , University of Potsdam , Karl-Liebknecht-Str. 24-25 , 14476 Potsdam , Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin , Freie Universität Berlin , Robert-von-Ostertag-Str. 7-13 , 14163 Berlin , Germany
| |
Collapse
|
19
|
Porcine MKRN1 Modulates the Replication and Pathogenesis of Porcine Circovirus Type 2 by Inducing Capsid Protein Ubiquitination and Degradation. J Virol 2018. [PMID: 29514908 DOI: 10.1128/jvi.00100-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) capsid protein (Cap) is a unique structure protein that plays pivotal roles in the process of viral replication and pathogenesis. Herein, we characterized a putative porcine Makorin RING finger protein 1 (pMKRN1) variant, an N-terminal-truncated variant of putative full-size porcine MKRN1 which has a unique expression pattern resulting from the porcine mkrn1 gene and which interacts with PCV2 Cap. A domain mapping assay showed that the C terminus of pMKRN1 and fragments (amino acids 108 to 198) of Cap are required for this interaction. PCV2 transiently upregulated pMKRN1 in PK-15 cells, but persistent viral infection downregulated pMKRN1 in major pathological tissues of PCV2-infected piglets. Overexpression of pMKRN1 significantly inhibited the generation of progeny PCV2 via ubiquitination and degradation of Cap, whereas knockout of pMKRN1 blocked Cap degradation and promoted progeny virus replication. pMKRN1 specifically targeted PCV2 Cap lysine residues 164, 179, and 191 to induce polyubiquitination and subsequent degradation. Mutation of either of the three lysine residues in the Cap protein or mutation of the histidine at residue 243 within the RING finger domain of pMKRN1 abrogated the E3 ligase activity of pMKRN1, rendering cells incapable of inducing Cap ubiquitination and degradation. Consistent with this finding, a Cap ubiquitination-deficient PCV2 strain showed enhanced virus replication and produced severe histological lesions in the lung and lymph node tissues compared with wild-type PCV2. Taken together, the results presented here suggest that PCV2 downregulates the pMKRN1 variant to avoid pMKRN1-mediated Cap ubiquitination and degradation, thus promoting viral replication and pathogenesis in its targeted tissues.IMPORTANCE Porcine circovirus type 2 is the pathogen to which pigs are the most susceptible, causing immense economic losses in the global swine industry, but whether host cells have developed some strategies to prevent viral replication is still unclear. Here, we found that porcine MKRN1 (pMKRN1) was upregulated in the early stage of PCV2 infection and mediated the polyubiquitination and degradation of Cap protein to block PCV2 replication, yet persistent PCV2 infection downregulated pMKRN1 levels to avoid degradation, promoting viral replication and pathogenesis in its targeted tissues. These data present new insight into the molecular mechanisms underlying the antiviral effects of pMKRN1 E3 ligase during PCV2 infection and also suggest potential new control measures for PCV2 outbreaks.
Collapse
|
20
|
Rider PJF, Musarrat F, Nabil R, Naidu S, Kousoulas KG. First Impressions-the Potential of Altering Initial Host-Virus Interactions for Rational Design of Herpesvirus Vaccine Vectors. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:55-65. [PMID: 30560044 DOI: 10.1007/s40588-018-0082-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose The earliest host-virus interactions occur during virus attachment and entry into cells. These initial steps in the virus lifecycle influence the outcome of infection beyond delivery of the viral genome into the cell. Herpesviruses alter host signaling pathways and processes during attachment and entry to facilitate virus infection and modulate innate immune responses. We suggest in this review that understanding these early signaling events may inform the rational design of therapeutic and prevention strategies for herpesvirus infection, as well as the engineering of viral vectors for immunotherapy purposes. Recent Findings Recent reports demonstrate that modulation of Herpes Simplex Virus Type-1 (HSV-1) entry results in unexpected enhancement of antiviral immune responses. Summary A variety of evidence suggests that herpesviruses promote specific cellular signaling responses that facilitate viral replication after binding to cell surfaces, as well as during virus entry. Of particular interest is the ability of the virus to alter innate immune responses through these cellular signaling events. Uncovering the underlying immune evasion strategies may lead to the design of live-attenuated vaccines that can generate robust and protective anti-viral immune responses against herpesviruses. These adjuvant properties may be extended to a variety of heterologous antigens expressed by herpesviral vectors.
Collapse
Affiliation(s)
- Paul J F Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Farhana Musarrat
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Rafiq Nabil
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Shan Naidu
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| |
Collapse
|