1
|
Beckers P, Charlier M, Azria-Richter L, Braconnier P, Desmet N, Massie A, Hermans E. Implication of system x c- in complete Freund's adjuvant-induced peripheral inflammation and associated nociceptive sensitization. Neuropharmacology 2025; 269:110340. [PMID: 39889848 DOI: 10.1016/j.neuropharm.2025.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Persistent inflammation leading to neuronal sensitization in pain pathways, are key features of chronic inflammatory pain. Alike macrophages in the periphery, glial cells exacerbate hypersensitivity by releasing proalgesic mediators in the central nervous system. Expressed by peripheral and central immune cells, the cystine-glutamate antiporter system xc- plays a significant role in inflammatory responses, but its involvement in chronic inflammatory pain remains underexplored. We herein investigated the contribution of this exchanger in nociceptive hypersensitivity triggered by a peripheral inflammatory insult. METHODS Complete Freund's adjuvant (CFA) was injected into the left hind paw of wild-type C57Bl/6 female mice, of xCT-deficient mice (specific subunit of system xc-) and of mice receiving the system xc- inhibitor sulfasalazine. Paw edema was measured over three weeks and pain-associated behaviors were evaluated. Additionally, pro-inflammatory cytokine levels were assessed in blood samples. RESULTS CFA injection led to a persistent increase in paw edema and hypersensitivity to mechanical and thermal stimuli, which were less pronounced in xCT-deficient mice. This reduced sensitivity was accompanied by lower systemic pro-inflammatory cytokine levels in xCT-deficient mice. Accordingly, pharmacological inhibition of system xc- with sulfasalazine, either before or after pain induction, efficiently reduced the algesic and inflammatory responses to CFA in wild-type mice. CONCLUSION Our findings reveal a critical role for system xc- in the pathophysiology of inflammatory pain. xCT deficiency reduces pain behaviors and peripheral inflammation, positioning system xc- as a promising therapeutic target for alleviating chronic inflammatory pain.
Collapse
Affiliation(s)
- Pauline Beckers
- Institute of Neuroscience, Group of Neuropharmacology, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), 1200, Brussels, Belgium
| | - Mathilde Charlier
- Institute of Neuroscience, Group of Neuropharmacology, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), 1200, Brussels, Belgium
| | - Lorie Azria-Richter
- Institute of Neuroscience, Group of Neuropharmacology, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), 1200, Brussels, Belgium
| | - Pauline Braconnier
- Institute of Neuroscience, Group of Neuropharmacology, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), 1200, Brussels, Belgium
| | - Nathalie Desmet
- Institute of Neuroscience, Group of Neuropharmacology, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), 1200, Brussels, Belgium
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Emmanuel Hermans
- Institute of Neuroscience, Group of Neuropharmacology, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), 1200, Brussels, Belgium.
| |
Collapse
|
2
|
Dong Z, Xiong B, Sun T, Jiang R, Feng F, Sun H. Brief analysis of Na v1.7 inhibitors: Mechanism of action and new research trends. Bioorg Med Chem 2025; 128:118180. [PMID: 40403415 DOI: 10.1016/j.bmc.2025.118180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 05/24/2025]
Abstract
Nav1.7 has been the most studied ion channel among the 9 subtypes of sodium ion, and it is also one of the popular analgesic targets in recent years. Compared with opioid receptors, because of its advantages of targeting a variety of pain types and being unrelated to addiction, many related inhibitors have been excavated for it, including old drugs and new uses, peptides, and new skeleton small molecules. Some of these inhibitors have reached the second phase of clinical research, and some are still in the laboratory research stage. So far, no exclusive Nav1.7 inhibitor has successfully passed the third phase of clinical research and entered the field of vision of patients. This article reviews the action sites and mechanisms of different Nav1.7 inhibitors in terms of historical background and related analgesic activities, and also summarizes the related inhibitors that are currently under active development, hoping to provide useful information for the research of new Nav1.7 inhibitors.
Collapse
Affiliation(s)
- Zhoujun Dong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ruijia Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Li X, Yang H, Qian M, Liu H, Zuo S, Liu JC, Ge WH, Zhou L. Intracellular metabotropic glutamate receptor 5 in spinal dorsal horn neurons contributes to pain in a mouse model of vincristine-induced neuropathic pain. Neurosci Lett 2025; 852:138193. [PMID: 40074023 DOI: 10.1016/j.neulet.2025.138193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Vincristine (VCR) is a commonly used clinical anti-cancer drug, but it can also induce neurotoxicity and cause vincristine-induced neuropathic pain (VINP). The metabotropic glutamate receptor 5 (mGluR5) within spinal dorsal horn neurons regulates the transmission of pain mediated by glutamate. In this study, we investigated for the first time the role of mGluR5 in the transmission of noxious information in VINP. Expression of mGluR5 protein was significantly increased in the spinal cord from days 6 to 14 after VCR injection. Immunofluorescence double staining showed that mGluR5 colocalized with the neuron-specific marker NeuN. The intrathecal administration of MPEP (a specific antagonist of mGluR5) or DHPG (an agonist of mGluR5) influenced the pain threshold and mGluR5 protein expression in VINP mice. The expression of c-Fos protein was also affected by MPEP. Furthermore, simulated blockade of intracellular mGluR5 site by intrathecal injection of small interfering RNA (siRNA) of the excitatory amino acid transporter 3 (EAAT3) reduced mechanical allodynia and thermal hyperalgesia and suppressed the expression of mGluR5 and c-Fos proteins. The results collectively indicate that mGluR5 site in spinal dorsal horn neurons may be involved in the regulation of intracellular nociceptive signal transmission in VINP, and the expression of c-Fos largely depends on the intracellular mGluR5.
Collapse
Affiliation(s)
- Xiao Li
- Affiliated Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008 Jiangsu, China
| | - Hui Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008 Jiangsu, China
| | - Ming Qian
- Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008 Jiangsu, China
| | - Hang Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008 Jiangsu, China
| | - Shuang Zuo
- Affiliated Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008 Jiangsu, China
| | - Jin-Chun Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008 Jiangsu, China.
| | - Wei-Hong Ge
- Affiliated Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008 Jiangsu, China; Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008 Jiangsu, China.
| | - Lin Zhou
- Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008 Jiangsu, China.
| |
Collapse
|
4
|
Antal M. Molecular Anatomy of Synaptic and Extrasynaptic Neurotransmission Between Nociceptive Primary Afferents and Spinal Dorsal Horn Neurons. Int J Mol Sci 2025; 26:2356. [PMID: 40076973 PMCID: PMC11900602 DOI: 10.3390/ijms26052356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Sensory signals generated by peripheral nociceptors are transmitted by peptidergic and nonpeptidergic nociceptive primary afferents to the superficial spinal dorsal horn, where their central axon terminals establish synaptic contacts with secondary sensory spinal neurons. In the case of suprathreshold activation, the axon terminals release glutamate into the synaptic cleft and stimulate postsynaptic spinal neurons by activating glutamate receptors located on the postsynaptic membrane. When overexcitation is evoked by peripheral inflammation, neuropathy or pruritogens, peptidergic nociceptive axon terminals may corelease various neuropeptides, neurotrophins and endomorphin, together with glutamate. However, in contrast to glutamate, neuropeptides, neurotrophins and endomorphin are released extrasynaptically. They diffuse from the site of release and modulate the function of spinal neurons via volume transmission, activating specific extrasynaptic receptors. Thus, the released neuropeptides, neurotrophins and endomorphin may evoke excitation, disinhibition or inhibition in various spinal neuronal populations, and together with glutamate, induce overall overexcitation, called central sensitization. In addition, the synaptic and extrasynaptic release of neurotransmitters is subjected to strong retrograde control mediated by various retrogradely acting transmitters, messengers, and their presynaptic receptors. Moreover, the composition of this complex chemical apparatus is heavily dependent on the actual patterns of nociceptive primary afferent activation in the periphery. This review provides an overview of the complexity of this signaling apparatus, how nociceptive primary afferents can activate secondary sensory spinal neurons via synaptic and volume transmission in the superficial spinal dorsal horn, and how these events can be controlled by presynaptic mechanisms.
Collapse
Affiliation(s)
- Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
5
|
Beckers P, Belo Do Nascimento I, Charlier M, Desmet N, Massie A, Hermans E. Implication of system x c- in neuroinflammation during the onset and maintenance of neuropathic pain. J Neuroinflammation 2024; 21:117. [PMID: 38715127 PMCID: PMC11077843 DOI: 10.1186/s12974-024-03112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Despite the high prevalence of neuropathic pain, treating this neurological disease remains challenging, given the limited efficacy and numerous side effects associated with current therapies. The complexity in patient management is largely attributed to an incomplete understanding of the underlying pathological mechanisms. Central sensitization, that refers to the adaptation of the central nervous system to persistent inflammation and heightened excitatory transmission within pain pathways, stands as a significant contributor to persistent pain. Considering the role of the cystine/glutamate exchanger (also designated as system xc-) in modulating glutamate transmission and in supporting neuroinflammatory responses, we investigated the contribution of this exchanger in the development of neuropathic pain. METHODS We examined the implication of system xc- by evaluating changes in the expression/activity of this exchanger in the dorsal spinal cord of mice after unilateral partial sciatic nerve ligation. In this surgical model of neuropathic pain, we also examined the consequence of the genetic suppression of system xc- (using mice lacking the system xc- specific subunit xCT) or its pharmacological manipulation (using the pharmacological inhibitor sulfasalazine) on the pain-associated behavioral responses. Finally, we assessed the glial activation and the inflammatory response in the spinal cord by measuring mRNA and protein levels of GFAP and selected M1 and M2 microglial markers. RESULTS The sciatic nerve lesion was found to upregulate system xc- at the spinal level. The genetic deletion of xCT attenuated both the amplitude and the duration of the pain sensitization after nerve surgery, as evidenced by reduced responses to mechanical and thermal stimuli, and this was accompanied by reduced glial activation. Consistently, pharmacological inhibition of system xc- had an analgesic effect in lesioned mice. CONCLUSION Together, these observations provide evidence for a role of system xc- in the biochemical processes underlying central sensitization. We propose that the reduced hypersensitivity observed in the transgenic mice lacking xCT or in sulfasalazine-treated mice is mediated by a reduced gliosis in the lumbar spinal cord and/or a shift in microglial M1/M2 polarization towards an anti-inflammatory phenotype in the absence of system xc-. These findings suggest that drugs targeting system xc- could contribute to prevent or reduce neuropathic pain.
Collapse
Affiliation(s)
- Pauline Beckers
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium
| | - Inês Belo Do Nascimento
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium
| | - Mathilde Charlier
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium
| | - Nathalie Desmet
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Emmanuel Hermans
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium.
| |
Collapse
|
6
|
Weng HR. Emerging Molecular and Synaptic Targets for the Management of Chronic Pain Caused by Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:3602. [PMID: 38612414 PMCID: PMC11011483 DOI: 10.3390/ijms25073602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to address SLE-induced chronic pain. Recent studies, including those conducted by our team and others using the SLE animal model (MRL/lpr lupus-prone mice), have unveiled heightened excitability in nociceptive primary sensory neurons within the dorsal root ganglia and increased glutamatergic synaptic activity in spinal dorsal horn neurons, contributing to the development of chronic pain in mice with SLE. Nociceptive primary sensory neurons in lupus animals exhibit elevated resting membrane potentials, and reduced thresholds and rheobases of action potentials. These changes coincide with the elevated production of TNFα and IL-1β, as well as increased ERK activity in the dorsal root ganglion, coupled with decreased AMPK activity in the same region. Dysregulated AMPK activity is linked to heightened excitability in nociceptive sensory neurons in lupus animals. Additionally, the increased glutamatergic synaptic activity in the spinal dorsal horn in lupus mice with chronic pain is characterized by enhanced presynaptic glutamate release and postsynaptic AMPA receptor activation, alongside the reduced activity of glial glutamate transporters. These alterations are caused by the elevated activities of IL-1β, IL-18, CSF-1, and thrombin, and reduced AMPK activities in the dorsal horn. Furthermore, the pharmacological activation of spinal GPR109A receptors in microglia in lupus mice suppresses chronic pain by inhibiting p38 MAPK activity and the production of both IL-1β and IL-18, as well as reducing glutamatergic synaptic activity in the spinal dorsal horn. These findings collectively unveil crucial signaling molecular and synaptic targets for modulating abnormal neuronal activation in both the periphery and spinal dorsal horn, offering insights into the development of analgesics for managing SLE-induced chronic pain.
Collapse
Affiliation(s)
- Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| |
Collapse
|
7
|
Yang JX, Zhao WN, Jiang YY, Ma Y, Chen DD, Lin ZH, Yin MB, Ren KP. Caveolin-1 is essential for the increased release of glutamate in the anterior cingulate cortex in neuropathic pain mice. J Neuropathol Exp Neurol 2023; 82:806-813. [PMID: 37478479 DOI: 10.1093/jnen/nlad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023] Open
Abstract
Neuropathic pain has a complex pathogenesis. Here, we examined the role of caveolin-1 (Cav-1) in the anterior cingulate cortex (ACC) in a chronic constriction injury (CCI) mouse model for the enhancement of presynaptic glutamate release in chronic neuropathic pain. Cav-1 was localized in glutamatergic neurons and showed higher expression in the ACC of CCI versus sham mice. Moreover, the release of glutamate from the ACC of the CCI mice was greater than that of the sham mice. Inhibition of Cav-1 by siRNAs greatly reduced the release of glutamate of ACC, while its overexpression (induced by injecting Lenti-Cav-1) reversed this process. The chemogenetics method was then used to activate or inhibit glutamatergic neurons in the ACC area. After 21 days of injection of AAV-hM3Dq in the sham mice, the release of glutamate was increased, the paw withdrawal latency was shortened, and expression of Cav-1 in the ACC was upregulated after intraperitoneal injection of 2 mg/kg clozapine N-oxide. Injection of AAV-hM4Di in the ACC of CCI mice led to the opposite effects. Furthermore, decreasing Cav-1 in the ACC in sham mice injected with rAAV-hM3DGq did not increase glutamate release. These findings suggest that Cav-1 in the ACC is essential for enhancing glutamate release in neuropathic pain.
Collapse
Affiliation(s)
- Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yan-Yu Jiang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yu Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Dan-Dan Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Zhi-Hua Lin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Meng-Bing Yin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Kun-Peng Ren
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
9
|
Murray I, Bhanot G, Bhargava A. Neuron-Glia-Immune Triad and Cortico-Limbic System in Pathology of Pain. Cells 2021; 10:cells10061553. [PMID: 34205372 PMCID: PMC8234386 DOI: 10.3390/cells10061553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 01/02/2023] Open
Abstract
Pain is an unpleasant sensation that alerts one to the presence of obnoxious stimuli or sensations. These stimuli are transferred by sensory neurons to the dorsal root ganglia-spinal cord and finally to the brain. Glial cells in the peripheral nervous system, astrocytes in the brain, dorsal root ganglia, and immune cells all contribute to the development, maintenance, and resolution of pain. Both innate and adaptive immune responses modulate pain perception and behavior. Neutrophils, microglial, and T cell activation, essential components of the innate and adaptive immune responses, can play both excitatory and inhibitory roles and are involved in the transition from acute to chronic pain. Immune responses may also exacerbate pain perception by modulating the function of the cortical-limbic brain regions involved in behavioral and emotional responses. The link between an emotional state and pain perception is larger than what is widely acknowledged. In positive psychological states, perception of pain along with other somatic symptoms decreases, whereas in negative psychological states, these symptoms may worsen. Sex differences in mechanisms of pain perception are not well studied. In this review, we highlight what is known, controversies, and the gaps in this field.
Collapse
Affiliation(s)
- Isabella Murray
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA; (I.M.); (G.B.)
| | - Gayatri Bhanot
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA; (I.M.); (G.B.)
- Eleanor Roosevelt College, University of California San Diego, San Diego, CA 92122, USA
| | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA; (I.M.); (G.B.)
- Correspondence: ; Tel.: +1-415-502-8453
| |
Collapse
|
10
|
Weng RX, Chen W, Tang JN, Sun Q, Li M, Xu X, Zhang PA, Zhang Y, Hu CY, Xu GY. Targeting spinal TRAF6 expression attenuates chronic visceral pain in adult rats with neonatal colonic inflammation. Mol Pain 2021; 16:1744806920918059. [PMID: 32299285 PMCID: PMC7168780 DOI: 10.1177/1744806920918059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Irritable bowel syndrome is one of the most common gastrointestinal disorders. It is featured by abdominal pain in conjunction with altered bowel habits. However, the pathophysiology of the syndrome remains largely unknown. Tumor necrosis factor receptor-associated factor 6 (TRAF6) has been reported to be involved in neuropathic pain. The aim of this study was to investigate roles and mechanisms of TRAF6 in the chronic visceral hypersensitivity. Methods Visceral hypersensitivity was induced by neonatal colonic inflammation and was identified by colorectal distention. The protein level, RNA level, and cellular distribution of TRAF6 and its related molecules were detected with Western blot, quantitative polymerase chain reaction, and immunofluorescence. In vitro spinal cord slice recording technique was performed to determine the synaptic transmission activities. Results Neonatal colonic inflammation rats displayed visceral hypersensitivity at the age of six weeks. The expression of TRAF6 was obviously upregulated in spinal cord dorsal horn of neonatal colonic inflammation rats at the age of six weeks. Immunofluorescence study showed that TRAF6 was dominantly expressed in spinal astrocytes. Intrathecal injection of TRAF6 small interfering RNA (siRNA) significantly reduced the amplitude of spontaneous excitatory postsynaptic currents at the spinal dorsal horn level. Furthermore, knockdown of TRAF6 led to a significant downregulation of cystathionine β synthetase expression in the spinal dorsal horn of neonatal colonic inflammation rats. Importantly, intrathecal injection of TRAF6 siRNA remarkably alleviated visceral hypersensitivity of neonatal colonic inflammation rats. Conclusions Our results suggested that the upregulation of TRAF6 contributed to visceral pain hypersensitivity, which is likely mediated by regulating cystathionine β synthetase expression in the spinal dorsal horn. Our findings suggest that TRAF6 might act as a potential target for the treatment of chronic visceral pain in irritable bowel syndrome patients.
Collapse
Affiliation(s)
- Rui-Xia Weng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Wei Chen
- People's Hospital of Suzhou National New & Hi-Tech Industrial Development Zone, Suzhou, P.R. China
| | - Jia-Ni Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Qian Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Meng Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Xue Xu
- People's Hospital of Suzhou National New & Hi-Tech Industrial Development Zone, Suzhou, P.R. China
| | - Ping-An Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Ying Zhang
- People's Hospital of Suzhou National New & Hi-Tech Industrial Development Zone, Suzhou, P.R. China
| | - Chuang-Ying Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, P.R. China
| |
Collapse
|
11
|
Todd AC, Hardingham GE. The Regulation of Astrocytic Glutamate Transporters in Health and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E9607. [PMID: 33348528 PMCID: PMC7766851 DOI: 10.3390/ijms21249607] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
The astrocytic glutamate transporters excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2) play a key role in nervous system function to maintain extracellular glutamate levels at low levels. In physiology, this is essential for the rapid uptake of synaptically released glutamate, maintaining the temporal fidelity of synaptic transmission. However, EAAT1/2 hypo-expression or hypo-function are implicated in several disorders, including epilepsy and neurodegenerative diseases, as well as being observed naturally with aging. This not only disrupts synaptic information transmission, but in extremis leads to extracellular glutamate accumulation and excitotoxicity. A key facet of EAAT1/2 expression in astrocytes is a requirement for signals from other brain cell types in order to maintain their expression. Recent evidence has shown a prominent role for contact-dependent neuron-to-astrocyte and/or endothelial cell-to-astrocyte Notch signalling for inducing and maintaining the expression of these astrocytic glutamate transporters. The relevance of this non-cell-autonomous dependence to age- and neurodegenerative disease-associated decline in astrocytic EAAT expression is discussed, plus the implications for disease progression and putative therapeutic strategies.
Collapse
Affiliation(s)
- Alison C. Todd
- UK Dementia Research Institute at the University of Edinburgh, Chancellor’s Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK;
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Giles E. Hardingham
- UK Dementia Research Institute at the University of Edinburgh, Chancellor’s Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK;
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
12
|
Lu G, Pang C, Chen Y, Wu N, Li J. Aquaporin 4 is involved in chronic pain but not acute pain. Behav Brain Res 2020; 393:112810. [PMID: 32681852 DOI: 10.1016/j.bbr.2020.112810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/23/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022]
Abstract
Accumulating evidence has revealed that spinal glia plays an important role in the processing of pain, particularly chronic pain. Aquaporin 4 (AQP4), the predominant water channel exists in astrocytes, has been proved to modulate astrocytic function and thus participate in many diseases of the central nervous system. However, there is still controversy over whether AQP4 is involved in pain modulation. In the present study, we investigated the effects of AQP4 on pain by examining chronic inflammatory pain, neuropathic pain, and thermal, chemical, and mechanical stimuli-induced acute pain in AQP4 knockout mice. In Complete Freund's adjuvant-induced chronic inflammatory pain and spared nerve injury-induced neuropathic pain models, AQP4-/- mice attenuated pain-related behavioral responses compared with AQP4+/+ mice, demonstrating that AQP4 deficiency relieved chronic inflammatory pain and neuropathic pain. In the tail-flick and hot-plate tests, two acute pain models of thermal stimuli, no differences in pain-related behaviors were detected between AQP4+/+ and AQP4-/- mice. In the formalin and capsaicin tests, two models of chemical stimuli-induced acute pain, no differences in the durations of licking the injected hindpaw were found between AQP4+/+ and AQP4-/- mice. In the von Frey hair test, a model of mechanical stimuli-induced acute pain, no significant differences in withdrawal thresholds were found between these two genotypes mice as well. These results indicated that AQP4 deficiency did not affect acute pain induced by thermal, chemical, and mechanical stimuli. Taken together, our findings suggested that AQP4 contributes to chronic pain, but not acute pain.
Collapse
Affiliation(s)
- Guanyi Lu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Chong Pang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Ying Chen
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
13
|
Ferreira CP, Techera Antunes FT, Rebelo IN, da Silva CA, Vilanova FN, Corrêa DS, de Souza AH. Application of the UV–vis spectrophotometry method for the determination of glutamate in the cerebrospinal fluid of rats. J Pharm Biomed Anal 2020; 186:113290. [DOI: 10.1016/j.jpba.2020.113290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
|
14
|
Baeza-Flores GDC, Rodríguez-Palma EJ, Reyes-Pérez V, Guzmán-Priego CG, Torres-López JE. Antinociceptive effects of ceftriaxone in formalin-induced nociception. Drug Dev Res 2020; 81:728-735. [PMID: 32394536 DOI: 10.1002/ddr.21680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 11/06/2022]
Abstract
Ceftriaxone (CFX) is a β-lactam antibiotic with analgesic properties. However, its role in the formalin-induced nociception remains unknown. The purpose of this study was to investigate the antinociceptive effect of CFX in the 1% formalin test in rats. Formalin induced a typical nociceptive response (flinching behavior) of two phases. Local peripheral pretreatment (20 min) with CFX (400-800 μg/paw) slightly attenuated the flinching behavior in phase 2, but not phase 1. Acute intraperitoneal pretreatment (20 min) also reduced phase 2 of the formalin test. In both cases, CFX induced a dose-dependent antinociception. We also tested the effect of CFX 1 day after its administration and in two schedules of repeated administration. One-day pretreatment with CFX (50-400 mg/kg, ip) induced a dose-dependent antinociceptive effect in formalin-treated rats. Repeated administration (daily during 3 or 7 days) with CFX (50-400 mg/kg, ip) diminished formalin-induced nociception. Results suggest that local or systemic as well as single or repeated administration of CFX reduces formalin-induced nociception.
Collapse
Affiliation(s)
- Guadalupe Del Carmen Baeza-Flores
- Pain Mechanisms Laboratory, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Erick J Rodríguez-Palma
- Neurobiology of Pain, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico
| | | | - Crystell G Guzmán-Priego
- Pain Mechanisms Laboratory, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Jorge E Torres-López
- Pain Mechanisms Laboratory, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico.,Department of Anaesthetics, Hospital Regional de Alta Especialidad "Dr. Juan Graham Casasús", Villahermosa, Mexico
| |
Collapse
|
15
|
|
16
|
Herzberg D, Strobel P, Chihuailaf R, Ramirez-Reveco A, Müller H, Werner M, Bustamante H. Spinal Reactive Oxygen Species and Oxidative Damage Mediate Chronic Pain in Lame Dairy Cows. Animals (Basel) 2019; 9:ani9090693. [PMID: 31533257 PMCID: PMC6770087 DOI: 10.3390/ani9090693] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Chronic inflammatory diseases could impact central nervous system homeostasis, being oxidative damage of the dorsal horn, a relevant mechanism mediating central sensitization. Chronic inflammatory lameness in dairy cows is a painful condition that affects animal welfare, affecting dairy production worldwide. This study reveals increased levels of reactive oxygen species, malondialdehyde, and carbonyl groups, indicating lipid and protein damage in the spinal cord of cows with chronic lameness. Moreover, antioxidant system activity was similar between lame and non-lame cows which suggests that antioxidant dysregulation was not the cause of oxidative damage, as has been proposed previously. Based on the fact that nociceptive pathways are strongly conserved between species, there is no reason to neglect that chronic pain in cows promotes Central Nervous System (CNS) alterations, such as oxidative damage. Moreover, lame cows develop central sensitization, as allodynia and hyperalgesia are centrally and not peripherally mediated. Our results support the current assumption that chronic pain is a central nervous system disease and lameness in dairy cows is far beyond an inflammation of the hoof. Abstract Lameness in dairy cows is a worldwide prevalent disease with a negative impact on animal welfare and herd economy. Oxidative damage and antioxidant system dysfunction are common features of many CNS diseases, including chronic pain. The aim of this study was to evaluate the levels of reactive oxygen species (ROS) and oxidative damage markers in the spinal cord of dairy cows with chronic inflammatory lameness. Locomotion score was performed in order to select cows with chronic lameness. Dorsal horn spinal cord samples were obtained post mortem from lumbar segments (L2–L5), and ROS, malondialdehyde (MDA), and carbonyl groups were measured along with the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant response (TAR). Lame cows had increased levels of ROS, MDA, and carbonyl groups, while no differences were observed between lame and non-lame cows in SOD, GPx, CAT, and TAR activity. We conclude that painful chronic inflammatory lameness in dairy cows is associated with an increase in ROS, MDA, and carbonyl groups. Nonetheless, an association between ROS generation and dysfunction of the antioxidant system, as previously proposed, could not be established.
Collapse
Affiliation(s)
- Daniel Herzberg
- Graduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile.
| | - Pablo Strobel
- Animal Science Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile.
| | - Ricardo Chihuailaf
- Department of Veterinary Sciences, Universidad Católica de Temuco, Temuco 4780000, Chile.
| | - Alfredo Ramirez-Reveco
- Animal Science Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile.
| | - Heine Müller
- Graduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile.
| | - Marianne Werner
- Animal Science Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile.
| | - Hedie Bustamante
- Veterinary Clinical Sciences Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile.
| |
Collapse
|
17
|
Farghaly HSM, Elbadr MM, Ahmed MA, Abdelhaffez AS. Effect of single and repeated administration of amitriptyline on neuropathic pain model in rats: Focus on glutamatergic and upstream nitrergic systems. Life Sci 2019; 233:116752. [PMID: 31415770 DOI: 10.1016/j.lfs.2019.116752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/03/2019] [Accepted: 08/11/2019] [Indexed: 10/26/2022]
Abstract
AIMS Few studies have compared the interaction of single and repeated administration of amitriptyline (amit) with the nitrergic system and glutamatergic system in the experimental model of neuropathic pain. We aimed to evaluate the antinociceptive effect of single and repeated administration of amit and to assess whether glutamate preceded inducible nitric oxide synthase (iNOS) inhibition as a mechanism of the analgesic effect of amit in the neuropathic model of pain. MATERIALS AND METHODS Male Wistar rats were subjected to left sciatic nerve ligation. The effect of single (25 mg kg-1) and repeated (10 mg kg-1 daily for 3 weeks) administration of amit intraperitoneally (i.p.) alone or in combination with aminoguanidine (AG i.p., 100 mg kg-1 for 3 days, a selective iNOS inhibitor) and MK-801 (0.05 mg kg-1 i.p., NMDA antagonist) on resting paw posture and mechanical hyperalgesia were studied. Glutamate level and iNOS protein expression in hippocampus were detected. KEY FINDINGS Single and repeated administration of amit alone or in combination with AG or MK-801 demonstrated a significant decrease in resting pain score and increase in the pain threshold. Both glutamate and nitrite levels decreased in the hippocampi of single and repeated amit + MK-801 groups. Immunohistochemistry showed a marked decrease in iNOS immunoreactivity in rats treated with single and repeated amit + MK-801. SIGNIFICANCE Our results suggest that glutamate-dependent mechanisms are involved in the analgesic responses to amit administration. Importantly, glutamatergic system and its upstream nitrergic system play an important role in the antinociceptive action of amit.
Collapse
Affiliation(s)
- Hanan S M Farghaly
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt.
| | - Mohamed M Elbadr
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | - Marwa A Ahmed
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | - Azza S Abdelhaffez
- Physiology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
18
|
Gegelashvili G, Bjerrum OJ. Glutamate transport system as a key constituent of glutamosome: Molecular pathology and pharmacological modulation in chronic pain. Neuropharmacology 2019; 161:107623. [PMID: 31047920 DOI: 10.1016/j.neuropharm.2019.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/07/2023]
Abstract
Neural uptake of glutamate is executed by the structurally related members of the SLC1A family of solute transporters: GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3, EAAT4, ASCT2. These plasma membrane proteins ensure supply of glutamate, aspartate and some neutral amino acids, including glutamine and cysteine, for synthetic, energetic and signaling purposes, whereas effective removal of glutamate from the synaptic cleft shapes excitatory neurotransmission and prevents glutamate toxicity. Glutamate transporters (GluTs) possess also receptor-like properties and can directly initiate signal transduction. GluTs are physically linked to other glutamate signaling-, transporting- and metabolizing molecules (e.g., glutamine transporters SNAT3 and ASCT2, glutamine synthetase, NMDA receptor, synaptic vesicles), as well as cellular machineries fueling the transmembrane transport of glutamate (e.g., ion gradient-generating Na/K-ATPase, glycolytic enzymes, mitochondrial membrane- and matrix proteins, glucose transporters). We designate this supramolecular functional assembly as 'glutamosome'. GluTs play important roles in the molecular pathology of chronic pain, due to the predominantly glutamatergic nature of nociceptive signaling in the spinal cord. Down-regulation of GluTs often precedes or occurs simultaneously with development of pain hypersensitivity. Pharmacological inhibition or gene knock-down of spinal GluTs can induce/aggravate pain, whereas enhancing expression of GluTs by viral gene transfer can mitigate chronic pain. Thus, functional up-regulation of GluTs is turning into a prospective pharmacotherapeutic approach for the management of chronic pain. A number of novel positive pharmacological regulators of GluTs, incl. pyridazine derivatives and β-lactams, have recently been introduced. However, design and development of new analgesics based on this principle will require more precise knowledge of molecular mechanisms underlying physiological or aberrant functioning of the glutamate transport system in nociceptive circuits. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Georgi Gegelashvili
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia.
| | - Ole Jannik Bjerrum
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Parkin GM, Udawela M, Gibbons A, Dean B. Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry 2018; 8:51-63. [PMID: 29988908 PMCID: PMC6033743 DOI: 10.5498/wjp.v8.i2.51] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/15/2018] [Accepted: 06/09/2018] [Indexed: 02/05/2023] Open
Abstract
Glutamate is the predominant excitatory neurotransmitter in the human brain and it has been shown that prolonged activation of the glutamatergic system leads to nerve damage and cell death. Following release from the pre-synaptic neuron and synaptic transmission, glutamate is either taken up into the pre-synaptic neuron or neighbouring glia by transmembrane glutamate transporters. Excitatory amino acid transporter (EAAT) 1 and EAAT2 are Na+-dependant glutamate transporters expressed predominantly in glia cells of the central nervous system. As the most abundant glutamate transporters, their primary role is to modulate levels of glutamatergic excitability and prevent spill over of glutamate beyond the synapse. This role is facilitated through the binding and transportation of glutamate into astrocytes and microglia. The function of EAAT1 and EAAT2 is heavily regulated at the levels of gene expression, post-transcriptional splicing, glycosylation states and cell-surface trafficking of the protein. Both glutamatergic dysfunction and glial dysfunction have been proposed to be involved in psychiatric disorder. This review will present an overview of the roles that EAAT1 and EAAT2 play in modulating glutamatergic activity in the human brain, and mount an argument that these two transporters could be involved in the aetiologies of schizophrenia and affective disorders as well as represent potential drug targets for novel therapies for those disorders.
Collapse
Affiliation(s)
- Georgia M Parkin
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
- CRC for Mental Health, Carlton VIC 3053, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
- CRC for Mental Health, Carlton VIC 3053, Australia
| | - Andrew Gibbons
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Brian Dean
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
- CRC for Mental Health, Carlton VIC 3053, Australia
- Research Centre for Mental Health, the Faculty of Health, Arts and Design, Swinburne University, Hawthorne VIC 3122, Australia
| |
Collapse
|