1
|
Sun L, Li H, Zhang H, Guo Y, Wang C, Chen S. Proteomics and phosphoproteomics analysis of acute pancreatitis alleviated by forsythoside B. J Proteomics 2025; 315:105414. [PMID: 40015372 DOI: 10.1016/j.jprot.2025.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/19/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Acute pancreatitis (AP) is a common acute abdominal condition in clinical practice, associated with high morbidity and mortality rates. Forsythia constitutes a component of traditional Chinese medicinal decoctions used for clinical AP treatment; however, the efficacy of its active monomer in treating AP has yet to be completely substantiated. Here, we engineered an AP cell and mouse model by administering a combination of caerulein and LPS. In vitro experiments utilizing AR42J cells demonstrated that forsythoside B (FST·B) was the most effective monomer in mitigating cellular inflammation. Subsequently, a comprehensive evaluation of FST·B concentrations and efficacy was performed in animal models. Next Mass spectrometry analysis of pancreatic from AP mice treated with 50 mg/kg FST·B was conducted to elucidate its primary regulatory molecular signaling and key targets. FST·B effectively mitigated pathological damage in mice with acute pancreatitis, leading to a reduction in the expression of inflammatory cytokines in both pancreatic tissue and serum. Proteomics and phosphoproteomic profiles revealed that FST·B significantly enhanced the level of oxidative phosphorylation and spliceosome pathway in the AP mice. This research provides initial evidence of the regulatory molecular signals and targets of FST·B in AP, laying a potential foundation for its clinical use in treating AP. SIGNIFICANCE: Acute pancreatitis (AP) is a common acute abdominal condition in clinical practice, associated with high morbidity and mortality rates, and the global incidence of AP has increased by approximately 25 % over the past 15 years. Despite the complexity of AP's causes and the high susceptibility of proteins to degradation during lesions, systems biology studies, such as proteomics, have been limited in investigating the molecular mechanisms involved in its pharmacological treatment. Forsythoside B, a phenylethanol glycoside isolated from the air-dried fruit of forsythia, is a traditional oriental anti-inflammatory drug commonly used in clinical practice. We demonstrated in the AP mouse model that forsythoside B can alleviate pancreatic inflammatory damage in vivo. To elucidate the molecular mechanisms underlying the anti-inflammatory effect of forsythoside B, a comprehensive proteomic and phosphoproteomic analysis was conducted on AP mice models prior to and subsequent to forsythoside B intervention. Finally, 1640 significantly differentially expressed proteins, 1448 significantly differentially expressed phosphoproteins corresponding to 2496 significantly differentially expressed phosphosites were identified. Functional analysis revealed that forsythoside B significantly enhanced the level of oxidative phosphorylation in the AP mice in proteomic profiles, and the spliceosome pathway at the phosphorylation level was significantly affected by forsythoside B. This research provides initial evidence of the regulatory molecular signals and targets of forsythoside B in AP, laying a potential foundation for its clinical use in treating AP.
Collapse
Affiliation(s)
- Linxiao Sun
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang 325000, China
| | - Hongmei Li
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Haiyan Zhang
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Yinchu Guo
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Cheng Wang
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China.
| | - Shichao Chen
- Department of General Surgery, the People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
| |
Collapse
|
2
|
Lv Y, Li J, Yu S, Zhang Y, Hu H, Sun K, Jia D, Han Y, Tu J, Huang Y, Liu X, Zhang X, Gao P, Chen X, Shaw Williams MT, Tang Z, Shu X, Liu M, Ren X. The splicing factor Prpf31 is required for hematopoietic stem and progenitor cell expansion during zebrafish embryogenesis. J Biol Chem 2024; 300:105772. [PMID: 38382674 PMCID: PMC10959673 DOI: 10.1016/j.jbc.2024.105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Pre-mRNA splicing is a precise regulated process and is crucial for system development and homeostasis maintenance. Mutations in spliceosomal components have been found in various hematopoietic malignancies (HMs) and have been considered as oncogenic derivers of HMs. However, the role of spliceosomal components in normal and malignant hematopoiesis remains largely unknown. Pre-mRNA processing factor 31 (PRPF31) is a constitutive spliceosomal component, which mutations are associated with autosomal dominant retinitis pigmentosa. PRPF31 was found to be mutated in several HMs, but the function of PRPF31 in normal hematopoiesis has not been explored. In our previous study, we generated a prpf31 knockout (KO) zebrafish line and reported that Prpf31 regulates the survival and differentiation of retinal progenitor cells by modulating the alternative splicing of genes involved in mitosis and DNA repair. In this study, by using the prpf31 KO zebrafish line, we discovered that prpf31 KO zebrafish exhibited severe defects in hematopoietic stem and progenitor cell (HSPC) expansion and its sequentially differentiated lineages. Immunofluorescence results showed that Prpf31-deficient HSPCs underwent malformed mitosis and M phase arrest during HSPC expansion. Transcriptome analysis and experimental validations revealed that Prpf31 deficiency extensively perturbed the alternative splicing of mitosis-related genes. Collectively, our findings elucidate a previously undescribed role for Prpf31 in HSPC expansion, through regulating the alternative splicing of mitosis-related genes.
Collapse
Affiliation(s)
- Yuexia Lv
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Department of Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yangjun Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hualei Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xianghan Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mark Thomas Shaw Williams
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
A first glimpse into the transcriptomic changes induced by the PaV1 infection in the gut of Caribbean spiny lobsters, Panulirus argus (Latreille, 1804) (Decapoda: Achelata: Palinuridae). Virus Res 2022; 311:198713. [PMID: 35176328 DOI: 10.1016/j.virusres.2022.198713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022]
Abstract
The Caribbean spiny lobster, Panulirus argus (Latreille, 1804) supports important fisheries in the Caribbean region. This species is affected by a deadly virus, Panulirus argus Virus 1 (PaV1), the only known pathogenic virus for this species. As infection progresses, the effects of PaV1 on its host become systemic, with far reaching impacts on the host's physiology, including structural injuries to its gastrointestinal organs, such as the hepatopancreas and the gut. This last one becomes highly compromised in the last stages of infection. Since the gut is a key organ for the physiological stability of lobsters, we compared the transcriptomic changes in the gut of juvenile individuals of Panulirus argus naturally infected with PaV1. In the RNA-Seq analysis, we obtained a total of 485 × 106 raw reads. After cleaning, reads were de novo assembled into 68,842 transcripts and 50,257 unigenes. The length of unigenes ranged from 201 bp to 28,717 bp, with a N50 length of 2079, and a GC content of 40.61%. In the differential gene expression analysis, we identified a total of 3,405 non redundant differential transcripts, of which 1,920 were up-regulated and 1,485 were down-regulated. We found alterations in transcripts encoding for proteins involved in transcriptional regulation, splicing, postraductional regulation, protein signaling, transmembrane transport, cytoskeletal regulation, and proteolysis, among others. This is the first insight into the transcriptomic regulation of PaV1-P. argus interaction. The information generated can help to unravel the molecular mechanisms that may intervene in the gut during PaV1 infection.
Collapse
|
4
|
Yang H, Beutler B, Zhang D. Emerging roles of spliceosome in cancer and immunity. Protein Cell 2021; 13:559-579. [PMID: 34196950 PMCID: PMC9232692 DOI: 10.1007/s13238-021-00856-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/08/2021] [Indexed: 12/19/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is catalyzed by an intricate ribonucleoprotein complex called the spliceosome. Although the spliceosome is considered to be general cell “housekeeping” machinery, mutations in core components of the spliceosome frequently correlate with cell- or tissue-specific phenotypes and diseases. In this review, we expound the links between spliceosome mutations, aberrant splicing, and human cancers. Remarkably, spliceosome-targeted therapies (STTs) have become efficient anti-cancer strategies for cancer patients with splicing defects. We also highlight the links between spliceosome and immune signaling. Recent studies have shown that some spliceosome gene mutations can result in immune dysregulation and notable phenotypes due to mis-splicing of immune-related genes. Furthermore, several core spliceosome components harbor splicing-independent immune functions within the cell, expanding the functional repertoire of these diverse proteins.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Rehman SU, Schallschmidt T, Rasche A, Knebel B, Stermann T, Altenhofen D, Herwig R, Schürmann A, Chadt A, Al-Hasani H. Alternative exon splicing and differential expression in pancreatic islets reveals candidate genes and pathways implicated in early diabetes development. Mamm Genome 2021; 32:153-172. [PMID: 33880624 PMCID: PMC8128753 DOI: 10.1007/s00335-021-09869-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/03/2021] [Indexed: 12/29/2022]
Abstract
Type 2 diabetes (T2D) has a strong genetic component. Most of the gene variants driving the pathogenesis of T2D seem to target pancreatic β-cell function. To identify novel gene variants acting at early stage of the disease, we analyzed whole transcriptome data to identify differential expression (DE) and alternative exon splicing (AS) transcripts in pancreatic islets collected from two metabolically diverse mouse strains at 6 weeks of age after three weeks of high-fat-diet intervention. Our analysis revealed 1218 DE and 436 AS genes in islets from NZO/Hl vs C3HeB/FeJ. Whereas some of the revealed genes present well-established markers for β-cell failure, such as Cd36 or Aldh1a3, we identified numerous DE/AS genes that have not been described in context with β-cell function before. The gene Lgals2, previously associated with human T2D development, was DE as well as AS and localizes in a quantitative trait locus (QTL) for blood glucose on Chr.15 that we reported recently in our N2(NZOxC3H) population. In addition, pathway enrichment analysis of DE and AS genes showed an overlap of only half of the revealed pathways, indicating that DE and AS in large parts influence different pathways in T2D development. PPARG and adipogenesis pathways, two well-established metabolic pathways, were overrepresented for both DE and AS genes, probably as an adaptive mechanism to cope for increased cellular stress. Our results provide guidance for the identification of novel T2D candidate genes and demonstrate the presence of numerous AS transcripts possibly involved in islet function and maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Sayeed Ur Rehman
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Tanja Schallschmidt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Axel Rasche
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Torben Stermann
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Delsi Altenhofen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Institute of Human Nutrition, Potsdam, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
6
|
Zhang J, Luo Y, Wang X, Zhu J, Li Q, Feng J, He D, Zhong Z, Zheng X, Lu J, Zou D, Luo J. Global transcriptional regulation of STAT3- and MYC-mediated sepsis-induced ARDS. Ther Adv Respir Dis 2020; 13:1753466619879840. [PMID: 31566109 PMCID: PMC6769203 DOI: 10.1177/1753466619879840] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: In recent years, sepsis-induced acute respiratory distress syndrome (ARDS) has remained a major clinical challenge for patients in intensive care units. While some progress has been reported over the years, the pathogenesis of ARDS still needs to be further expounded. Methods: In the present study, gene set enrichment analysis, differentially expressed genes analysis, short time-series expression miner, protein–protein interaction (PPI) networks, module analysis, hypergeometric test, and functional enrichment analysis were performed in whole blood gene expression profiles of sepsis and induced-sepsis ARDS to explore the molecular mechanism of sepsis-induced ARDS. Results: Further dysregulated genes in the process evolving from healthy control through sepsis to sepsis-induced ARDS were identified and organized into 10 functional modules based on their PPI networks. These functional modules were significantly involved in cell cycle, ubiquitin mediated proteolysis, spliceosome, and other pathways. MYC, STAT3, LEF1, and BRCA1 were potential transcription factors (TFs) regulating these modules. A TF-module-pathway global regulation network was constructed. In particular, our findings suggest that MYC and STAT3 may be the key regulatory genes in the underlying dysfunction of sepsis-induced ARDS. Receiver operating characteristic curve analysis showed the core genes in the global regulation network may be biomarkers for sepsis or sepsis-induced ARDS. Conclusions: We found that MYC and STAT3 may be the key regulatory genes in the underlying dysfunction of sepsis-induced ARDS. The reviews of this paper are available via the supplementary material section.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic China
| | - Yifeng Luo
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic China
| | - Xiaoling Wang
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic China
| | - Jieyun Zhu
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic China
| | - Qian Li
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic China
| | - Jihua Feng
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic China
| | - Dan He
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic China
| | - Zhimei Zhong
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic China
| | - Xiaowen Zheng
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic China
| | - Junyu Lu
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, No 89 Qixing Road, Nanning, Guangxi 530022, People's Republic China
| | - Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, Guangxi 530007, People's Republic China.,Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic China
| |
Collapse
|
7
|
Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017. [PMID: 28683922 DOI: 10.1016/bs.apcsb.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations.
Collapse
|
8
|
Alaa el Din F, Patri S, Thoreau V, Rodriguez-Ballesteros M, Hamade E, Bailly S, Gilbert-Dussardier B, Abou Merhi R, Kitzis A. Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by Hereditary Hemorrhagic Telangiectasia. PLoS One 2015; 10:e0132111. [PMID: 26176610 PMCID: PMC4503601 DOI: 10.1371/journal.pone.0132111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/10/2015] [Indexed: 11/26/2022] Open
Abstract
Hereditary Hemorrhagic Telangiectasia syndrome (HHT) or Rendu-Osler-Weber (ROW) syndrome is an autosomal dominant vascular disorder. Two most common forms of HHT, HHT1 and HHT2, have been linked to mutations in the endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1or ALK1) genes respectively. This work was designed to examine the pathogenicity of 23 nucleotide variations in ACVRL1 gene detected in more than 400 patients. Among them, 14 missense mutations and one intronic variant were novels, and 8 missense mutations were previously identified with questionable implication in HHT2. The functionality of missense mutations was analyzed in response to BMP9 (specific ligand of ALK1), the maturation of the protein products and their localization were analyzed by western blot and fluorescence microscopy. The splicing impairment of the intronic and of two missense mutations was examined by minigene assay. Functional analysis showed that 18 out of 22 missense mutations were defective. Splicing analysis revealed that one missense mutation (c.733A>G, p.Ile245Val) affects the splicing of the harboring exon 6. Similarly, the intronic mutation outside the consensus splicing sites (c.1048+5G>A in intron 7) was seen pathogenic by splicing study. Both mutations induce a frame shift creating a premature stop codon likely resulting in mRNA degradation by NMD surveillance mechanism. Our results confirm the haploinsufficiency model proposed for HHT2. The affected allele of ACVRL1 induces mRNA degradation or the synthesis of a protein lacking the receptor activity. Furthermore, our data demonstrate that functional and splicing analyses together, represent two robust diagnostic tools to be used by geneticists confronted with novel or conflicted ACVRL1 mutations.
Collapse
Affiliation(s)
- Ferdos Alaa el Din
- Genetics of rare diseases, University of Poitiers, Poitiers, France
- Lebanese University Campus Hariri, Faculty of Science / EDST, Hadath, Lebanon
| | - Sylvie Patri
- Genetics of rare diseases, University of Poitiers, Poitiers, France
- Department of Genetics, University Hospital of Poitiers, Poitiers, France
- * E-mail: (SP); (RAM)
| | - Vincent Thoreau
- Genetics of rare diseases, University of Poitiers, Poitiers, France
| | - Montserrat Rodriguez-Ballesteros
- Genetics of rare diseases, University of Poitiers, Poitiers, France
- Department of Genetics, University Hospital of Poitiers, Poitiers, France
| | - Eva Hamade
- Lebanese University Campus Hariri, Faculty of Science / EDST, Hadath, Lebanon
| | | | - Brigitte Gilbert-Dussardier
- Genetics of rare diseases, University of Poitiers, Poitiers, France
- Department of Genetics, University Hospital of Poitiers, Poitiers, France
- Competence Centre of Rendu-Osler, University Hospital of Poitiers, Poitiers, France
| | - Raghida Abou Merhi
- Lebanese University Campus Hariri, Faculty of Science / EDST, Hadath, Lebanon
- * E-mail: (SP); (RAM)
| | - Alain Kitzis
- Genetics of rare diseases, University of Poitiers, Poitiers, France
- Department of Genetics, University Hospital of Poitiers, Poitiers, France
| |
Collapse
|
9
|
|
10
|
Fuxreiter M, Tóth-Petróczy Á, Kraut DA, Matouschek AT, Lim RYH, Xue B, Kurgan L, Uversky VN. Disordered proteinaceous machines. Chem Rev 2014; 114:6806-43. [PMID: 24702702 PMCID: PMC4350607 DOI: 10.1021/cr4007329] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Monika Fuxreiter
- MTA-DE
Momentum Laboratory of Protein Dynamics, Department of Biochemistry
and Molecular Biology, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Ágnes Tóth-Petróczy
- Department
of Biological Chemistry, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Daniel A. Kraut
- Department
of Chemistry, Villanova University, 800 East Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Andreas T. Matouschek
- Section
of Molecular Genetics and Microbiology, Institute for Cellular &
Molecular Biology, The University of Texas
at Austin, 2506 Speedway, Austin, Texas 78712, United States
| | - Roderick Y. H. Lim
- Biozentrum
and the Swiss Nanoscience Institute, University
of Basel, Klingelbergstrasse
70, CH-4056 Basel, Switzerland
| | - Bin Xue
- Department of Cell Biology,
Microbiology and Molecular Biology, College
of Fine Arts and Sciences, and Department of Molecular Medicine and USF Health
Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Lukasz Kurgan
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Vladimir N. Uversky
- Department of Cell Biology,
Microbiology and Molecular Biology, College
of Fine Arts and Sciences, and Department of Molecular Medicine and USF Health
Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute
for Biological Instrumentation, Russian
Academy of Sciences, 142290 Pushchino, Moscow Region 119991, Russia
| |
Collapse
|
11
|
Pegg AE. The function of spermine. IUBMB Life 2014; 66:8-18. [PMID: 24395705 DOI: 10.1002/iub.1237] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/08/2013] [Accepted: 12/10/2013] [Indexed: 12/22/2022]
Abstract
Polyamines play important roles in cell physiology including effects on the structure of cellular macromolecules, gene expression, protein function, nucleic acid and protein synthesis, regulation of ion channels, and providing protection from oxidative damage. Vertebrates contain two polyamines, spermidine and spermine, as well as their precursor, the diamine putrescine. Although spermidine has an essential and unique role as the precursor of hypusine a post-translational modification of the elongation factor eIF5A, which is necessary for this protein to function in protein synthesis, no unique role for spermine has been identified unequivocally. The existence of a discrete spermine synthase enzyme that converts spermidine to spermine suggest that spermine must be needed and this is confirmed by studies with Gy mice and human patients with Snyder-Robinson syndrome in which spermine synthase is absent or greatly reduced. In both cases, this leads to a severe phenotype with multiple effects among which are intellectual disability, other neurological changes, hypotonia, and reduced growth of muscle and bone. This review describes these alterations and focuses on the roles of spermine which may contribute to these phenotypes including reducing damage due to reactive oxygen species, protection from stress, permitting correct current flow through inwardly rectifying K(+) channels, controlling activity of brain glutamate receptors involved in learning and memory, and affecting growth responses. Additional possibilities include acting as storage reservoir for maintaining appropriate levels of free spermidine and a possible non-catalytic role for spermine synthase protein.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
12
|
Schejbel L, Fadnes D, Permin H, Lappegård KT, Garred P, Mollnes TE. Primary complement C5 deficiencies – Molecular characterization and clinical review of two families. Immunobiology 2013; 218:1304-10. [DOI: 10.1016/j.imbio.2013.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/22/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
|
13
|
Coelho Ribeiro MDL, Espinosa J, Islam S, Martinez O, Thanki JJ, Mazariegos S, Nguyen T, Larina M, Xue B, Uversky VN. Malleable ribonucleoprotein machine: protein intrinsic disorder in the Saccharomyces cerevisiae spliceosome. PeerJ 2013; 1:e2. [PMID: 23638354 PMCID: PMC3628832 DOI: 10.7717/peerj.2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/01/2012] [Indexed: 12/29/2022] Open
Abstract
Recent studies revealed that a significant fraction of any given proteome is presented by proteins that do not have unique 3D structures as a whole or in significant parts. These intrinsically disordered proteins possess dramatic structural and functional variability, being especially enriched in signaling and regulatory functions since their lack of fixed structure defines their ability to be involved in interaction with several proteins and allows them to be re-used in multiple pathways. Among recognized disorder-based protein functions are interactions with nucleic acids and multi-target binding; i.e., the functions ascribed to many spliceosomal proteins. Therefore, the spliceosome, a multimegadalton ribonucleoprotein machine catalyzing the excision of introns from eukaryotic pre-mRNAs, represents an attractive target for the focused analysis of the abundance and functionality of intrinsic disorder in its proteinaceous components. In yeast cells, spliceosome consists of five small nuclear RNAs (U1, U2, U4, U5, and U6) and a range of associated proteins. Some of these proteins constitute cores of the corresponding snRNA-protein complexes known as small nuclear ribonucleoproteins (snRNPs). Other spliceosomal proteins have various auxiliary functions. To gain better understanding of the functional roles of intrinsic disorder, we have studied the prevalence of intrinsically disordered proteins in the yeast spliceosome using a wide array of bioinformatics methods. Our study revealed that similar to the proteins associated with human spliceosomes (Korneta & Bujnicki, 2012), proteins found in the yeast spliceosome are enriched in intrinsic disorder.
Collapse
Affiliation(s)
- Maria de Lourdes Coelho Ribeiro
- Cancer Imaging Metabolism, H. Lee Moffitt Cancer Center & Research Institute , United States ; Department of Molecular Medicine, University of South Florida , Tampa, Florida , United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Johnson R, Noble W, Tartaglia GG, Buckley NJ. Neurodegeneration as an RNA disorder. Prog Neurobiol 2012; 99:293-315. [PMID: 23063563 PMCID: PMC7116994 DOI: 10.1016/j.pneurobio.2012.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/14/2012] [Accepted: 09/26/2012] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases constitute one of the single most important public health challenges of the coming decades, and yet we presently have only a limited understanding of the underlying genetic, cellular and molecular causes. As a result, no effective disease-modifying therapies are currently available, and no method exists to allow detection at early disease stages, and as a result diagnoses are only made decades after disease pathogenesis, by which time the majority of physical damage has already occurred. Since the sequencing of the human genome, we have come to appreciate that the transcriptional output of the human genome is extremely rich in non-protein coding RNAs (ncRNAs). This heterogeneous class of transcripts is widely expressed in the nervous system, and is likely to play many crucial roles in the development and functioning of this organ. Most exciting, evidence has recently been presented that ncRNAs play central, but hitherto unappreciated roles in neurodegenerative processes. Here, we review the diverse available evidence demonstrating involvement of ncRNAs in neurodegenerative diseases, and discuss their possible implications in the development of therapies and biomarkers for these conditions.
Collapse
Key Words
- neurodegeneration
- neurodegenerative disease
- non-coding rna
- alzheimer's disease
- parkinson's disease
- huntington's disease
- trinucleotide repeat disorder
- bace1
- rest
- long non-coding rna
- microrna
- har1
- sox2ot
- mir-9
- mir-132
- mir-124
- ndds, neurodegenerative disorders
- ad, alzheimer's disease
- hd, huntington's disease
- pd, parkinson's disease
- als, amyotrophic lateral sclerosis
- app, amyloid precursor protein
- cftr, cystic fibrosis
- csf, cerebrospinal fluid
- sod1, superoxide dismutase 1
- tardbp, tar dna binding protein
- psen-1, presenilin 1
- psen-2, presenilin 1
- mapt, microtubule-associated protein tau
- snca, α-synuclein
- ups, ubiquitin-proteasome system
- aββ, -amyloid
- er, endoplasmic reticulum
- ber, base excision repair
- parp-1, poly-adp ribose polymerase-1
- lncrnas, long non-coding rnas
- mirnas, microrna
- ncrna, non-coding rnas
- ngs, next generation sequencing
- pcr, polymerase chain reaction
- sars, severe acute respiratory disorder
- sca, spinal cerebellar ataxia
- dm, myotonic dystrophy
- hdl2, huntington's disease-like 2
- tnds, trinucleotide repeat disorders
Collapse
Affiliation(s)
- Rory Johnson
- Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader, 88, 08003 Barcelona, Catalunya, Spain
| | - Wendy Noble
- Kings College London, Institute of Psychiatry, London, UK
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader, 88, 08003 Barcelona, Catalunya, Spain
| | | |
Collapse
|
15
|
Abstract
Pre-mRNA splicing is catalyzed by the spliceosome, a multimegadalton ribonucleoprotein (RNP) complex comprised of five snRNPs and numerous proteins. Intricate RNA-RNA and RNP networks, which serve to align the reactive groups of the pre-mRNA for catalysis, are formed and repeatedly rearranged during spliceosome assembly and catalysis. Both the conformation and composition of the spliceosome are highly dynamic, affording the splicing machinery its accuracy and flexibility, and these remarkable dynamics are largely conserved between yeast and metazoans. Because of its dynamic and complex nature, obtaining structural information about the spliceosome represents a major challenge. Electron microscopy has revealed the general morphology of several spliceosomal complexes and their snRNP subunits, and also the spatial arrangement of some of their components. X-ray and NMR studies have provided high resolution structure information about spliceosomal proteins alone or complexed with one or more binding partners. The extensive interplay of RNA and proteins in aligning the pre-mRNA's reactive groups, and the presence of both RNA and protein at the core of the splicing machinery, suggest that the spliceosome is an RNP enzyme. However, elucidation of the precise nature of the spliceosome's active site, awaits the generation of a high-resolution structure of its RNP core.
Collapse
Affiliation(s)
- Cindy L Will
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
16
|
Ca2+-signaling, alternative splicing and endoplasmic reticulum stress responses. Neurochem Res 2011; 36:1198-211. [PMID: 21365449 DOI: 10.1007/s11064-011-0431-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 01/01/2023]
Abstract
Ca(2+)-signaling, alternative splicing, and stress responses by the endoplasmic reticulum are three important cellular activities which can be strongly interconnected to alter the expression of protein isoforms in a tissue dependent manner or during development depending on the environmental conditions. This integrated network of signaling pathways permits a high degree of versatility and adaptation to metabolic, developmental and stress processes. Defects in its regulation may lead to cellular malfunction.
Collapse
|
17
|
HMGA1a trapping of U1 snRNP at an authentic 5' splice site induces aberrant exon skipping in sporadic Alzheimer's disease. Mol Cell Biol 2010; 30:2220-8. [PMID: 20194618 DOI: 10.1128/mcb.00114-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Overexpression of high-mobility group A protein 1a (HMGA1a) causes aberrant exon 5 skipping of the Presenilin-2 (PS2) pre-mRNA, which is almost exclusively detected in patients with sporadic Alzheimer's disease. An electrophoretic mobility shift assay confirmed aberrant U1 small nuclear ribonucleoprotein particle (snRNP)-HMGA1a complex formation (via the U1-70K component), with RNA containing a specific HMGA1a-binding site and an adjacent 5' splice site. Psoralen cross-linking analysis demonstrated that the binding of HMGA1a adjacent to the 5' splice site induces unusually extended association of U1 snRNP to the 5' splice site. As a result, spliceosome assembly across either the intron or the exon is arrested at an early ATP-independent stage. We conclude that the HMGA1a-induced aberrant exon skipping is caused by impaired dissociation of U1 snRNP from the 5' splice site, leading to a defect in exon definition. The proposed molecular mechanism has profound implications for other known posttranscriptional modulation strategies in various organisms, all of which are triggered by aberrant U1 snRNP binding.
Collapse
|
18
|
Rasche A, Herwig R. ARH: predicting splice variants from genome-wide data with modified entropy. ACTA ACUST UNITED AC 2009; 26:84-90. [PMID: 19889797 DOI: 10.1093/bioinformatics/btp626] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Exon arrays allow the quantitative study of alternative splicing (AS) on a genome-wide scale. A variety of splicing prediction methods has been proposed for Affymetrix exon arrays mainly focusing on geometric correlation measures or analysis of variance. In this article, we introduce an information theoretic concept that is based on modification of the well-known entropy function. RESULTS We have developed an AS robust prediction method based on entropy (ARH). We can show that this measure copes with bias inherent in the analysis of AS such as the dependency of prediction performance on the number of exons or variable exon expression. In order to judge the performance of ARH, we have compared it with eight existing splicing prediction methods using experimental benchmark data and demonstrate that ARH is a well-performing new method for the prediction of splice variants. AVAILABILITY AND IMPLEMENTATION ARH is implemented in R and provided in the Supplementary Material.
Collapse
Affiliation(s)
- Axel Rasche
- Department of Vertebrate Genomics, Max-Planck-Institute for Molecular Genetics, Ihnestr. 63-73, D-14195 Berlin, Germany.
| | | |
Collapse
|
19
|
Duan S, Huang RS, Zhang W, Mi S, Bleibel WK, Kistner EO, Cox NJ, Dolan ME. Expression and alternative splicing of folate pathway genes in HapMap lymphoblastoid cell lines. Pharmacogenomics 2009; 10:549-63. [PMID: 19374514 PMCID: PMC2709842 DOI: 10.2217/pgs.09.8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM Folate is vital for cell growth and development through its important role in one-carbon metabolism - an essential process in the synthesis of amino acids and nucleic acids. Folate pathway genes have been considered as therapeutic targets of drugs for the treatment of cancer and other diseases. Racial and ethnic disparities of folate metabolism and outcome of antifolate therapies have been reported. In this study, we evaluate the genetic regulation for expression and alternative splicing of folate related genes in HapMap lymphoblastoid cell lines (LCLs) of individuals of European and African descent. MATERIALS & METHODS Gene and exon level expression and alternative splicing of folate pathway genes were compared in LCLs derived from the Centre d'Etude du Polymorphisme Humain (CEPH) from Utah (CEU) and the Yoruba from Ibadan (YRI) using a permutation-based test. A genome-wide association study was performed to search for SNPs associated with folate pathway gene expressions and alternative splicing in the combined population samples. RESULTS A total of 52 folate pathway genes were evaluated in the analysis of which 46 were expressed in the LCLs. There were 12 genes (26%) with differential gene-level expression and 23 genes (50%) with differential alternative splicing for exons or UTRs between the CEU and the YRI (permutation p CONCLUSION Our study suggests that LCLs are an in vitro system suitable to evaluate the expression levels of folate pathway genes. The differential transcript-level expressions and the differentially alternative splicing events of exons or UTRs and associated SNP markers in 2 populations will enhance our understanding of the folate pathway and, thus, facilitate research in the areas of nutrition and folate metabolism.
Collapse
Affiliation(s)
- Shiwei Duan
- The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Molecular diagnostics of primary immunodeficiencies: benefits and future challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [PMID: 19280862 DOI: 10.1007/978-0-387-79838-7_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Zhang W, Duan S, Bleibel WK, Wisel SA, Huang RS, Wu X, He L, Clark TA, Chen TX, Schweitzer AC, Blume JE, Dolan ME, Cox NJ. Identification of common genetic variants that account for transcript isoform variation between human populations. Hum Genet 2009; 125:81-93. [PMID: 19052777 PMCID: PMC2665168 DOI: 10.1007/s00439-008-0601-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 11/23/2008] [Indexed: 12/22/2022]
Abstract
In addition to the differences between populations in transcriptional and translational regulation of genes, alternative pre-mRNA splicing (AS) is also likely to play an important role in regulating gene expression and generating variation in mRNA and protein isoforms. Recently, the genetic contribution to transcript isoform variation has been reported in individuals of recent European descent. We report here results of an investigation of the differences in AS patterns between human populations. AS patterns in 176 HapMap lymphoblastoid cell lines derived from individuals of European and African ancestry were evaluated using the Affymetrix GeneChip Human Exon 1.0 ST Array. A variety of biological processes such as response to stimulus and transcription were found to be enriched among the differentially spliced genes. The differentially spliced genes also include some involved in human diseases that have different prevalence or susceptibility between populations. The genetic contribution to the population differences in transcript isoform variation was then evaluated by a genome-wide association using the HapMap genotypic data on single nucleotide polymorphisms (SNPs). The results suggest that local and distant genetic variants account for a substantial fraction of the observed transcript isoform variation between human populations. Our findings provide new insights into the complexity of the human genome as well as the health disparities between the two populations.
Collapse
Affiliation(s)
- Wei Zhang
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Box MC6091, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kishore S, Khanna A, Stamm S. Rapid generation of splicing reporters with pSpliceExpress. Gene 2008; 427:104-10. [PMID: 18930792 PMCID: PMC2821805 DOI: 10.1016/j.gene.2008.09.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 09/13/2008] [Accepted: 09/18/2008] [Indexed: 11/30/2022]
Abstract
Almost all human protein-coding transcripts undergo pre-mRNA splicing and a majority of them is alternatively spliced. The most common technique used to analyze the regulation of an alternative exon is through reporter minigene constructs. However, their construction is time-consuming and is often complicated by the limited availability of appropriate restriction sites. Here, we report a fast and simple recombination-based method to generate splicing reporter genes, using a new vector, pSpliceExpress. The system allows generation of minigenes within one week. Minigenes generated with pSpliceExpress show the same regulation as displayed by conventionally cloned reporter constructs and provide an alternate avenue to study splice site selection in vivo.
Collapse
Affiliation(s)
- Shivendra Kishore
- Department of Molecular and Cellular Biochemistry, B283 Biomedical Biological Sciences Research Building, 741 South Limestone, University of Kentucky, College of Medicine, Lexington, KY 40536-0509, USA, Ph: 859-323-0896
| | - Amit Khanna
- Department of Molecular and Cellular Biochemistry, B283 Biomedical Biological Sciences Research Building, 741 South Limestone, University of Kentucky, College of Medicine, Lexington, KY 40536-0509, USA, Ph: 859-323-0896
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, B283 Biomedical Biological Sciences Research Building, 741 South Limestone, University of Kentucky, College of Medicine, Lexington, KY 40536-0509, USA, Ph: 859-323-0896
| |
Collapse
|
23
|
Filippov V, Schmidt EL, Filippova M, Duerksen-Hughes PJ. Splicing and splice factor SRp55 participate in the response to DNA damage by changing isoform ratios of target genes. Gene 2008; 420:34-41. [PMID: 18571879 PMCID: PMC2562212 DOI: 10.1016/j.gene.2008.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 04/18/2008] [Accepted: 05/17/2008] [Indexed: 11/20/2022]
Abstract
Alternative splicing is an important source of protein diversity, and is an established but not yet fully understood mechanism for gene regulation in higher eukaryotes. Its regulation is governed by a variety of mechanisms, including variation in the expression levels of splicing factors engaged in spliceosome formation. SRp55 is one of the most ubiquitous splicing factors and one that can be up-regulated by DNA damage in the absence of p53, and we had previously found that depletion of its activity increased resistance to DNA damage in p53-dependant manner. To assess its influence on the splicing patterns of genes involved in apoptosis, we performed splice-specific microarray analysis of cells treated with siRNA specific for this gene. This analysis, backed by RT-PCR verification, identified three genes, KSR1, ZAK and mda7/IL24, which are sensitive to SRp55 depletion. We also analyzed the splice patterns of apoptosis-related genes in p53-deficient U2OS cells following treatment with the genotoxic drug mitomycin C. This analysis revealed that DNA damage resulted in changes in splicing activity that modified the splicing pattern of Fas, a key pro-apoptotic, p53-inducible death receptor. Interestingly, this modification led to an enrichment of the anti-apoptotic soluble Fas isoform, and this secreted isoform was detected in the media surrounding cells subjected to DNA damage. These findings show that modulation of splicing activity in p53-deficient cells during the early response to sub-lethal DNA damage results in a change in the splicing of target genes, thus modifying the cellular response to genotoxic agents.
Collapse
Affiliation(s)
- Valery Filippov
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Erin L. Schmidt
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Maria Filippova
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Penelope J. Duerksen-Hughes
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University School of Medicine, Loma Linda, CA
| |
Collapse
|
24
|
Caudill JS, Porcher JC, Steensma DP. Aberrant pre-mRNA splicing of a highly conserved cell cycle regulator, CDC25C, in myelodysplastic syndromes. Leuk Lymphoma 2008; 49:989-93. [PMID: 18464119 DOI: 10.1080/10428190801971690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Alternative pre-mRNA splicing alters gene expression and protein function, and aberrant splicing patterns can be associated with neoplasia. The potential role of disordered RNA splicing in myelodysplastic syndrome (MDS) is unexplored. We analysed the splicing repertoire of CDC25C- a gene localised to chromosome 5q31 and encoding a cyclin/cyclin-dependent-kinase regulatory phosphatase critical for cell cycle checkpoint control - in MDS, acute myeloid leukemia, chronic lymphocytic leukemia and healthy tissues. Five novel splicing isoforms were detected, and the splicing patterns were generally distinct in neoplastic samples compared with healthy controls. One of the novel isoforms, which we have termed CDC25C-6, occurred in 58% of the samples in our cohort. The results of this study suggest the possibility of aberrant splicing contributing to the phenotype in MDS and other haematologic malignancies.
Collapse
Affiliation(s)
- Jonathan S Caudill
- Division of Paediatric Haematology/Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
25
|
Ravits J, Traynor BJ. Current and future directions in genomics of amyotrophic lateral sclerosis. Phys Med Rehabil Clin N Am 2008; 19:461-77, viii. [PMID: 18625410 PMCID: PMC3524513 DOI: 10.1016/j.pmr.2008.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New knowledge of the structure and function of the human genome and novel genomic technologies are being applied to the study of sporadic amyotrophic lateral sclerosis (ALS). These studies can examine tens to hundreds of thousands of items at once, and depend on sophisticated computer processing. Current studies are focused on genetic susceptibility and gene expression and future studies will likely focus on structural variation, gene regulation and non-protein coding regions. The hope is that they will lead to deeper understanding of molecular aspects of the disease and to rational therapeutic targets.
Collapse
Affiliation(s)
- John Ravits
- Virginia Mason Medical Center, 1100 Ninth Avenue, Seattle, WA 98101, USA.
| | | |
Collapse
|
26
|
Xie J. Control of alternative pre-mRNA splicing by Ca(++) signals. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:438-52. [PMID: 18258215 PMCID: PMC3500379 DOI: 10.1016/j.bbagrm.2008.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/18/2007] [Accepted: 01/08/2008] [Indexed: 02/06/2023]
Abstract
Alternative pre-mRNA splicing is a common way of gene expression regulation in metazoans. The selective use of specific exons can be modulated in response to various manipulations that alter Ca(++) signals, particularly in neurons. A number of splicing factors have also been found to be controlled by Ca(++) signals. Moreover, pre-mRNA elements have been identified that are essential and sufficient to mediate Ca(++)-regulated splicing, providing model systems for dissecting the involved molecular components. In neurons, this regulation likely contributes to the fine-tuning of neuronal properties.
Collapse
Affiliation(s)
- Jiuyong Xie
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Canada MB R3E 3J7.
| |
Collapse
|
27
|
Gaur S, Shively JE, Yen Y, Gaur RK. Altered splicing of CEACAM1 in breast cancer: identification of regulatory sequences that control splicing of CEACAM1 into long or short cytoplasmic domain isoforms. Mol Cancer 2008; 7:46. [PMID: 18507857 PMCID: PMC2490704 DOI: 10.1186/1476-4598-7-46] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 05/28/2008] [Indexed: 01/28/2023] Open
Abstract
Background Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a cell adhesion molecule expressed in a variety of cell types is a putative tumor suppressor gene. Alternative splicing of CEACAM1 generates 11 different splice variants, which include 1–4 ectodomains with either short or long cytoplasmic domain generated by the exclusion (CEACAM1-S) or inclusion (CEACAM1-L) of exon 7. Studies in rodents indicate that optimal ratios of CEACAM1 splice variants are required to inhibit colonic tumor cell growth. Results We show that CEACAM1 is expressed in a tissue specific manner with significant differences in the ratios of its short (CEACAM1-S) and long (CEACAM1-L) cytoplasmic domain splice variants. Importantly, we find dramatic differences between the ratios of S:L isoforms in normal breast tissues versus breast cancer specimens, suggesting that altered splicing of CEACAM1 may play an important role in tumorogenesis. Furthermore, we have identified two regulatory cis-acting elements required for the alternative splicing of CEACAM1. Replacement of these regulatory elements by human β-globin exon sequences resulted in exon 7-skipped mRNA as the predominant product. Interestingly, while insertion of exon 7 in a β-globin reporter gene resulted in its skipping, exon 7 along with the flanking intron sequences recapitulated the alternative splicing of CEACAM1. Conclusion Our results indicate that a network of regulatory elements control the alternative splicing of CEACAM1. These findings may have important implications in therapeutic modalities of CEACAM1 linked human diseases.
Collapse
Affiliation(s)
- Shikha Gaur
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | | | |
Collapse
|
28
|
Haas BJ. Analysis of alternative splicing in plants with bioinformatics tools. Curr Top Microbiol Immunol 2008; 326:17-37. [PMID: 18630745 DOI: 10.1007/978-3-540-76776-3_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alternative splicing is a molecular mechanism utilized by a broad range of eukaryotes to extend the repertoire of functions encoded by single genes and to posttranscriptionally regulate gene expression. Recent analyses of expressed transcript sequences aligned to the complete genomes of Arabidopsis and rice indicate that alternative splicing in plants is prevalent and exhibits several features similar to other higher eukaryotes including mouse and human. This chapter reviews the computational strategies employed to study alternative splicing with bioinformatics tools and the recent findings from analyses performed on plants by applying such methods.
Collapse
Affiliation(s)
- B J Haas
- B.J. Haas Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
29
|
Revil T, Toutant J, Shkreta L, Garneau D, Cloutier P, Chabot B. Protein kinase C-dependent control of Bcl-x alternative splicing. Mol Cell Biol 2007; 27:8431-41. [PMID: 17923691 PMCID: PMC2169420 DOI: 10.1128/mcb.00565-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/07/2007] [Accepted: 09/19/2007] [Indexed: 02/07/2023] Open
Abstract
The alternative splicing of Bcl-x generates the proapoptotic Bcl-x(S) protein and the antiapoptotic isoform Bcl-x(L). Bcl-x splicing is coupled to signal transduction, since ceramide, hormones, and growth factors alter the ratio of the Bcl-x isoforms in different cell lines. Here we report that the protein kinase C (PKC) inhibitor and apoptotic inducer staurosporine switches the production of Bcl-x towards the x(S) mRNA isoform in 293 cells. The increase in Bcl-x(S) elicited by staurosporine likely involves signaling events that affect splicing decisions, because it requires active transcription and no new protein synthesis and is independent of caspase activation. Moreover, the increase in Bcl-x(S) is reproduced with more specific inhibitors of PKC. Alternative splicing of the receptor tyrosine kinase gene Axl is similarly affected by staurosporine in 293 cells. In contrast to the case for 293 cells, PKC inhibitors do not influence the alternative splicing of Bcl-x and Axl in cancer cell lines, suggesting that these cells have sustained alterations that uncouple splicing decisions from PKC-dependent signaling. Using minigenes, we show that an exonic region located upstream of the Bcl-x(S) 5' splice site is important to mediate the staurosporine shift in Bcl-x splicing. When transplanted to other alternative splicing units, portions of this region confer splicing modulation and responsiveness to staurosporine, suggesting the existence of factors that couple splicing decisions with PKC signaling.
Collapse
Affiliation(s)
- Timothée Revil
- RNA/RNP Group, Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | |
Collapse
|