1
|
Zhou W, Zhou L, Qi Z, Dai S, Zhang P, Zhong H, Xu H, Zhao X, Lian X, Lin J, Wu H. The soluble guanylate cyclase (sGC) stimulator vericiguat inhibits platelet activation and thrombosis. Eur J Pharmacol 2025; 999:177670. [PMID: 40287044 DOI: 10.1016/j.ejphar.2025.177670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Vericiguat, a soluble guanylate cyclase (sGC) stimulator, is used to treat chronic heart failure. Vericiguat can directly bind to the sGC in the absence of NO or stabilize the binding of NO to sGC, thereby stimulating cGMP production. Vericiguat correlates closely with the platelet activation. However, the precise effect of vericiguat on platelet activation and thrombosis in vivo remains to be elucidated. METHODS We investigated the effects of vericiguat on agonist-induced platelet aggregation, secretion, integrin αIIbβ3 activation, spreading, clot retraction, and thrombus formation in vivo, elucidating the underlying mechanisms. Additionally, we performed whole blood aggregometry and Microfluidic whole-blood perfusion assay to determine whether vericiguat could alleviate thrombosis. RESULTS Vericiguat concentration-dependently inhibited aggregation and ATP release induced by agonists both in human and mouse platelets. P-selection expression, integrin αIIbβ3 activation, spreading, and clot retraction induced by thrombin were all inhibited by vericiguat. Mechanistically, vericiguat bound to the sGC in platelets, avtivating the cGMP/PKG signaling pathway to inhibit the platelet. Vericiguat also inhibited the FeCl3-injured thrombus formation in mesenteric arterioles in wild-type (WT) mice and pulmonary vascular thrombi after constructing the pulmonary embolism model. Oral administration of vericiguat for 2 weeks attenuated thromboembolism in brain, too. CONCLUSION Vericiguat directly inhibits platelet activation and thrombosis in vivo by binding to the sGC and activating cGMP/PKG pathway. In addition to the treatment for chronic heart failure, it may have therapeutic advantages in treating thrombotic diseases.
Collapse
Affiliation(s)
- Wenxuan Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, China
| | - Luning Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, China
| | - Zhiyong Qi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, China
| | - Shimo Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, China
| | - Peng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, China
| | - Haoxuan Zhong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, China
| | - Huajie Xu
- Department of Infectious Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, China
| | - Xiaoyu Lian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, China
| | - Jiaxiong Lin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, China.
| | - Hongyi Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, China.
| |
Collapse
|
2
|
Gawrys O, Kala P, Sadowski J, Melenovský V, Sandner P, Červenka L. Soluble guanylyl cyclase stimulators and activators: Promising drugs for the treatment of hypertension? Eur J Pharmacol 2025; 987:177175. [PMID: 39645219 DOI: 10.1016/j.ejphar.2024.177175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/21/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Nitric oxide (NO)-stimulated cyclic guanosine monophosphate (cGMP) is a key regulator of cardiovascular health, as NO-cGMP signalling is impaired in diseases like pulmonary hypertension, heart failure and chronic kidney disease. The development of NO-independent sGC stimulators and activators provide a novel therapeutic option to restore altered NO signalling. sGC stimulators have been already approved for the treatment of pulmonary arterial hypertension (PAH), chronic thromboembolic pulmonary hypertension (CTEPH), and chronic heart failure (HFrEF), while sGC activators are currently in phase-2 clinical trials for CKD. The best characterized effect of increased cGMP via the NO-sGC-cGMP pathway is vasodilation. However, to date, none of the sGC agonists are in development for hypertension (HTN). According to WHO, the global prevalence of uncontrolled HTN continues to rise, contributing significantly to cardiovascular mortality. While there are effective antihypertensive treatments, many patients require multiple drugs, and some remain resistant to all therapies. Thus, in addition to improved diagnosis and lifestyle changes, new pharmacological strategies remain in high demand. In this review we explore the potential of sGC stimulators and activators as novel antihypertensive agents, starting with the overview of NO-sGC-cGMP signalling, followed by potential mechanisms by which the increase in cGMP may regulate vascular tone and BP. These effects may encompass not only acute vasodilation, but also mid-term and chronic effects, such as the regulation of salt and water balance, as well as mitigation of vascular ageing and remodelling. The main section summarizes the preclinical and clinical evidence supporting the BP-lowering efficacy of sGC agonists.
Collapse
Affiliation(s)
- Olga Gawrys
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Petr Kala
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Cardiology, Motol University Hospital and Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Janusz Sadowski
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Peter Sandner
- Bayer AG, Pharmaceuticals, Drug Discovery, Pharma Research Centre, 42113, Wuppertal, Germany; Hannover Medical School, Institute of Pharmacology, 30625, Hannover, Germany
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; First Department of Internal Medicine, Cardiology, Olomouc University Hospital and Palacký University, Olomouc, Czech Republic
| |
Collapse
|
3
|
Sandner P, Follmann M, Becker-Pelster E, Hahn MG, Meier C, Freitas C, Roessig L, Stasch JP. Soluble GC stimulators and activators: Past, present and future. Br J Pharmacol 2024; 181:4130-4151. [PMID: 34600441 DOI: 10.1111/bph.15698] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
The discovery of soluble GC (sGC) stimulators and sGC activators provided valuable tools to elucidate NO-sGC signalling and opened novel pharmacological opportunities for cardiovascular indications and beyond. The first-in-class sGC stimulator riociguat was approved for pulmonary hypertension in 2013 and vericiguat very recently for heart failure. sGC stimulators enhance sGC activity independent of NO and also act synergistically with endogenous NO. The sGC activators specifically bind to, and activate, the oxidised haem-free form of sGC. Substantial research efforts improved on the first-generation sGC activators such as cinaciguat, culminating in the discovery of runcaciguat, currently in clinical Phase II trials for chronic kidney disease and diabetic retinopathy. Here, we highlight the discovery and development of sGC stimulators and sGC activators, their unique modes of action, their preclinical characteristics and the clinical studies. In the future, we expect to see more sGC agonists in new indications, reflecting their unique therapeutic potential.
Collapse
Affiliation(s)
- Peter Sandner
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Hanover, Germany
| | - Markus Follmann
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | | | - Michael G Hahn
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | - Christian Meier
- Pharmaceuticals Medical Affairs and Pharmacovigilance, Bayer AG, Berlin, Germany
| | - Cecilia Freitas
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | - Lothar Roessig
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | - Johannes-Peter Stasch
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
4
|
Marchini F, Pompei G, D'Aniello E, Marrone A, Caglioni S, Biscaglia S, Campo G, Tebaldi M. Shedding Light on Treatment Options for Coronary Vasomotor Disorders: A Systematic Review. Cardiovasc Drugs Ther 2024; 38:151-161. [PMID: 35678926 PMCID: PMC10876767 DOI: 10.1007/s10557-022-07351-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Coronary vasomotor dysfunction embraces two specific clinical entities: coronary (micro)vascular spasm and microvascular dysfunction. The clinical manifestations of these entities are respectively called vasospastic angina (VSA) and microvascular angina (MVA). Over the years, these diseases have become more and more prominent and several studies aimed to investigate the best diagnostic and therapeutic strategies. Patients with coronary vasomotor disorders are often undertreated due to the absence of evidence-based guidelines. The purpose of this overview is to illustrate the various therapeutic options available for the optimized management of these patients. METHODS A Medline search of full-text articles published in English from 1980 to April 2022 was performed. The main analyzed aspects of vasomotor disorders were treatment options. We also performed research on "Clinicaltrial.gov" for ongoing trials. CONCLUSION Coronary (micro)vascular spasm and microvascular dysfunction are clinical entities characterized by high prevalence and clinical representation. Several therapeutic strategies, both innovative and established, are available to optimize treatment and improve the quality of life of these patients.
Collapse
Affiliation(s)
- Federico Marchini
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Via Aldo Moro 8, 44124, Cona, FE, Italy
| | - Graziella Pompei
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Via Aldo Moro 8, 44124, Cona, FE, Italy
| | - Emanuele D'Aniello
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Via Aldo Moro 8, 44124, Cona, FE, Italy
| | - Andrea Marrone
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Via Aldo Moro 8, 44124, Cona, FE, Italy
| | - Serena Caglioni
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Via Aldo Moro 8, 44124, Cona, FE, Italy
| | - Simone Biscaglia
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Via Aldo Moro 8, 44124, Cona, FE, Italy
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Via Aldo Moro 8, 44124, Cona, FE, Italy
| | - Matteo Tebaldi
- Cardiology Unit, Azienda Ospedaliero Universitaria Di Ferrara, Via Aldo Moro 8, 44124, Cona, FE, Italy.
| |
Collapse
|
5
|
McChord J, Pereyra VM, Froebel S, Bekeredjian R, Schwab M, Ong P. Drug repurposing-a promising approach for patients with angina but non-obstructive coronary artery disease (ANOCA). Front Cardiovasc Med 2023; 10:1156456. [PMID: 37396593 PMCID: PMC10313125 DOI: 10.3389/fcvm.2023.1156456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
In today's era of individualized precision medicine drug repurposing represents a promising approach to offer patients fast access to novel treatments. Apart from drug repurposing in cancer treatments, cardiovascular pharmacology is another attractive field for this approach. Patients with angina pectoris without obstructive coronary artery disease (ANOCA) report refractory angina despite standard medications in up to 40% of cases. Drug repurposing also appears to be an auspicious option for this indication. From a pathophysiological point of view ANOCA patients frequently suffer from vasomotor disorders such as coronary spasm and/or impaired microvascular vasodilatation. Consequently, we carefully screened the literature and identified two potential therapeutic targets: the blockade of the endothelin-1 (ET-1) receptor and the stimulation of soluble guanylate cyclase (sGC). Genetically increased endothelin expression results in elevated levels of ET-1, justifying ET-1 receptor blockers as drug candidates to treat coronary spasm. sGC stimulators may be beneficial as they stimulate the NO-sGC-cGMP pathway leading to GMP-mediated vasodilatation.
Collapse
Affiliation(s)
- Johanna McChord
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | | | - Sarah Froebel
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Raffi Bekeredjian
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- Departments of Clinical Pharmacology, and Biochemistry and Pharmacy, University Tübingen, Tübingen, Germany
| | - Peter Ong
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| |
Collapse
|
6
|
Giesinger RE, Stanford AH, Thomas B, Abman SH, McNamara PJ. Safety and Feasibility of Riociguat Therapy for the Treatment of Chronic Pulmonary Arterial Hypertension in Infancy. J Pediatr 2022; 255:224-229.e1. [PMID: 36462687 DOI: 10.1016/j.jpeds.2022.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
The effects of riociguat, an oral-soluble guanylate-cyclase stimulator, were studied in 10 infants with chronic pulmonary arterial hypertension. Respiratory status (n = 8/10), right heart dilation (n = 7/10), function (n = 9/10), and chronic pulmonary arterial hypertension (n = 8/10) improved. Median decrement in systolic (12 [4, 14]), diastolic (14 [7, 20]), and mean arterial (14 [10, 17]) pressures were noted; no critical hypotension or hypoxemia occurred.
Collapse
Affiliation(s)
| | - Amy H Stanford
- Department of Pediatrics, University of Iowa, Iowa City, IA
| | - Brady Thomas
- Department of Pediatrics, University of Iowa, Iowa City, IA
| | - Steven H Abman
- Department of Pediatrics, University of Colorado, Denver, CO
| | | |
Collapse
|
7
|
Asker H, Yilmaz-Oral D, Oztekin CV, Gur S. An update on the current status and future prospects of erectile dysfunction following radical prostatectomy. Prostate 2022; 82:1135-1161. [PMID: 35579053 DOI: 10.1002/pros.24366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/30/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Radical prostatectomy (RP) and radiation treatment are standard options for localized prostate cancer. Even though nerve-sparing techniques have been increasingly utilized in RP, erectile dysfunction (ED) due to neuropraxia remains a frequent complication. Erectile function recovery rates after RP remain unsatisfactory, and many men still suffer despite the availability of various therapies. OBJECTIVE This systematic review aims to summarize the current treatments for post-RP-ED, assess the underlying pathological mechanisms, and emphasize promising therapeutic strategies based on the evidence from basic research. METHOD Evaluation and review of articles on the relevant topic published between 2010 and 2021, which are indexed and listed in the PubMed database. RESULTS Phosphodiesterase type 5 inhibitors, intracavernosal and intraurethral injections, vacuum erection devices, pelvic muscle training, and surgical procedures are utilized for penile rehabilitation. Clinical trials evaluating the efficacy of erectogenic drugs in this setting are conflicting and far from being conclusive. The use of androgen deprivation therapy in certain scenarios after RP further exacerbates the already problematic situation and emphasizes the need for effective treatment strategies. CONCLUSION This article is a detailed overview focusing on the pathophysiology and mechanism of the nerve injury developed during RP and a compilation of various strategies to induce cavernous nerve regeneration to improve erectile function (EF). These strategies include stem cell therapy, gene therapy, growth factors, low-intensity extracorporeal shockwave therapy, immunophilins, and various pharmacological approaches that have induced improvements in EF in experimental models of cavernous nerve injury. Many of the mentioned strategies can improve EF following RP if transformed into clinically applicable safe, and effective techniques with reproducible outcomes.
Collapse
Affiliation(s)
- Heba Asker
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Didem Yilmaz-Oral
- Department of Pharmacology, Faculty of Pharmacy, Cukurova University, Adana, Turkey
| | - Cetin Volkan Oztekin
- Department of Urology, Faculty of Medicine, University of Kyrenia, Girne, Turkey
| | - Serap Gur
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Jia XY, Liu YM, Wang YF, An JY, Peng KL, Wang H. Bibliometric study of soluble guanylate cyclase stimulators in cardiovascular research based on web of science from 1992 to 2021. Front Pharmacol 2022; 13:963255. [PMID: 36081943 PMCID: PMC9445840 DOI: 10.3389/fphar.2022.963255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Several studies have shown that soluble guanylate cyclase (sGC) stimulators have cardiovascular (CV) benefits. However, few bibliometric analyses have examined this field systematically. Our study aimed to examine the publications to determine the trends and hotspots in CV research on sGC stimulators. Methods: Publications on sGC stimulators in CV research were retrieved from the Web of Science Core Collection. VOSviewer and CiteSpace visualization software were used to analyze publication trends, countries (regions) and institutions, journals and cited journals, authors and cited references, as well as keywords. Results: A total of 1,212 literatures were obtained. From its first appearance in 1992–2021 (based on WOSCC record), the overall volume of publications has shown a gradual increasing trend. Nearly one-third were authored by American scholars, and most were published in Circulation, Circulation Research, and Proceedings of the National Academy of Sciences of the United States of America. Bayer Agency in Germany was the leading driving force, and has a high academic reputation in this field. Stasch JP has published the most related articles and been cited most frequently. Half of the top 10 co-cited references were published in the leading highly co-cited journal Circulation and New England Journal of Medicine. “NO,” “allosteric regulation” and “free radicals” were the focus of previous research, “chronic thromboembolic pulmonary hypertension,” “pulmonary hypertension” and “heart failure” were the main research hotspots. The key words “chronic thromboembolic pulmonary hypertension,” “Pulmonary hypertension,” “preserved ejection fraction” and “heart failure” appeared most recently as research frontiers. Conclusion: The research in the CV field of sGC stimulators was relatively comprehensive, and there was a close relationship among countries, research institutions and authors, but it is still in the exploratory stage in the treatment of CV disease. At present, most studies focus on the results of clinical trials. sGC stimulators in the treatment of heart failure, especially heart failure with preserved ejection fraction, may be the hotpots and Frontier at present and in the future, and should be closely monitored.
Collapse
|
9
|
Benkner A, Rüdebusch J, Nath N, Hammer E, Grube K, Gross S, Dhople VM, Eckstein G, Meitinger T, Kaderali L, Völker U, Fielitz J, Felix SB. Riociguat attenuates left ventricular proteome and microRNA profile changes after experimental aortic stenosis in mice. Br J Pharmacol 2022; 179:4575-4592. [PMID: 35751875 DOI: 10.1111/bph.15910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/15/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Development and progression of heart failure (HF) involve endothelial and myocardial dysfunction as well as a dysregulation of the nitric oxide - soluble guanylyl cyclase - cyclic guanosine monophosphate (NO-sGC-cGMP) signalling pathway. Recently, we reported that the sGC stimulator riociguat (RIO) has beneficial effects on cardiac remodelling and progression of HF in response to chronic pressure overload. Here, we examined if these favourable RIO effects are also reflected in alterations of the myocardial proteome and microRNA profiles. EXPERIMENTAL APPROACH Male C57BL/6N mice underwent transverse aortic constriction (TAC) and sham operated mice served as controls. TAC and sham animals were randomised and treated with either RIO or vehicle for five weeks, starting three weeks post-surgery when cardiac hypertrophy was established. Afterwards we performed mass spectrometric proteome analyses and microRNA sequencing of proteins and RNAs, respectively, isolated from left ventricles (LV). KEY RESULTS TAC-induced changes of the LV proteome were significantly reduced by RIO treatment. Bioinformatics analyses revealed that RIO improved TAC-induced cardiovascular disease related pathways, metabolism and energy production, e.g. reversed alterations in the levels of myosin heavy chain 7 (MYH7), cardiac phospholamban (PLN), and ankyrin repeat domain-containing protein 1 (ANKRD1). RIO also attenuated TAC-induced changes of microRNA levels in the LV. CONCLUSION AND IMPLICATIONS The sGC stimulator RIO has beneficial effects on cardiac structure and function during pressure overload, which is accompanied by a reversal of TAC-induced changes of the cardiac proteome and microRNA profile. Our data support the potential of RIO as a novel HF therapeutic.
Collapse
Affiliation(s)
- Alexander Benkner
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Julia Rüdebusch
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Neetika Nath
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Karina Grube
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Gross
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Vishnu M Dhople
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Gertrud Eckstein
- Institute of Human Genetics, Helmholtz Centre Munich, Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Centre Munich, Neuherberg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Lars Kaderali
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jens Fielitz
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Stephan B Felix
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Makrynitsa GI, Argyriou AI, Zompra AA, Salagiannis K, Vazoura V, Papapetropoulos A, Topouzis S, Spyroulias GA. Mapping of the sGC Stimulator BAY 41-2272 Binding Site on H-NOX Domain and Its Regulation by the Redox State of the Heme. Front Cell Dev Biol 2022; 10:925457. [PMID: 35784456 PMCID: PMC9247194 DOI: 10.3389/fcell.2022.925457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is the main receptor of nitric oxide (NO) and by converting GTP to cGMP regulates numerous biological processes. The β1 subunit of the most abundant, α1β1 heterodimer, harbors an N-terminal domain called H-NOX, responsible for heme and NO binding and thus sGC activation. Dysfunction of the NO/sGC/cGMP axis is causally associated with pathological states such as heart failure and pulmonary hypertension. Enhancement of sGC enzymatic function can be effected by a class of drugs called sGC “stimulators,” which depend on reduced heme and synergize with low NO concentrations. Until recently, our knowledge about the binding mode of stimulators relied on low resolution cryo-EM structures of human sGC in complex with known stimulators, while information about the mode of synergy with NO is still limited. Herein, we couple NMR spectroscopy using the H-NOX domain of the Nostoc sp. cyanobacterium with cGMP determinations in aortic smooth muscle cells (A7r5) to study the impact of the redox state of the heme on the binding of the sGC stimulator BAY 41-2272 to the Ns H-NOX domain and on the catalytic function of the sGC. BAY 41-2272 binds on the surface of H-NOX with low affinity and this binding is enhanced by low NO concentrations. Subsequent titration of the heme oxidant ODQ, fails to modify the conformation of H-NOX or elicit loss of the heme, despite its oxidation. Treatment of A7r5 cells with ODQ following the addition of BAY 41-2272 and an NO donor can still inhibit cGMP synthesis. Overall, we describe an analysis in real time of the interaction of the sGC stimulator, BAY 41-2272, with the Ns H-NOX, map the amino acids that mediate this interaction and provide evidence to explain the characteristic synergy of BAY 41-2272 with NO. We also propose that ODQ can still oxidize the heme in the H-NOX/NO complex and inhibit sGC activity, even though the heme remains associated with H-NOX. These data provide a more-in-depth understanding of the molecular mode of action of sGC stimulators and can lead to an optimized design and development of novel sGC agonists.
Collapse
Affiliation(s)
| | | | | | - Konstantinos Salagiannis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Vassiliki Vazoura
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavros Topouzis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Georgios A. Spyroulias
- Department of Pharmacy, University of Patras, Patras, Greece
- *Correspondence: Georgios A. Spyroulias,
| |
Collapse
|
11
|
Tawa M, Okamura T. Factors influencing the soluble guanylate cyclase heme redox state in blood vessels. Vascul Pharmacol 2022; 145:107023. [PMID: 35718342 DOI: 10.1016/j.vph.2022.107023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/15/2022]
Abstract
Soluble guanylate cyclase (sGC) plays an important role in maintaining vascular homeostasis, as an acceptor for the biological messenger nitric oxide (NO). However, only reduced sGC (with a ferrous heme) can be activated by NO; oxidized (ferric heme) and apo (absent heme) sGC cannot. In addition, the proportions of reduced, oxidized, and apo sGC change under pathological conditions. Although diseased blood vessels often show decreased NO bioavailability in the vascular wall, a shift of sGC heme redox balance in favor of the oxidized/apo forms can also occur. Therefore, sGC is of growing interest as a drug target for various cardiovascular diseases. Notably, the balance between NO-sensitive reduced sGC and NO-insensitive oxidized/apo sGC in the body is regulated in a reversible manner by various biological molecules and proteins. Many studies have attempted to identify endogenous factors and determinants that influence this redox state. For example, various reactive nitrogen and oxygen species are capable of inducing the oxidation of sGC heme. Conversely, a heme reductase and some antioxidants reduce the ferric heme in sGC to the ferrous state. This review summarizes the factors and mechanisms identified by these studies that operate to regulate the sGC heme redox state.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-1094, Japan.
| | - Tomio Okamura
- Emeritus Professor, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
12
|
Xia J, Hui N, Tian L, Liang C, Zhang J, Liu J, Wang J, Ren X, Xie X, Wang K. Development of vericiguat: The first soluble guanylate cyclase (sGC) stimulator launched for heart failure with reduced ejection fraction (HFrEF). Biomed Pharmacother 2022; 149:112894. [PMID: 35367763 DOI: 10.1016/j.biopha.2022.112894] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022] Open
Abstract
In recent years, with improvements in treatments for heart failure (HF), the survival period of patients has been extended. However, the emergence of some patients with repeated hospitalizations due to their worsening conditions and low survival rates followed. Currently, few drugs are available for such patients. Vericiguat was first drug approved for the treatment of symptomatic patients with chronic HF with reduced ejection fraction (HFrEF) to reduce the occurrence of worsening HF. This article provides comprehensive information about vericiguat in terms of drug design and development, structure-activity relationship (SAR), synthesis, pharmacological efficacy, and clinical practice. In addition, insights into the current vericiguat trials and treatments of HF are also discussed.
Collapse
Affiliation(s)
- Juan Xia
- Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, PR China.
| | - Nan Hui
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Jie Zhang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Jifang Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Jun Wang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory of Traditional Chinese and Tibetan Medicine of Qinghai Province, Qinghai Provincial Drug Inspection and Testing Institute, Xining 810000, PR China.
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, PR China.
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd. Xi'an, 710025, PR China.
| | - Kun Wang
- Children's Center, the Affiliated Taian City Centeral Hospital of Qingdao University, Taian, Shandong, 271000, PR China.
| |
Collapse
|
13
|
Zhang X, Chu C, Huang Y. Inhibition of thioredoxin-interacting protein may enhance the therapeutic effect of dehydrocostus lactone in cardiomyocytes under doxorubicin stimulation via the inhibition of the inflammatory response. Exp Ther Med 2022; 23:226. [PMID: 35222703 PMCID: PMC8812107 DOI: 10.3892/etm.2022.11150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 11/06/2022] Open
Abstract
Heart failure (HF) is the leading cause of death around the world, the mortality caused by HF is growing rapidly, and has become a great threaten to both public health and economic growth. Dehydrocostus lactone (DHE) is the active constituent of Saussurea lappa and is widely used in traditional Chinese medicine for its multiple biological functions, including anti-inflammatory, antioxidant and anti-cancer. To the best of our knowledge, DHE's effect on HF has not been clarified. Thioredoxin-interacting protein (TXNIP) regulates the process of oxidative stress and inflammation and leads to an increase in oxidative stress via oxidization of thioredoxin, TXNIP promotes the activation of the immune response by its binding with the NOD-like receptor protein 3 inflammasome. An MTT assay revealed that the overexpression or inhibition of TXNIP markedly decreased or significantly increased the proliferation of H9c2 cells, respectively. Through reverse transcription-quantitative PCR (RT-qPCR) and western blotting, it was determined that the expression of proinflammatory cytokines was significantly decreased with the increased expression of anti-inflammatory cytokines in a TXNIP knockout model. Further study utilizing RT-qPCR and western blotting demonstrated that these effects may be mediated by the nuclear factor erythroid 2-related factor 2/heme oxygenase-1/NF-κB signaling pathway. In conclusion, TXNIP inhibition may promote the therapeutic effect of DHE on oxidative stress-induced damage.
Collapse
Affiliation(s)
- Xuezhi Zhang
- Department of Critical Care Medicine, Anqiu People's Hospital, Anqiu, Shandong 262100, P.R. China
| | - Cuiyu Chu
- Department of Critical Care Medicine, Anqiu People's Hospital, Anqiu, Shandong 262100, P.R. China
| | - Yuankun Huang
- Department of Critical Care Medicine, Anqiu People's Hospital, Anqiu, Shandong 262100, P.R. China
| |
Collapse
|
14
|
Cordwin DJ, Berei TJ, Pogue KT. The Role of sGC Stimulators and Activators in Heart Failure With Reduced Ejection Fraction. J Cardiovasc Pharmacol Ther 2021; 26:593-600. [PMID: 34487435 DOI: 10.1177/10742484211042706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, soluble guanylate cyclase (sGC) activators and stimulators have been developed and studied to improve outcomes in patients with heart failure with reduced ejection fraction (HFrEF). The sGC enzyme plays an important role in the nitric oxide (NO)-sGC-cyclic guanosine monophosphate (cGMP) pathway, that has been largely untargeted by current guideline directed medical therapy (GDMT) for HFrEF. Disruption of the NO-sCG-cGMP pathway can be widely observed in patients with HFrEF leading to endothelial dysfunction. The disruption is caused by an oxidized state resulting in low bioavailability of NO and cGMP. The increase in reactive oxygen species can also result in an oxidized, and subsequently heme free, sGC enzyme that NO is unable to activate, furthering the endothelial dysfunction. The novel sGC stimulators enhance the sensitivity of sGC to NO, and independently stimulate sGC, while the sGC activators target the oxidized and heme free sGC to stimulate cGMP production. This review will discuss the pathophysiologic basis for sGC stimulator and activator use in HFrEF, review the pre-clinical and clinical data, and propose a place in the HFrEF armamentarium for this novel pharmacotherapeutic class.
Collapse
Affiliation(s)
- David J Cordwin
- Department of Clinical Pharmacy, 15514University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Theodore J Berei
- Department of Pharmacy, 5228University of Wisconsin Hospitals and Clinics, Madison, WI, USA
| | - Kristen T Pogue
- Department of Clinical Pharmacy, 15514University of Michigan College of Pharmacy, Ann Arbor, MI, USA.,Department of Pharmacy, 15514University of Michigan Health, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Tchernychev B, Li H, Lee S, Gao X, Ramanarasimhaiah R, Liu G, Hall KC, Bernier SG, Jones JE, Feil S, Feil R, Buys ES, Graul RM, Frenette PS, Masferrer JL. Olinciguat, a stimulator of soluble guanylyl cyclase, attenuates inflammation, vaso-occlusion and nephropathy in mouse models of sickle cell disease. Br J Pharmacol 2021; 178:3463-3475. [PMID: 33864386 PMCID: PMC8453770 DOI: 10.1111/bph.15492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Reduced bioavailability of NO, a hallmark of sickle cell disease (SCD), contributes to intravascular inflammation, vasoconstriction, vaso-occlusion and organ damage observed in SCD patients. Soluble guanylyl cyclase (sGC) catalyses synthesis of cGMP in response to NO. cGMP-amplifying agents, including NO donors and phosphodiesterase 9 inhibitors, alleviate TNFα-induced inflammation in wild-type C57BL/6 mice and in 'humanised' mouse models of SCD. EXPERIMENTAL APPROACH Effects of the sGC stimulator olinciguat on intravascular inflammation and renal injury were studied in acute (C57BL6 and Berkeley mice) and chronic (Townes mice) mouse models of TNFα-induced and systemic inflammation associated with SCD. KEY RESULTS Acute treatment with olinciguat attenuated increases in plasma biomarkers of endothelial cell activation and leukocyte-endothelial cell interactions in TNFα-challenged mice. Co-treatment with hydroxyurea, an FDA-approved SCD therapeutic agent, further augmented the anti-inflammatory effect of olinciguat. In the Berkeley mouse model of TNFα-induced vaso-occlusive crisis, a single dose of olinciguat attenuated leukocyte-endothelial cell interactions, improved blood flow and prolonged survival time compared to vehicle-treated mice. In Townes SCD mice, plasma biomarkers of inflammation and endothelial cell activation were lower in olinciguat- than in vehicle-treated mice. In addition, kidney mass, water consumption, 24-h urine excretion, plasma levels of cystatin C and urinary excretion of N-acetyl-β-d-glucosaminidase and neutrophil gelatinase-associated lipocalin were lower in Townes mice treated with olinciguat than in vehicle-treated mice. CONCLUSION AND IMPLICATIONS Our results suggest that the sGC stimulator olinciguat attenuates inflammation, vaso-occlusion and kidney injury in mouse models of SCD and systemic inflammation.
Collapse
Affiliation(s)
| | - Huihui Li
- Departments of Medicine and Cell BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - Sung‐Kyun Lee
- Departments of Medicine and Cell BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | - Xin Gao
- Departments of Medicine and Cell BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | | | - Guang Liu
- Cyclerion Therapeutics Inc.BostonMassachusettsUSA
| | | | | | | | - Susanne Feil
- Interfaculty Institute of BiochemistryUniversity of TübingenTübingenGermany
| | - Robert Feil
- Interfaculty Institute of BiochemistryUniversity of TübingenTübingenGermany
| | | | | | - Paul S. Frenette
- Departments of Medicine and Cell BiologyAlbert Einstein College of MedicineNew YorkNew YorkUSA
| | | |
Collapse
|
16
|
Klinger JR, Chakinala MM, Langleben D, Rosenkranz S, Sitbon O. Riociguat: Clinical research and evolving role in therapy. Br J Clin Pharmacol 2021; 87:2645-2662. [PMID: 33242341 PMCID: PMC8359233 DOI: 10.1111/bcp.14676] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
Riociguat is a first-in-class soluble guanylate cyclase stimulator, approved for the treatment of adults with pulmonary arterial hypertension (PAH), inoperable chronic thromboembolic pulmonary hypertension (CTEPH), or persistent or recurrent CTEPH after pulmonary endarterectomy. Approval was based on the results of the phase III PATENT-1 (PAH) and CHEST-1 (CTEPH) studies, with significant improvements in the primary endpoint of 6-minute walk distance vs placebo of +36 m and +46 m, respectively, as well as improvements in secondary endpoints such as pulmonary vascular resistance and World Health Organization functional class. Riociguat acts as a stimulator of cyclic guanosine monophosphate synthesis rather than as an inhibitor of cGMP metabolism. As with other approved therapies for PAH, riociguat has antifibrotic, antiproliferative and anti-inflammatory effects, in addition to vasodilatory properties. This has led to further clinical studies in patients who do not achieve a satisfactory clinical response with phosphodiesterase type-5 inhibitors. Riociguat has also been evaluated in patients with World Health Organization group 2 and 3 pulmonary hypertension, and other conditions including diffuse cutaneous systemic sclerosis, Raynaud's phenomenon and cystic fibrosis. This review evaluates the results of the original clinical trials of riociguat for the treatment of PAH and CTEPH, and summarises the body of work that has examined the safety and efficacy of riociguat for the treatment of other types of pulmonary hypertension.
Collapse
Affiliation(s)
- James R. Klinger
- Division of Pulmonary, Sleep, and Critical Care Medicine, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Murali M. Chakinala
- Division of Pulmonary and Critical Care MedicineWashington University School of MedicineSt LouisMissouriUSA
| | - David Langleben
- Center for Pulmonary Vascular Disease and Lady Davis Institute, Jewish General HospitalMcGill UniversityMontrealCanada
| | - Stephan Rosenkranz
- Clinic III for Internal Medicine (Cardiology), and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Cologne Cardiovascular Research Center (CCRC)University of CologneCologneGermany
| | - Olivier Sitbon
- Universite Paris‐Sud, Faculté de MédecineUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
- AP‐HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, Hôpital BicêtreLe Kremlin‐BicêtreFrance
- INSERM UMR_S 999, Hôpital Marie‐LannelongueLe Plessis‐RobinsonFrance
| |
Collapse
|
17
|
Hulot JS, Trochu JN, Donal E, Galinier M, Logeart D, De Groote P, Juillière Y. Vericiguat for the treatment of heart failure: mechanism of action and pharmacological properties compared with other emerging therapeutic options. Expert Opin Pharmacother 2021; 22:1847-1855. [PMID: 34074190 DOI: 10.1080/14656566.2021.1937121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION The significant morbidity and mortality in patients with heart failure (HF), notably in the most advanced forms of the disease, justify the need for novel therapeutic options. In the last year, the soluble guanylate cyclase (sGC) stimulator, vericiguat, has drawn the attention of the medical community following the report of reduced clinical outcomes in patients with worsening chronic HF (WCHF). AREAS COVERED The authors review the available data on the mechanism of action of vericiguat (cyclic guanosine monophosphate (cGMP) pathway), its clinical development program, its role in HF management, and its future positioning in the therapeutic recommendations. EXPERT OPINION cGMP deficiency has deleterious effects on the heart and contributes to the progression of HF. Different molecules, including nitric oxide (NO) donors, phosphodiesterase inhibitors, and natriuretic peptides analogues, target the NO-sCG-cGMP pathway but have yielded conflicting results in HF patients. Vericiguat acts as a sGC stimulator thus targeting the NO-sGC-cGMP pathway by a different mechanism that complements the current pharmacotherapy for HF. Vericiguat has shown an additional statistical add-on therapy efficacy by reducing morbi-mortality in patients with WCHF. A better evaluation of HF severity might be an important determinant to guide the use of vericiguat among the available therapies.
Collapse
Affiliation(s)
- Jean-Sébastien Hulot
- Université de Paris, INSERM, PARCC, Paris, France.,CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, Paris, France
| | - Jean-Noël Trochu
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
| | - Erwan Donal
- LTSI INSERM U1099, Service de Cardiologie et Maladies Vasculaires, Centre Hospitalier Universitaire de Rennes, Université Rennes, Rennes, France
| | - Michel Galinier
- Department of Cardiology, Toulouse-Rangueil University Hospital, Toulouse University School of Medicine, Toulouse, France
| | - Damien Logeart
- Department of Cardiology, Lariboisière Hospital, Paris, France.,Université de Paris, Paris, France
| | - Pascal De Groote
- CHU Lille, Service de Cardiologie, France.,INSERM U1167, Institut Pasteur de Lille, Lille, France
| | - Yves Juillière
- Centre Hospitalier Universitaire de Nancy Brabois, Vandoeuvre Lès Nancy, France
| |
Collapse
|
18
|
Grześk G, Nowaczyk A. Current Modulation of Guanylate Cyclase Pathway Activity-Mechanism and Clinical Implications. Molecules 2021; 26:molecules26113418. [PMID: 34200064 PMCID: PMC8200204 DOI: 10.3390/molecules26113418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
For years, guanylate cyclase seemed to be homogenic and tissue nonspecific enzyme; however, in the last few years, in light of preclinical and clinical trials, it became an interesting target for pharmacological intervention. There are several possible options leading to an increase in cyclic guanosine monophosphate concentrations. The first one is related to the uses of analogues of natriuretic peptides. The second is related to increasing levels of natriuretic peptides by the inhibition of degradation. The third leads to an increase in cyclic guanosine monophosphate concentration by the inhibition of its degradation by the inhibition of phosphodiesterase type 5. The last option involves increasing the concentration of cyclic guanosine monophosphate by the additional direct activation of soluble guanylate cyclase. Treatment based on the modulation of guanylate cyclase function is one of the most promising technologies in pharmacology. Pharmacological intervention is stable, effective and safe. Especially interesting is the role of stimulators and activators of soluble guanylate cyclase, which are able to increase the enzymatic activity to generate cyclic guanosine monophosphate independently of nitric oxide. Moreover, most of these agents are effective in chronic treatment in heart failure patients and pulmonary hypertension, and have potential to be a first line option.
Collapse
Affiliation(s)
- Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 75 Ujejskiego St., 85-168 Bydgoszcz, Poland;
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-52-585-3904
| |
Collapse
|
19
|
Hahn MG, Lampe T, El Sheikh S, Griebenow N, Woltering E, Schlemmer KH, Dietz L, Gerisch M, Wunder F, Becker-Pelster EM, Mondritzki T, Tinel H, Knorr A, Kern A, Lang D, Hueser J, Schomber T, Benardeau A, Eitner F, Truebel H, Mittendorf J, Kumar V, van den Akker F, Schaefer M, Geiss V, Sandner P, Stasch JP. Discovery of the Soluble Guanylate Cyclase Activator Runcaciguat (BAY 1101042). J Med Chem 2021; 64:5323-5344. [PMID: 33872507 DOI: 10.1021/acs.jmedchem.0c02154] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein we describe the discovery, mode of action, and preclinical characterization of the soluble guanylate cyclase (sGC) activator runcaciguat. The sGC enzyme, via the formation of cyclic guanosine monophoshphate, is a key regulator of body and tissue homeostasis. sGC activators with their unique mode of action are activating the oxidized and heme-free and therefore NO-unresponsive form of sGC, which is formed under oxidative stress. The first generation of sGC activators like cinaciguat or ataciguat exhibited limitations and were discontinued. We overcame limitations of first-generation sGC activators and identified a new chemical class via high-throughput screening. The investigation of the structure-activity relationship allowed to improve potency and multiple solubility, permeability, metabolism, and drug-drug interactions parameters. This program resulted in the discovery of the oral sGC activator runcaciguat (compound 45, BAY 1101042). Runcaciguat is currently investigated in clinical phase 2 studies for the treatment of patients with chronic kidney disease and nonproliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Michael G Hahn
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Thomas Lampe
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Sherif El Sheikh
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Nils Griebenow
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Elisabeth Woltering
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Karl-Heinz Schlemmer
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Lisa Dietz
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Michael Gerisch
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Frank Wunder
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | | | - Thomas Mondritzki
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany.,University of Witten/Herdecke, 58455 Witten, Germany
| | - Hanna Tinel
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Andreas Knorr
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Armin Kern
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Dieter Lang
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Joerg Hueser
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Tibor Schomber
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Agnes Benardeau
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Frank Eitner
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany
| | - Hubert Truebel
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany.,University of Witten/Herdecke, 58455 Witten, Germany
| | - Joachim Mittendorf
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Vijay Kumar
- Department of Biochemistry, Case Western Reserve University, 44106 Cleveland, Ohio, United States
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University, 44106 Cleveland, Ohio, United States
| | - Martina Schaefer
- Lead Discovery-Structural Biology, Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Volker Geiss
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Peter Sandner
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany.,Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
| | - Johannes-Peter Stasch
- Research and Development, Bayer AG, Pharmaceuticals, Aprather Weg 18a, 42113 Wuppertal, Germany.,Institute of Pharmacy, University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
20
|
Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble Guanylate Cyclase Stimulators and Activators. Handb Exp Pharmacol 2021; 264:355-394. [PMID: 30689085 DOI: 10.1007/164_2018_197] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
When Furchgott, Murad, and Ignarro were honored with the Nobel prize for the identification of nitric oxide (NO) in 1998, the therapeutic implications of this discovery could not be fully anticipated. This was due to the fact that available therapeutics like NO donors did not allow a constant and long-lasting cyclic guanylyl monophosphate (cGMP) stimulation and had a narrow therapeutic window. Now, 20 years later, the stimulator of soluble guanylate cyclase (sGC), riociguat, is on the market and is the only drug approved for the treatment of two forms of pulmonary hypertension (PAH/CTEPH), and a variety of other sGC stimulators and sGC activators are in preclinical and clinical development for additional indications. The discovery of sGC stimulators and sGC activators is a milestone in the field of NO/sGC/cGMP pharmacology. The sGC stimulators and sGC activators bind directly to reduced, heme-containing and oxidized, heme-free sGC, respectively, which results in an increase in cGMP production. The action of sGC stimulators at the heme-containing enzyme is independent of NO but is enhanced in the presence of NO whereas the sGC activators interact with the heme-free form of sGC. These highly innovative pharmacological principles of sGC stimulation and activation seem to have a very broad therapeutic potential. Therefore, in both academia and industry, intensive research and development efforts have been undertaken to fully exploit the therapeutic benefit of these new compound classes. Here we summarize the discovery of sGC stimulators and sGC activators and the current developments in both compound classes, including the mode of action, the chemical structures, and the genesis of the terminology and nomenclature. In addition, preclinical studies exploring multiple aspects of their in vitro, ex vivo, and in vivo pharmacology are reviewed, providing an overview of multiple potential applications. Finally, the clinical developments, investigating the treatment potential of these compounds in various diseases like heart failure, diabetic kidney disease, fibrotic diseases, and hypertension, are reported. In summary, sGC stimulators and sGC activators have a unique mode of action with a broad treatment potential in cardiovascular diseases and beyond.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany. .,Department of Pharmacology, Hannover Medical School, Hannover, Germany.
| | | | | | - Markus Follmann
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany
| | - Adrian Hobbs
- Barts and the London School of Medicine and Dentistry QMUL, London, UK
| | - Johannes-Peter Stasch
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany.,Institute of Pharmacy, University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
21
|
Lázár Z, Mészáros M, Bikov A. The Nitric Oxide Pathway in Pulmonary Arterial Hypertension: Pathomechanism, Biomarkers and Drug Targets. Curr Med Chem 2021; 27:7168-7188. [PMID: 32442078 DOI: 10.2174/0929867327666200522215047] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/03/2020] [Accepted: 02/20/2020] [Indexed: 11/22/2022]
Abstract
The altered Nitric Oxide (NO) pathway in the pulmonary endothelium leads to increased vascular smooth muscle tone and vascular remodelling, and thus contributes to the development and progression of pulmonary arterial hypertension (PAH). The pulmonary NO signalling is abrogated by the decreased expression and dysfunction of the endothelial NO synthase (eNOS) and the accumulation of factors blocking eNOS functionality. The NO deficiency of the pulmonary vasculature can be assessed by detecting nitric oxide in the exhaled breath or measuring the degradation products of NO (nitrite, nitrate, S-nitrosothiol) in blood or urine. These non-invasive biomarkers might show the potential to correlate with changes in pulmonary haemodynamics and predict response to therapies. Current pharmacological therapies aim to stimulate pulmonary NO signalling by suppressing the degradation of NO (phosphodiesterase- 5 inhibitors) or increasing the formation of the endothelial cyclic guanosine monophosphate, which mediates the downstream effects of the pathway (soluble guanylate cyclase sensitizers). Recent data support that nitrite compounds and dietary supplements rich in nitrate might increase pulmonary NO availability and lessen vascular resistance. This review summarizes current knowledge on the involvement of the NO pathway in the pathomechanism of PAH, explores novel and easy-to-detect biomarkers of the pulmonary NO.
Collapse
Affiliation(s)
- Zsófia Lázár
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Martina Mészáros
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Andras Bikov
- Department of Pulmonology, Semmelweis University, Budapest, Hungary,Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
22
|
Friebe A, Englert N. NO-sensitive guanylyl cyclase in the lung. Br J Pharmacol 2020; 179:2328-2343. [PMID: 33332689 DOI: 10.1111/bph.15345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022] Open
Abstract
In the late 1960s, several labatories identified guanylyl cyclase (GC) as the cGMP-producing enzyme. Subsequently, two different types of GC were described that differed in their cellular localization. Primarily found in the cytosol, nitric oxide (NO)-sensitive guanylyl cyclase (NO-GC) acts as receptor for the signalling molecule NO, in contrast the membrane-bound isoenzyme is activated by natriuretic peptides. The lung compared with other tissues exhibits the highest expression of NO-GC. The enzyme has been purified from lung for biochemical analysis. Although expressed in smooth muscle cells (SMCs) and in pericytes, the function of NO-GC in lung, especially in pericytes, is still not fully elucidated. However, pharmacological compounds that target NO-GC are available and have been implemented for the therapy of pulmonary arterial hypertension. In addition, NO-GC has been suggested as drug target for the therapy of asthma, acute respiratory distress syndrome and pulmonary fibrosis.
Collapse
Affiliation(s)
- Andreas Friebe
- Physiological Institute, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Nils Englert
- Physiological Institute, Julius Maximilian University of Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Brockunier L, Stelmach J, Guo J, Spencer T, Rosauer K, Bansal A, Cai SJ, Chen N, Cummings J, Huang L, Johnson T, Levesque S, Luo L, Maloney K, Metzger J, Mortko C, Ortega K, Pai LY, Pereira A, Salituro G, Shang J, Shepherd C, Sherrie Xu S, Yang Q, Cui J, Roy S, Parmee E, Raghavan S. Soluble guanylate cyclase stimulators for the treatment of hypertension: Discovery of MK-2947. Bioorg Med Chem Lett 2020; 30:127574. [DOI: 10.1016/j.bmcl.2020.127574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
|
24
|
Armstrong PC, Ferreira PM, Chan MV, Lundberg Slingsby MH, Crescente M, Shih CC, Kirkby NS, Hobbs AJ, Warner TD. Combination of cyclic nucleotide modulators with P2Y 12 receptor antagonists as anti-platelet therapy. J Thromb Haemost 2020; 18:1705-1713. [PMID: 32278335 DOI: 10.1111/jth.14826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/02/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Endothelium-derived prostacyclin and nitric oxide elevate platelet cyclic nucleotide levels and maintain quiescence. We previously demonstrated that a synergistic relationship exists between cyclic nucleotides and P2Y12 receptor inhibition. A number of clinically approved drug classes can modulate cyclic nucleotide tone in platelets including activators of NO-sensitive guanylyl cyclase (GC) and phosphodiesterase (PDE) inhibitors. However, the doses required to inhibit platelets produce numerous side effects including headache. OBJECTIVE We investigated using GC-activators in combination with P2Y12 receptor antagonists as a way to selectively amplify the anti-thrombotic effect of both drugs. METHODS In vitro light transmission aggregation and platelet adhesion under flow were performed on washed platelets and platelet rich plasma. Aggregation in whole blood and a ferric chloride-induced arterial thrombosis model were also performed. RESULTS The GC-activator BAY-70 potentiated the action of the P2Y12 receptor inhibitor prasugrel active metabolite in aggregation and adhesion studies and was associated with raised intra-platelet cyclic nucleotide levels. Furthermore, mice administered sub-maximal doses of the GC activator cinaciguat together with the PDE inhibitor dipyridamole and prasugrel, showed significant inhibition of ex vivo platelet aggregation and significantly reduced in vivo arterial thrombosis in response to injury without alteration in basal carotid artery blood flow. CONCLUSIONS Using in vitro, ex vivo, and in vivo functional studies, we show that low dose GC activators synergize with P2Y12 inhibition to produce powerful anti-platelet effects without altering blood flow. Therefore, modulation of intra-platelet cyclic nucleotide levels alongside P2Y12 inhibition can provide a strong, focused anti-thrombotic regimen while minimizing vasodilator side effects.
Collapse
Affiliation(s)
- Paul C Armstrong
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Plinio M Ferreira
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Melissa V Chan
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Martina H Lundberg Slingsby
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Marilena Crescente
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Chih-Chin Shih
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Nicholas S Kirkby
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Timothy D Warner
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
25
|
Kolijn D, Kovács Á, Herwig M, Lódi M, Sieme M, Alhaj A, Sandner P, Papp Z, Reusch PH, Haldenwang P, Falcão-Pires I, Linke WA, Jaquet K, Van Linthout S, Mügge A, Tschöpe C, Hamdani N. Enhanced Cardiomyocyte Function in Hypertensive Rats With Diastolic Dysfunction and Human Heart Failure Patients After Acute Treatment With Soluble Guanylyl Cyclase (sGC) Activator. Front Physiol 2020; 11:345. [PMID: 32523538 PMCID: PMC7261855 DOI: 10.3389/fphys.2020.00345] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/26/2020] [Indexed: 01/09/2023] Open
Abstract
Aims Our aim was to investigate the effect of nitric oxide (NO)-independent activation of soluble guanylyl cyclase (sGC) on cardiomyocyte function in a hypertensive animal model with diastolic dysfunction and in biopsies from human heart failure with preserved ejection fraction (HFpEF). Methods Dahl salt-sensitive (DSS) rats and control rats were fed a high-salt diet for 10 weeks and then acutely treated in vivo with the sGC activator BAY 58-2667 (cinaciguat) for 30 min. Single skinned cardiomyocyte passive stiffness (Fpassive) was determined in rats and human myocardium biopsies before and after acute treatment. Titin phosphorylation, activation of the NO/sGC/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) cascade, as well as hypertrophic pathways including NO/sGC/cGMP/PKG, PKA, calcium–calmodulin kinase II (CaMKII), extracellular signal-regulated kinase 2 (ERK2), and PKC were assessed. In addition, we explored the contribution of pro-inflammatory cytokines and oxidative stress levels to the modulation of cardiomyocyte function. Immunohistochemistry and electron microscopy were used to assess the translocation of sGC and connexin 43 proteins in the rat model before and after treatment. Results High cardiomyocyte Fpassive was found in rats and human myocardial biopsies compared to control groups, which was attributed to hypophosphorylation of total titin and to deranged site-specific phosphorylation of elastic titin regions. This was accompanied by lower levels of PKG and PKA activity, along with dysregulation of hypertrophic pathway markers such as CaMKII, PKC, and ERK2. Furthermore, DSS rats and human myocardium biopsies showed higher pro-inflammatory cytokines and oxidative stress compared to controls. DSS animals benefited from treatment with the sGC activator, as Fpassive, titin phosphorylation, PKG and the hypertrophic pathway kinases, pro-inflammatory cytokines, and oxidative stress markers all significantly improved to the level observed in controls. Immunohistochemistry and electron microscopy revealed a translocation of sGC protein toward the intercalated disc and t-tubuli following treatment in both control and DSS samples. This translocation was confirmed by staining for the gap junction protein connexin 43 at the intercalated disk. DSS rats showed a disrupted connexin 43 pattern, and sGC activator was able to partially reduce disruption and increase expression of connexin 43. In human HFpEF biopsies, the high Fpassive, reduced titin phosphorylation, dysregulation of the NO–sGC–cGMP–PKG pathway and PKA activity level, and activity of kinases involved in hypertrophic pathways CaMKII, PKC, and ERK2 were all significantly improved by sGC treatment and accompanied by a reduction in pro-inflammatory cytokines and oxidative stress markers. Conclusion Our data show that sGC activator improves cardiomyocyte function, reduces inflammation and oxidative stress, improves sGC–PKG signaling, and normalizes hypertrophic kinases, indicating that it is a potential treatment option for HFpEF patients and perhaps also for cases with increased hypertrophic signaling.
Collapse
Affiliation(s)
- Detmar Kolijn
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Melissa Herwig
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Mária Lódi
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,University of Debrecen, Kálmán Laki Doctoral School, Debrecen, Hungary
| | - Marcel Sieme
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany
| | - Abdulatif Alhaj
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany
| | - Peter Sandner
- Bayer AG, Drug Discovery Cardiology, Wuppertal, Germany
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter H Reusch
- Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany
| | - Peter Haldenwang
- Department of Cardiothoracic Surgery, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Ines Falcão-Pires
- Department of Surgery and Physiology and Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, University of Münster, Münster, Germany
| | - Kornelia Jaquet
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany
| | - Sophie Van Linthout
- Department of Medicine and Cardiology (CVK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Mügge
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany
| | - Carsten Tschöpe
- Department of Medicine and Cardiology (CVK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
26
|
Zimmer DP, Shea CM, Tobin JV, Tchernychev B, Germano P, Sykes K, Banijamali AR, Jacobson S, Bernier SG, Sarno R, Carvalho A, Chien YT, Graul R, Buys ES, Jones JE, Wakefield JD, Price GM, Chickering JG, Milne GT, Currie MG, Masferrer JL. Olinciguat, an Oral sGC Stimulator, Exhibits Diverse Pharmacology Across Preclinical Models of Cardiovascular, Metabolic, Renal, and Inflammatory Disease. Front Pharmacol 2020; 11:419. [PMID: 32322204 PMCID: PMC7156612 DOI: 10.3389/fphar.2020.00419] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/19/2020] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic 3',5' GMP (cGMP) signaling plays a central role in regulation of diverse processes including smooth muscle relaxation, inflammation, and fibrosis. sGC is activated by the short-lived physiologic mediator NO. sGC stimulators are small-molecule compounds that directly bind to sGC to enhance NO-mediated cGMP signaling. Olinciguat, (R)-3,3,3-trifluoro-2-(((5-fluoro-2-(1-(2-fluorobenzyl)-5-(isoxazol-3-yl)-1H-pyrazol-3-yl)pyrimidin-4-yl)amino)methyl)-2-hydroxypropanamide, is a new sGC stimulator currently in Phase 2 clinical development. To understand the potential clinical utility of olinciguat, we studied its pharmacokinetics, tissue distribution, and pharmacologic effects in preclinical models. Olinciguat relaxed human vascular smooth muscle and was a potent inhibitor of vascular smooth muscle proliferation in vitro. These antiproliferative effects were potentiated by the phosphodiesterase 5 inhibitor tadalafil, which did not inhibit vascular smooth muscle proliferation on its own. Olinciguat was orally bioavailable and predominantly cleared by the liver in rats. In a rat whole body autoradiography study, olinciguat-derived radioactivity in most tissues was comparable to plasma levels, indicating a balanced distribution between vascular and extravascular compartments. Olinciguat was explored in rodent models to study its effects on the vasculature, the heart, the kidneys, metabolism, and inflammation. Olinciguat reduced blood pressure in normotensive and hypertensive rats. Olinciguat was cardioprotective in the Dahl rat salt-sensitive hypertensive heart failure model. In the rat ZSF1 model of diabetic nephropathy and metabolic syndrome, olinciguat was renoprotective and associated with lower circulating glucose, cholesterol, and triglycerides. In a mouse TNFα-induced inflammation model, olinciguat treatment was associated with lower levels of endothelial and leukocyte-derived soluble adhesion molecules. The pharmacological features of olinciguat suggest that it may have broad therapeutic potential and that it may be suited for diseases that have both vascular and extravascular pathologies.
Collapse
Affiliation(s)
- Daniel P Zimmer
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Courtney M Shea
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Jenny V Tobin
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Boris Tchernychev
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Peter Germano
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Kristie Sykes
- Research and Development, Ironwood Pharmaceuticals, Boston, MA, United States
| | - Ali R Banijamali
- Research and Development, Ironwood Pharmaceuticals, Boston, MA, United States
| | - Sarah Jacobson
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Sylvie G Bernier
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Renee Sarno
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Andrew Carvalho
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Yueh-Tyng Chien
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Regina Graul
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Emmanuel S Buys
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Juli E Jones
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - James D Wakefield
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Gavrielle M Price
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | | | - G Todd Milne
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Mark G Currie
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| | - Jaime L Masferrer
- Research and Development, Cyclerion Therapeutics, Cambridge, MA, United States
| |
Collapse
|
27
|
Xiao S, Li Q, Hu L, Yu Z, Yang J, Chang Q, Chen Z, Hu G. Soluble Guanylate Cyclase Stimulators and Activators: Where are We and Where to Go? Mini Rev Med Chem 2019; 19:1544-1557. [PMID: 31362687 DOI: 10.2174/1389557519666190730110600] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 02/04/2023]
Abstract
Soluble Guanylate Cyclase (sGC) is the intracellular receptor of Nitric Oxide (NO). The activation of sGC results in the conversion of Guanosine Triphosphate (GTP) to the secondary messenger cyclic Guanosine Monophosphate (cGMP). cGMP modulates a series of downstream cascades through activating a variety of effectors, such as Phosphodiesterase (PDE), Protein Kinase G (PKG) and Cyclic Nucleotide-Gated Ion Channels (CNG). NO-sGC-cGMP pathway plays significant roles in various physiological processes, including platelet aggregation, smooth muscle relaxation and neurotransmitter delivery. With the approval of an sGC stimulator Riociguat for the treatment of Pulmonary Arterial Hypertension (PAH), the enthusiasm in the discovery of sGC modulators continues for broad clinical applications. Notably, through activating the NO-sGC-cGMP pathway, sGC stimulator and activator potentiate for the treatment of various diseases, such as PAH, Heart Failure (HF), Diabetic Nephropathy (DN), Systemic Sclerosis (SS), fibrosis as well as other diseases including Sickle Cell Disease (SCD) and Central Nervous System (CNS) disease. Here, we review the preclinical and clinical studies of sGC stimulator and activator in recent years and prospect for the development of sGC modulators in the near future.
Collapse
Affiliation(s)
- Sijia Xiao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Liqing Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science Kyoto University Kitashirakawa- Oiwakecho, Sakyo-Ku, kyoto, Japan
| | - Jie Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qi Chang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
28
|
Makrynitsa GI, Zompra AA, Argyriou AI, Spyroulias GA, Topouzis S. Therapeutic Targeting of the Soluble Guanylate Cyclase. Curr Med Chem 2019; 26:2730-2747. [PMID: 30621555 DOI: 10.2174/0929867326666190108095851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/13/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022]
Abstract
The soluble guanylate cyclase (sGC) is the physiological sensor for nitric oxide and alterations of its function are actively implicated in a wide variety of pathophysiological conditions. Intense research efforts over the past 20 years have provided significant information on its regulation, culminating in the rational development of approved drugs or investigational lead molecules, which target and interact with sGC through novel mechanisms. However, there are numerous questions that remain unanswered. Ongoing investigations, with the critical aid of structural chemistry studies, try to further elucidate the enzyme's structural characteristics that define the association of "stimulators" or "activators" of sGC in the presence or absence of the heme moiety, respectively, as well as the precise conformational attributes that will allow the design of more innovative and effective drugs. This review relates the progress achieved, particularly in the past 10 years, in understanding the function of this enzyme, and focusses on a) the rationale and results of its therapeutic targeting in disease situations, depending on the state of enzyme (oxidized or not, heme-carrying or not) and b) the most recent structural studies, which should permit improved design of future therapeutic molecules that aim to directly upregulate the activity of sGC.
Collapse
Affiliation(s)
| | - Aikaterini A Zompra
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26505, Greece
| | - Aikaterini I Argyriou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26505, Greece
| | - Georgios A Spyroulias
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26505, Greece
| | - Stavros Topouzis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26505, Greece
| |
Collapse
|
29
|
Frey R, Becker C, Saleh S, Unger S, van der Mey D, Mück W. Clinical Pharmacokinetic and Pharmacodynamic Profile of Riociguat. Clin Pharmacokinet 2019; 57:647-661. [PMID: 29086344 PMCID: PMC5974002 DOI: 10.1007/s40262-017-0604-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oral riociguat is a soluble guanylate cyclase (sGC) stimulator that targets the nitric oxide (NO)–sGC–cyclic guanosine monophosphate pathway with a dual mode of action: directly by stimulating sGC, and indirectly by increasing the sensitivity of sGC to NO. It is rapidly absorbed, displays almost complete bioavailability (94.3%), and can be taken with or without food and as crushed or whole tablets. Riociguat exposure shows pronounced interindividual (60%) and low intraindividual (30%) variability in patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH), and is therefore administered using an individual dose-adjustment scheme at treatment initiation. The half-life of riociguat is approximately 12 h in patients and approximately 7 h in healthy individuals. Riociguat and its metabolites are excreted via both renal (33–45%) and biliary routes (48–59%), and dose adjustment should be performed with particular care in patients with moderate hepatic impairment or mild to severe renal impairment (no data exist for patients with severe hepatic impairment). The pharmacodynamic effects of riociguat reflect the action of a vasodilatory agent, and the hemodynamic response to riociguat correlated with riociguat exposure in patients with PAH or CTEPH in phase III population pharmacokinetic/pharmacodynamic analyses. Riociguat has a low risk of clinically relevant drug interactions due to its clearance by multiple cytochrome P450 (CYP) enzymes and its lack of effect on major CYP isoforms and transporter proteins at therapeutic levels. Riociguat has been approved for the treatment of PAH and CTEPH that is inoperable or persistent/recurrent after surgical treatment.
Collapse
Affiliation(s)
- Reiner Frey
- Clinical Pharmacology, Bayer AG, Wuppertal, Germany.
| | | | | | - Sigrun Unger
- Global Biostatistics, Bayer AG, Wuppertal, Germany
| | | | | |
Collapse
|
30
|
BAY 41-2272 inhibits human neutrophil functions. Int Immunopharmacol 2019; 75:105767. [PMID: 31376626 DOI: 10.1016/j.intimp.2019.105767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 01/22/2023]
Abstract
BAY 41-2272 is a guanylyl cyclase (GC) stimulator derived from YC-1 (3-[(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole]). Previous studies by our group showed that BAY 41-2272 activates human monocytes via soluble guanylyl cyclase (sGC) and cGMP. In this study, we investigated the effect of BAY 41-2272 on human neutrophil function and found that 30 μM BAY 41-2272 inhibits neutrophil migration (1.82-fold lower than FMLP, P < 0.05 by one-way ANOVA followed by Tukey's test), oxidative burst (1.70-fold lower than PMA, P < 0.05 by one-way ANOVA followed by Tukey's test), and IL-8 cytokine production (1.80-fold lower than PMA, P < 0.05 by one-way ANOVA followed by Tukey's test). Our results suggest that these effects are independent of the sGC pathway but dependent instead on cGMP production, as the response induced by 30 μM BAY 41-2272 was 6.40-fold greater than that observed in our negative control (P < 0.05 by parametric t-test). 1H-[1, 2, 4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ), which is an irreversible inhibitor of sGC, was unable to reverse the effects of BAY 41-2272 on human neutrophils, indicating that this drug acts independently of sGC. Our results confirm the immunomodulatory effect of BAY 41-2272 on human neutrophils.
Collapse
|
31
|
Erdmann J, Kessler T, Munoz Venegas L, Schunkert H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res 2019; 114:1241-1257. [PMID: 29617720 DOI: 10.1093/cvr/cvy084] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
In this review, we summarize current knowledge on the genetics of coronary artery disease, based on 10 years of genome-wide association studies. The discoveries began with individual studies using 200K single nucleotide polymorphism arrays and progressed to large-scale collaborative efforts, involving more than a 100 000 people and up to 40 Mio genetic variants. We discuss the challenges ahead, including those involved in identifying causal genes and deciphering the links between risk variants and disease pathology. We also describe novel insights into disease biology based on the findings of genome-wide association studies. Moreover, we discuss the potential for discovery of novel treatment targets through the integration of different layers of 'omics' data and the application of systems genetics approaches. Finally, we provide a brief outlook on the potential for precision medicine to be enhanced by genome-wide association study findings in the cardiovascular field.
Collapse
Affiliation(s)
- Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Maria-Geoppert-Str. 1, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Heart Center Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Thorsten Kessler
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Lazarettstraβe 36, Munich, Germany.,DZHK (German Center for Cardiovascular Research) e.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Loreto Munoz Venegas
- Institute for Cardiogenetics, University of Lübeck, Maria-Geoppert-Str. 1, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Heart Center Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Lazarettstraβe 36, Munich, Germany.,DZHK (German Center for Cardiovascular Research) e.V., Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
32
|
Sandner P. From molecules to patients: exploring the therapeutic role of soluble guanylate cyclase stimulators. Biol Chem 2019; 399:679-690. [PMID: 29604206 DOI: 10.1515/hsz-2018-0155] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022]
Abstract
Nitric oxide (NO) signaling represents one of the major regulatory pathways for cardiovascular function. After the discovery of NO, awarded with the Nobel Prize in 1998, this signaling cascade was stepwise clarified. We now have a good understanding of NO production and NO downstream targets such as the soluble guanylyl cyclases (sGCs) which catalyze cGMP production. Based on the important role of NO-signaling in the cardiovascular system, intense research and development efforts are currently ongoing to fully exploit the therapeutic potential of cGMP increase. Recently, NO-independent stimulators of sGC (sGC stimulators) were discovered and characterized. This new compound class has a unique mode of action, directly binding to sGC and triggering cGMP production. The first sGC stimulator made available to patients is riociguat, which was approved in 2013 for the treatment of different forms of pulmonary hypertension (PH). Besides riociguat, other sGC stimulators are in clinical development, with vericiguat in phase 3 clinical development for the treatment of chronic heart failure (HF). Based on the broad impact of NO/cGMP signaling, sGC stimulators could have an even broader therapeutic potential beyond PH and HF. Within this review, the NO/sGC/cGMP/PKG/PDE-signaling cascade and the major pharmacological intervention sites are described. In addition, the discovery and mode of action of sGC stimulators and the clinical development in PH and HF is covered. Finally, the preclinical and clinical evidence and treatment approaches for sGC stimulators beyond these indications and the cardiovascular disease space, like in fibrotic diseases as in systemic sclerosis (SSc), are reviewed.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer AG, Drug-Discovery, Pharma Research Center Wuppertal, Aprather Weg 18a, D-42069 Wuppertal, Germany.,Hannover Medical School, Department of Pharmacology, Hannover, Germany
| |
Collapse
|
33
|
Abstract
IMPACT STATEMENT Sickle cell disease (SCD) is one of the most common inherited diseases and is associated with a reduced life expectancy and acute and chronic complications, including frequent painful vaso-occlusive episodes that often require hospitalization. At present, treatment of SCD is limited to hematopoietic stem cell transplant, transfusion, and limited options for pharmacotherapy, based principally on hydroxyurea therapy. This review highlights the importance of intracellular cGMP-dependent signaling pathways in SCD pathophysiology; modulation of these pathways with soluble guanylate cyclase (sGC) stimulators or phosphodiesterase (PDE) inhibitors could potentially provide vasorelaxation and anti-inflammatory effects, as well as elevate levels of anti-sickling fetal hemoglobin.
Collapse
Affiliation(s)
- Nicola Conran
- Hematology Center, University of Campinas – UNICAMP,
Cidade Universitária, Campinas-SP 13083-878-SP, Brazil
| | - Lidiane Torres
- Hematology Center, University of Campinas – UNICAMP,
Cidade Universitária, Campinas-SP 13083-878-SP, Brazil
| |
Collapse
|
34
|
Halank M, Tausche K, Grünig E, Ewert R, Preston IR. Practical management of riociguat in patients with pulmonary arterial hypertension. Ther Adv Respir Dis 2019; 13:1753466619868938. [PMID: 31438774 PMCID: PMC6710674 DOI: 10.1177/1753466619868938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Riociguat is one of several approved therapies available for patients with pulmonary arterial hypertension (PAH). Treatment should be initiated and monitored at an expert center by a physician experienced in treating PAH, and the dose adjusted in the absence of signs and symptoms of hypotension. In certain populations, including patients with hepatic or renal impairment, the elderly, and smokers, riociguat exposure may differ, and dose adjustments should therefore be made with caution according to the established scheme. Common adverse events are often easily managed, particularly if they are discussed before starting therapy. Combination therapy with riociguat and other PAH-targeted agents is feasible and generally well tolerated, although the coadministration of phosphodiesterase type 5 inhibitors (PDE5i) and riociguat is contraindicated. An open-label, randomized study is currently ongoing to assess whether patients who do not achieve treatment goals while receiving PDE5i may benefit from switching to riociguat. In this review, we provide a clinical view on the practical management of patients with PAH receiving riociguat, with a focus on the opinions and personal experience of the authors. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Michael Halank
- Internal Clinical I, University Hospital Carl Gustav Carus, Fetscherstrasse 74, Dresden, 01307, Germany
| | - Kristin Tausche
- Medical Clinic 1/Pneumology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Thorax Clinic at University Hospital, Heidelberg, Germany
| | - Ralf Ewert
- Clinic for Internal Medicine B, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Ioana R. Preston
- Pulmonary, Critical Care and Sleep Division, Tufts University Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Huntgeburth M, Kießling J, Weimann G, Wilberg V, Saleh S, Hunzelmann N, Rosenkranz S. Riociguat for the Treatment of Raynaud's Phenomenon: A Single-Dose, Double-Blind, Randomized, Placebo-Controlled Cross-Over Pilot Study (DIGIT). Clin Drug Investig 2018; 38:1061-1069. [PMID: 30238433 DOI: 10.1007/s40261-018-0698-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Raynaud's phenomenon (RP) is characterized by transient digital ischemia and is commonly associated with connective tissue disease. Treatment remains unsatisfactory. Here we evaluate the efficacy, safety, and pharmacokinetics of a single dose of the soluble guanylate cyclase stimulator riociguat in RP. METHODS DIGIT was a double-blind, randomized, placebo-controlled pilot study. Patients with primary or secondary RP were randomized to a single oral dose of riociguat 2 mg or placebo in a cross-over design (7 ± 3 days). Efficacy was assessed as placebo-corrected change in digital blood flow 2 h post-dose at room temperature (RT) or following cold exposure (CE), measured by laser-speckle contrast analysis. Patients were regarded as responders if placebo-corrected digital blood flow increased by ≥ 10% from baseline at RT or after CE. RESULTS Of 20 eligible patients, 17 (85%) were female and mean [standard deviation (SD)] age was 52 (13.8) years. Placebo-corrected changes in digital blood flow were + 46% [90% confidence interval (CI) - 6 to + 98] at RT and - 9% (90% CI - 63 to + 44) after CE, with high inter-individual variability. Eight patients (40%) were responders at RT, and 12 (60%) after CE. Riociguat increased mean (SD) digital blood flow in responders at RT by + 136% (114) and in responders following CE by + 39% (53). Riociguat was well tolerated, with few adverse events. CONCLUSION In this pilot study, single-dose riociguat was well tolerated in patients with RP and resulted in improved digital blood flow in some patient subsets, with high inter-individual variability. Long-term evaluation is warranted.
Collapse
Affiliation(s)
- Michael Huntgeburth
- Clinic III for Internal Medicine, Department of Cardiology, Heart Center, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Johannes Kießling
- Clinic III for Internal Medicine, Department of Cardiology, Heart Center, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | | | | | | | | | - Stephan Rosenkranz
- Clinic III for Internal Medicine, Department of Cardiology, Heart Center, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany. .,Heart Center, Cologne Cardiovascular Research Center (CCRC), Cologne, Germany.
| |
Collapse
|
36
|
A shear-dependent NO-cGMP-cGKI cascade in platelets acts as an auto-regulatory brake of thrombosis. Nat Commun 2018; 9:4301. [PMID: 30327468 PMCID: PMC6191445 DOI: 10.1038/s41467-018-06638-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Mechanisms that limit thrombosis are poorly defined. One of the few known endogenous platelet inhibitors is nitric oxide (NO). NO activates NO sensitive guanylyl cyclase (NO-GC) in platelets, resulting in an increase of cyclic guanosine monophosphate (cGMP). Here we show, using cGMP sensor mice to study spatiotemporal dynamics of platelet cGMP, that NO-induced cGMP production in pre-activated platelets is strongly shear-dependent. We delineate a new mode of platelet-inhibitory mechanotransduction via shear-activated NO-GC followed by cGMP synthesis, activation of cGMP-dependent protein kinase I (cGKI), and suppression of Ca2+ signaling. Correlative profiling of cGMP dynamics and thrombus formation in vivo indicates that high cGMP concentrations in shear-exposed platelets at the thrombus periphery limit thrombosis, primarily through facilitation of thrombus dissolution. We propose that an increase in shear stress during thrombus growth activates the NO-cGMP-cGKI pathway, which acts as an auto-regulatory brake to prevent vessel occlusion, while preserving wound closure under low shear. Nitric oxide (NO) inhibits thrombosis in part by stimulating cyclic guanosine monophosphate (cGMP) production and cGMP-dependent protein kinase I (cGKI) activity in platelets. Here, Wen et al. develop a cGMP sensor mouse to follow cGMP dynamics in platelets, and find that shear stress activates NO-cGMP-cGKI signaling during platelet aggregation to limit thrombosis.
Collapse
|
37
|
Influence of riociguat treatment on pulmonary arterial hypertension : A meta-analysis of randomized controlled trials. Herz 2018; 44:637-643. [PMID: 29992431 DOI: 10.1007/s00059-018-4697-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/09/2018] [Accepted: 03/17/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Riociguat treatment might be beneficial for pulmonary arterial hypertension. However, the results of studies to date are controversial. We conducted a systematic review and meta-analysis to explore the influence of riociguat treatment on pulmonary arterial hypertension. METHODS The PubMed, Embase, Web of science, EBSCO, and Cochrane Library databases were systematically searched. Randomized controlled trials (RCTs) assessing the effect of riociguat treatment on pulmonary arterial hypertension were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. This meta-analysis was performed using the random effects model. RESULTS Seven RCTs were included in the meta-analysis. Compared with a control intervention in pulmonary arterial hypertension, riociguat treatment was able to substantially improve results of the six-minute walking distance (6-MWD; standardized mean difference [SMD] = 0.53; 95% CI = 0.36-0.69; p < 0.00001), EQ-5D score (SMD = 0.35; 95% CI = 0.15-0.54; p = 0.0005), and cardiac index (SMD = 0.94; 95% CI = 0.59-1.29; p < 0.00001). The Living With Pulmonary Hypertension (LPH) score (SMD = -0.33; 95% CI = -0.50--0.17; p < 0.0001) and pulmonary vascular resistance (PVR; SMD = -0.88; 95% CI = -1.05--0.70; p < 0.00001) were significantly reduced after riociguat treatment. There was no increase in adverse events with riociguat treatment compared with the control intervention (RR = 1.04; 95% CI = 0.98-1.09; p = 0.19). CONCLUSION Riociguat treatment for pulmonary arterial hypertension led to a significant increase in the 6‑MWD, EQ-5D score, and cardiac index, as well as a decrease in LPH score and PVR.
Collapse
|
38
|
Singh P, Vijayakumar S, Kalogeroupoulos A, Butler J. Multiple Avenues of Modulating the Nitric Oxide Pathway in Heart Failure Clinical Trials. Curr Heart Fail Rep 2018; 15:44-52. [DOI: 10.1007/s11897-018-0383-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Flores-Costa R, Alcaraz-Quiles J, Titos E, López-Vicario C, Casulleras M, Duran-Güell M, Rius B, Diaz A, Hall K, Shea C, Sarno R, Currie M, Masferrer JL, Clària J. The soluble guanylate cyclase stimulator IW-1973 prevents inflammation and fibrosis in experimental non-alcoholic steatohepatitis. Br J Pharmacol 2018; 175:953-967. [PMID: 29281143 PMCID: PMC5825296 DOI: 10.1111/bph.14137] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-alcoholic steatohepatitis (NASH) is the hepatic manifestation of metabolic syndrome and is characterized by steatosis, inflammation and fibrosis. Soluble guanylate cyclase (sGC) stimulation reduces inflammation and fibrosis in experimental models of lung, kidney and heart disease. Here, we tested whether sGC stimulation is also effective in experimental NASH. EXPERIMENTAL APPROACH NASH was induced in mice by feeding a choline-deficient, l-amino acid-defined, high-fat diet. These mice received either placebo or the sGC stimulator IW-1973 at two different doses (1 and 3 mg·kg-1 ·day-1 ) for 9 weeks. IW-1973 was also tested in high-fat diet (HFD)-induced obese mice. Steatosis, inflammation and fibrosis were assessed by Oil Red O, haematoxylin-eosin, Masson's trichrome, Sirius Red, F4/80 and α-smooth muscle actin staining. mRNA expression was assessed by quantitative PCR. Levels of IW-1973, cytokines and cGMP were determined by LC-MS/MS, Luminex and enzyme immunoassay respectively. KEY RESULTS Mice with NASH showed reduced cGMP levels and sGC expression, increased steatosis, inflammation, fibrosis, TNF-α and MCP-1 levels and up-regulated collagen types I α1 and α2, MMP2, TGF-β1 and tissue metallopeptidase inhibitor 1 expression. IW-1973 restored hepatic cGMP levels and sGC expression resulting in a dose-dependent reduction of hepatic inflammation and fibrosis. IW-1973 levels were ≈40-fold higher in liver tissue than in plasma. IW-1973 also reduced hepatic steatosis and adipocyte hypertrophy secondary to enhanced autophagy in HFD-induced obese mice. CONCLUSIONS AND IMPLICATIONS Our data indicate that sGC stimulation prevents hepatic steatosis, inflammation and fibrosis in experimental NASH. These findings warrant further evaluation of IW-1973 in the clinical setting.
Collapse
Affiliation(s)
- Roger Flores-Costa
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - José Alcaraz-Quiles
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Esther Titos
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain.,CIBERehd, Barcelona, Spain
| | - Cristina López-Vicario
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain.,CIBERehd, Barcelona, Spain
| | - Mireia Casulleras
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Marta Duran-Güell
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Bibiana Rius
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Alba Diaz
- Department of Pathology, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | | | | | - Renee Sarno
- Ironwood Pharmaceuticals Inc., Cambridge, MA, USA
| | - Mark Currie
- Ironwood Pharmaceuticals Inc., Cambridge, MA, USA
| | | | - Joan Clària
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona, Spain.,CIBERehd, Barcelona, Spain.,Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain
| |
Collapse
|
40
|
Watanabe H. Treatment Selection in Pulmonary Arterial Hypertension: Phosphodiesterase Type 5 Inhibitors versus Soluble Guanylate Cyclase Stimulator. Eur Cardiol 2018; 13:35-37. [PMID: 30310468 DOI: 10.15420/ecr.2017:22:2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pulmonary arterial hypertension is a chronic and life-threatening disease that if left untreated is fatal. Current therapies include stimulating the nitric oxide-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate axis, improving the prostacyclin pathway and inhibiting the endothelin pathway. Phosphodiesterase type 5 inhibitors, such as sildenafil, and the sGC stimulator riociguat are currently used in the treatment of pulmonary arterial hypertension. This article discusses the similarities and differences between phosphodiesterase type 5 inhibitors and sGC stimulator based on pharmacological action and clinical trials, and considers which is better for the treatment of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Hiroshi Watanabe
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan and Center for Clinical Sciences, National Center for Global Health and Medicine Tokyo, Japan
| |
Collapse
|
41
|
Strowitzki MJ, Ritter AS, Radhakrishnan P, Harnoss JM, Opitz VM, Biller M, Wehrmann J, Keppler U, Scheer J, Wallwiener M, Schmidt T, Ulrich A, Schneider M. Pharmacological HIF-inhibition attenuates postoperative adhesion formation. Sci Rep 2017; 7:13151. [PMID: 29030625 PMCID: PMC5640636 DOI: 10.1038/s41598-017-13638-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
Peritoneal adhesions represent a common complication of abdominal surgery, and tissue hypoxia is a main determinant in adhesion formation. Reliable therapeutic options to reduce peritoneal adhesions are scarce. We investigated whether the formation of postsurgical adhesions can be affected by pharmacological interference with hypoxia-inducible factors (HIFs). Mice were treated with a small molecule HIF-inhibitor, YC-1 (3-[5′-Hydroxymethyl-2′-furyl]-1-benzyl-indazole), or vehicle three days before and seven days after induction of peritoneal adhesions or, alternatively, once during induction of peritoneal adhesions. Pretreatment or single intraperitoneal lavage with YC-1 significantly reduced postoperative adhesion formation without prompting systemic adverse effects. Expression analyses of cytokines in peritoneal tissue and fluid and in vitro assays applying macrophages and peritoneal fibroblasts indicated that this effect was cooperatively mediated by various putatively HIF-1α-dependent mechanisms, comprising attenuated pro-inflammatory activation of macrophages, impaired recruitment and activation of peritoneal fibroblasts, mitigated epithelial-mesenchymal-transition (EMT), as well as enhanced fibrinolysis and impaired angiogenesis. Thus, this study identifies prevention of postsurgical peritoneal adhesions as a novel and promising field for the application of HIF inhibitors in clinical practice.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alina S Ritter
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.,Cancer Immunology, Genentech, Inc., South San Francisco, USA
| | - Vanessa M Opitz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Marvin Biller
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Julian Wehrmann
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ulrich Keppler
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jana Scheer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Markus Wallwiener
- Department of General Gynaecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
42
|
Decaluwé K, Pauwels B, Boydens C, Thoonen R, Buys ES, Brouckaert P, Van de Voorde J. Erectile Dysfunction in Heme-Deficient Nitric Oxide-Unresponsive Soluble Guanylate Cyclase Knock-In Mice. J Sex Med 2017; 14:196-204. [PMID: 28161078 DOI: 10.1016/j.jsxm.2016.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The nitric oxide (NO), soluble guanylate cyclase (sGC), and cyclic guanosine monophosphate (cGMP) pathway is the leading pathway in penile erection. AIM To assess erectile function in a mouse model in which sGC is deficient in heme (apo-sGC) and unresponsive to NO. METHODS Mutant mice (sGCβ1ki/ki) that express an sGC enzyme that retains basal activity but fails to respond to NO because of heme deficiency (apo-sGC) were used. Isolated corpora cavernosa from sGCβ1ki/ki and wild-type mice were mounted in vitro for isometric tension recordings in response to sGC-dependent and -independent vasorelaxant agents. In addition, the erectile effects of some of these agents were tested in vivo at intracavernosal injection. MAIN OUTCOME MEASURES In vitro and in vivo recordings of erectile responses in sGCβ1ki/ki and wild-type mice after stimulation with sGC-dependent and -independent vasorelaxant agents. RESULTS NO-induced responses were abolished in sGCβ1ki/ki mice in vitro and in vivo. The ability of the heme-dependent, NO-independent sGC stimulator BAY 41-2272 to relax the corpora cavernosa was markedly attenuated in sGCβ1ki/ki mice. In contrast, the relaxation response to the heme- and NO-independent sGC activator BAY 58-2667 was significantly enhanced in sGCβ1ki/ki mice. The relaxing effect of sGC-independent vasorelaxant agents was similar in wild-type and sGCβ1ki/ki mice, illustrating that the observed alterations in vasorelaxation are limited to NO-sGC-cGMP-mediated processes. CONCLUSION Our results suggest that sGC is the sole target of NO in erectile physiology. Furthermore, this study provides indirect evidence that, in addition to sGCα1β1, sGCα2β1 is important for erectile function. In addition, the significant relaxation observed in sGCβ1ki/ki mice with the cumulative addition of the sGC activator BAY 58-2667 indicates that sGC activators might offer value in treating erectile dysfunction.
Collapse
Affiliation(s)
- Kelly Decaluwé
- Department of Pharmacology, Ghent University, Ghent, Belgium
| | - Bart Pauwels
- Department of Pharmacology, Ghent University, Ghent, Belgium
| | | | - Robrecht Thoonen
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emmanuel S Buys
- Anesthesia Center for Critical Care Research, Department of Anesthesia and Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, USA
| | - Peter Brouckaert
- Inflammation Research Center, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
43
|
Follmann M, Ackerstaff J, Redlich G, Wunder F, Lang D, Kern A, Fey P, Griebenow N, Kroh W, Becker-Pelster EM, Kretschmer A, Geiss V, Li V, Straub A, Mittendorf J, Jautelat R, Schirok H, Schlemmer KH, Lustig K, Gerisch M, Knorr A, Tinel H, Mondritzki T, Trübel H, Sandner P, Stasch JP. Discovery of the Soluble Guanylate Cyclase Stimulator Vericiguat (BAY 1021189) for the Treatment of Chronic Heart Failure. J Med Chem 2017; 60:5146-5161. [PMID: 28557445 DOI: 10.1021/acs.jmedchem.7b00449] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first-in-class soluble guanylate cyclase (sGC) stimulator riociguat was recently introduced as a novel treatment option for pulmonary hypertension. Despite its outstanding pharmacological profile, application of riociguat in other cardiovascular indications is limited by its short half-life, necessitating a three times daily dosing regimen. In our efforts to further optimize the compound class, we have uncovered interesting structure-activity relationships and were able to decrease oxidative metabolism significantly. These studies resulting in the discovery of once daily sGC stimulator vericiguat (compound 24, BAY 1021189), currently in phase 3 trials for chronic heart failure, are now reported.
Collapse
Affiliation(s)
- Markus Follmann
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Jens Ackerstaff
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Gorden Redlich
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Frank Wunder
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Dieter Lang
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Armin Kern
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Peter Fey
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Nils Griebenow
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Walter Kroh
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | | | - Axel Kretschmer
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Volker Geiss
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Volkhart Li
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Alexander Straub
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | | | - Rolf Jautelat
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Hartmut Schirok
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | | | - Klemens Lustig
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Michael Gerisch
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Andreas Knorr
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Hanna Tinel
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Thomas Mondritzki
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Hubert Trübel
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Peter Sandner
- Drug Discovery, Bayer AG , Aprather Weg 18a, 42113 Wuppertal, Germany
| | | |
Collapse
|
44
|
Riociguat in PAH and CTEPH: Strategies for Patient Management. Pulm Ther 2017. [DOI: 10.1007/s41030-017-0029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
45
|
Individual dose adjustment of riociguat in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Respir Med 2017; 129:124-129. [PMID: 28732819 DOI: 10.1016/j.rmed.2017.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/13/2017] [Accepted: 05/13/2017] [Indexed: 12/18/2022]
Abstract
Riociguat is a soluble guanylate cyclase stimulator that has been approved for the treatment of pulmonary arterial hypertension and inoperable chronic thromboembolic pulmonary hypertension or persistent/recurrent pulmonary hypertension following pulmonary endarterectomy. Riociguat is administered using an 8-week individual dose-adjustment scheme whereby a patient initially receives riociguat 1.0 mg three times daily (tid), and the dose is then increased every 2 weeks in the absence of hypotension, indicated by systolic blood pressure measurements and symptoms, up to a maximum dose of 2.5 mg tid. The established riociguat dose-adjustment scheme allows the dose of riociguat to be individually optimized in terms of tolerability and efficacy. The majority of patients in the phase III clinical trials and their long-term extension phases achieved the maximum riociguat dose, whereas some patients remained on lower doses. There is evidence that these patients may experience benefits at riociguat doses lower than 2.5 mg tid, with improvement in exercise capacity being observed after only 2-4 weeks of treatment in the phase III studies and in the exploratory 1.5 mg-maximum patient group of PATENT-1. This review aims to provide an overview of the rationale behind the riociguat dose-adjustment scheme and examine its application to both clinical trials and real-life clinical practice.
Collapse
|
46
|
Lian TY, Jiang X, Jing ZC. Riociguat: a soluble guanylate cyclase stimulator for the treatment of pulmonary hypertension. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1195-1207. [PMID: 28458514 PMCID: PMC5402909 DOI: 10.2147/dddt.s117277] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite advances in treatments and improved survival, patients with pulmonary hypertension still experience poor exercise and functional capacity, which has a significant detrimental impact on their quality of life. The nitric oxide (NO)–soluble guanylate cyclase (sGC)–cyclic guanosine 3′,5′-monophosphate (cGMP) pathway has been shown to play an important role in cardiovascular physiology, especially in vasodilation and pulmonary vascular tone. The oral sGC stimulator riociguat has a dual mode of action on the NO–sGC–cGMP pathway: direct stimulation of sGC independent of NO and indirect simulation via sensitization of sGC to endogenous NO. Riociguat is now licensed in >50 countries worldwide, including in Europe, the USA, Canada, and Japan. Approval for the treatment of pulmonary arterial hypertension (PAH) was based on Phase III data from the PATENT studies, in which riociguat significantly improved exercise capacity, pulmonary vascular resistance, a range of secondary end points, and hemodynamic parameters in patients with symptomatic PAH. In the Phase III CHEST studies, riociguat consistently improved exercise capacity in patients with inoperable chronic thromboembolic pulmonary hypertension (CTEPH) or persistent/recurrent CTEPH after pulmonary endarterectomy and is now the only drug to be approved for this indication. Riociguat was well tolerated in long-term studies of PAH and CTEPH. This review describes the role of the NO–sGC–cGMP pathway in the pathophysiology of pulmonary hypertension, and reviews the clinical efficacy and safety of riociguat in patients with PAH and inoperable or persistent/recurrent CTEPH. Based on its demonstrated efficacy and established safety profile, riociguat is a promising treatment option for patients with PAH and CTEPH.
Collapse
Affiliation(s)
- Tian-Yu Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Jiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhi-Cheng Jing
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
47
|
Bioelectrochemical monitoring of soluble guanylate cyclase inhibition by the natural β-carboline canthin-6-one. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
48
|
Sharina IG, Martin E. The Role of Reactive Oxygen and Nitrogen Species in the Expression and Splicing of Nitric Oxide Receptor. Antioxid Redox Signal 2017; 26:122-136. [PMID: 26972233 PMCID: PMC7061304 DOI: 10.1089/ars.2016.6687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO)-dependent signaling is critical to many cellular functions and physiological processes. Soluble guanylyl cyclase (sGC) acts as an NO receptor and mediates the majority of NO functions. The signaling between NO and sGC is strongly altered by reactive oxygen and nitrogen species. Recent Advances: Besides NO scavenging, sGC is affected by oxidation/loss of sGC heme, oxidation, or nitrosation of cysteine residues and phosphorylation. Apo-sGC or sGC containing oxidized heme is targeted for degradation. sGC transcription and the stability of sGC mRNA are also affected by oxidative stress. CRITICAL ISSUES Studies cited in this review suggest the existence of compensatory processes that adapt cellular processes to diminished sGC function under conditions of short-term or moderate oxidative stress. Alternative splicing of sGC transcripts is discussed as a mechanism with the potential to both enhance and reduce sGC function. The expression of α1 isoform B, a functional and stable splice variant of human α1 sGC subunit, is proposed as one of such compensatory mechanisms. The expression of dysfunctional splice isoforms is discussed as a contributor to decreased sGC function in vascular disease. FUTURE DIRECTIONS Targeting the process of sGC splicing may be an important approach to maintain the composition of sGC transcripts that are expressed in healthy tissues under normal conditions. Emerging new strategies that allow for targeted manipulations of RNA splicing offer opportunities to use this approach as a preventive measure and to control the composition of sGC splice isoforms. Rational management of expressed sGC splice forms may be a valuable complementary treatment strategy for existing sGC-directed therapies. Antioxid. Redox Signal. 26, 122-136.
Collapse
Affiliation(s)
- Iraida G Sharina
- 1 Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center in Houston Medical School , Houston, Texas
| | - Emil Martin
- 1 Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center in Houston Medical School , Houston, Texas.,2 School of Science and Technology, Nazarbayev University , Astana, Kazakhstan
| |
Collapse
|
49
|
Benza R, Mathai S, Nathan SD. sGC stimulators: Evidence for riociguat beyond groups 1 and 4 pulmonary hypertension. Respir Med 2017; 122 Suppl 1:S28-S34. [DOI: 10.1016/j.rmed.2016.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/10/2016] [Accepted: 11/13/2016] [Indexed: 01/03/2023]
|
50
|
Galiè N, Grimminger F, Grünig E, Hoeper MM, Humbert M, Jing ZC, Keogh AM, Langleben D, Rubin LJ, Fritsch A, Davie N, Ghofrani HA. Comparison of hemodynamic parameters in treatment-naïve and pre-treated patients with pulmonary arterial hypertension in the randomized phase III PATENT-1 study. J Heart Lung Transplant 2016; 36:509-519. [PMID: 28190787 DOI: 10.1016/j.healun.2016.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Detailed hemodynamic data from the phase III PATENT-1 study of riociguat in patients with pulmonary arterial hypertension (PAH) were investigated. METHODS Patients with PAH who were treatment naïve or pre-treated with endothelin receptor antagonists or non-intravenous prostanoids were randomly assigned to riociguat up to 2.5 mg 3 times a day or placebo. Hemodynamic parameters were assessed at baseline and week 12. RESULTS Riociguat significantly decreased pulmonary vascular resistance in treatment-naïve (n = 221; least squares [LS] mean difference -266 dyne∙sec∙cm-5 [95% confidence interval (CI) -357 to -175; p < 0.0001]) and pre-treated (n = 222; LS mean difference -186 dyne∙sec ∙cm-5 [95% CI -252 to -120; p < 0.0001]) patients and significantly increased cardiac index (LS mean difference +0.7 [95% CI 0.5 to 0.8] and +0.5 [95% CI 0.3 to 0.7], respectively [both p < 0.0001]). Mean pulmonary artery pressure (p = 0.0056 and p = 0.0019 for treatment-naïve and pre-treated patients, respectively), mean arterial pressure (both p < 0.0001), and systemic vascular resistance (both p < 0.0001) were significantly reduced, and there was an increase in mixed venous oxygen saturation (p < 0.0001 and p = 0.0004, respectively). Results were similar in patients pre-treated with endothelin receptor antagonists and patients pre-treated with non-intravenous prostanoids. Improvements in 6-minute walking distance correlated very weakly with improvements in pulmonary vascular resistance (r = -0.21 [95% CI -0.30 to -0.11; p < 0.0001]) and cardiac index (r = 0.16 [95% CI 0.06 to 0.25; p < 0.0016]). CONCLUSIONS Riociguat significantly improved hemodynamic parameters in pre-treated and treatment-naïve patients with PAH.
Collapse
Affiliation(s)
- Nazzareno Galiè
- Department of Experimental, Diagnostic, and Specialty Medicine-DIMES, Bologna University Hospital, Bologna, Italy.
| | - Friedrich Grimminger
- University of Giessen and Marburg Lung Center, member of German Center for Lung Research, Giessen, Germany
| | - Ekkehard Grünig
- Centre for Pulmonary Hypertension, Thoraxclinic, University Hospital Heidelberg, Heidelberg, Germany
| | - Marius M Hoeper
- Clinic for Respiratory Medicine, Hannover Medical School, member of German Center for Lung Research, Hannover, Germany
| | - Marc Humbert
- Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et Innovation Thérapeutique, and Institut National de la Santé et de la Recherche Médicale Unité 999, Le Kremlin-Bicêtre, France
| | - Zhi-Cheng Jing
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Anne M Keogh
- Heart Transplant Unit, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - David Langleben
- Center for Pulmonary Vascular Disease and Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Lewis J Rubin
- Pulmonary and Critical Care Division, University of California, San Diego, La Jolla, California
| | - Arno Fritsch
- Global Clinical Development, Bayer Pharma AG, Wuppertal, Germany
| | - Neil Davie
- Global Clinical Development, Bayer Pharma AG, Wuppertal, Germany
| | - Hossein-Ardeschir Ghofrani
- University of Giessen and Marburg Lung Center, member of German Center for Lung Research, Giessen, Germany; Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|