1
|
Gao G, Yang D, Hu L, Jia L, Niu D. Molecular and physiological characterizations of razor clam (Sinonovacula constricta) aquaporin genes AQP4 and AQP10 in response to low-salinity tolerance. Comp Biochem Physiol A Mol Integr Physiol 2025; 303:111827. [PMID: 39978751 DOI: 10.1016/j.cbpa.2025.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Aquaporins (AQPs) are a family of membrane proteins responsible for the selective transport of water molecules and other neutral metabolic substances across cell membranes. These proteins play a crucial role in osmoregulation, enabling marine bivalves to accommodate salinity fluctuations. However, the regulatory mechanism of AQPs in the razor clam (Sinonovacula constricta) under salinity stress remain unclear. In this study, we investigated the roles of two classical AQP genes, Classical aquaporins ScAQP4 and aquaglyceroporin ScAQP10, in response to hypotonic stress in S. constricta. ScAQP4 and ScAQP10 are hydrophobic proteins with six transmembrane domains and a highly conserved MIP structural motif. Upon acute hyposaline challenges, the expression of ScAQP4 and ScAQP10 in gills exhibited a significant increase in responses to low-salinity stress initially, followed by a gradual osmotic rebalance. To further investigate their biological functions, we conducted dsRNA interference to knockdown the expression levels of ScAQP4 and ScAQP10 in gill tissues and assessed the following physiological alternations. The knockdown of ScAQP4 and ScAQP10 resulted in a significant increase in heart rate and apoptosis and severe cellular damage of gills. These findings highlighted the critical roles of ScAQP4 and ScAQP10 in maintaining the osmotic balance of S. constricta. Collectively, these results propose a mechanism by which S. constricta regulates the expression of AQPs to accommodate salinity variations in the natural habitat.
Collapse
Affiliation(s)
- Geqi Gao
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Dong Yang
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Linyun Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liang Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Donghong Niu
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Ullah G, Nisar M, Rehman FU, Paree Paker N, Hussain Munis MF, Chaudhary HJ. Mitigating maize stalk rot disease: harnessing Bacillus subtilis PM57 and Bacillus cereus PM38 as biocontrol allies against Erwiniacarotovora. Microb Pathog 2025; 205:107556. [PMID: 40254077 DOI: 10.1016/j.micpath.2025.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
Maize bacterial stalk rot, caused by Erwinia carotovora pv. zeae (EC) is a significant threat to maize production, and applicable biocontrol measures are lacking. This study aims to identify a potent biocontrol agent against Erwinia carotovora and enhance plant growth under stress conditions. Thirty strains were screened using the agar plate well diffusion method. Strains PM57 and PM38 exhibited the highest antagonistic activity, forming inhibition zones of 5.0 and 4.51 mm, while distilled water served as a control with no inhibition. Their cell-free supernatants (CFSs) also demonstrated strong antagonistic activity with the maximum inhibition zones of 7.0 and 5.5 mm. The minimum inhibitory concentration of cell-free supernatants from both strains was 50 μg/ml. PM57 was identified as Bacillus subtilis via 16S rRNA gene sequencing. FTIR analysis revealed functional groups, including sulfonates, carbohydrates, proteins, and polyphenols in PM38, while PM57 exhibited peaks related to C-N stretching and aliphatic primary amine. GC-MS analysis identified twenty-six bioactive compounds known for their biological and medicinal properties, including tert-butyl phenol compounds, hydrocarbons, aldehydes, benzoquinones, pyrroles, and terpenes. Both inoculants produced volatile metabolites that effectively inhibited Erwinia carotovora growth in vitro. A greenhouse study revealed that PM57 reduced stalk rot disease incidence by 76.83 %, while PM38 reduced it by 74.94 %. The application of both inoculants enhanced chlorophyll activity; PM57 increased plant-growth by 11 %, and PM38 by 6 % and improved pathogen stress tolerance in maize seedlings compared to the positive control. These results demonstrate the potential of PM57 and PM38 as effective biocontrol agents for sustainable maize cultivation.
Collapse
Affiliation(s)
- Ghufran Ullah
- Department of Plant Science, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Maleeha Nisar
- Department of Plant Science, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Fazal Ur Rehman
- Department of Plant Science, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Najeeba Paree Paker
- Department of Plant Science, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | | | - Hassan Javed Chaudhary
- Department of Plant Science, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| |
Collapse
|
3
|
Nagashima A, Nagai N, Ota C, Ushio K, Kato A. Retention and pseudogenization of aquaporin-10 in Rodentia. Biochem Biophys Res Commun 2025; 756:151608. [PMID: 40086358 DOI: 10.1016/j.bbrc.2025.151608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Vertebrates exhibit diversity in the presence and number of aquaporin (Aqp)-10 genes. In Rodentia, mice possess an Aqp10 pseudogene, whereas guinea pigs possess an intact Aqp10. However, Aqp10 retention and pseudogenization history in various rodent lineages remains unclear. Therefore, in this study, we aimed to investigate the molecular evolution of Aqp10 using the recent increasingly decoded rodent genome sequences. We analyzed Aqp10 in the genomes of 43 rodent species belonging to 14 families and found that Aqp10 was pseudogenized in 13 species of three families in the Myomorpha suborder. In contrast, a single intact Aqp10 was retained in the other 30 rodent species, with no Aqp10 pseudogene found in the Castorimorpha, Hystricomorpha, and Sciuromorpha suborders. Additionally, we investigated the tissue expression levels of aquaglyceroporin genes in guinea pigs and rats via reverse transcription-polymerase chain reaction and detected Aqp10 expression in the guinea pig intestines. Notably, none of the examined rat organs expressed Aqp10; however, Aqp7 was expressed in the rat intestines. In situ hybridization showed that guinea pig Aqp10 was expressed in the intestinal epithelial cells. Moreover, AQP10 was permeable to water, glycerol, urea, and boric acid in Xenopus oocytes. Overall, these results clarify the Aqp10 pseudogenization history in Rodentia and suggest guinea pigs as excellent small animal models to analyze the intestinal AQP10 functions.
Collapse
Affiliation(s)
- Ayumi Nagashima
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| | - Nodoka Nagai
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Chihiro Ota
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kazutaka Ushio
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Akira Kato
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
4
|
Xiang Y, Sun J, Ma G, Dai X, Meng Y, Fu C, Zhang Y, Zhao Q, Li J, Zhang S, Zheng Z, Li X, Fu L, Li K, Qi X. Integrating Multi-Omics Data to Identify Key Functional Variants Affecting Feed Efficiency in Large White Boars. Genes (Basel) 2024; 15:980. [PMID: 39202341 PMCID: PMC11353296 DOI: 10.3390/genes15080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Optimizing feed efficiency through the feed conversion ratio (FCR) is paramount for economic viability and sustainability. In this study, we integrated RNA-seq, ATAC-seq, and genome-wide association study (GWAS) data to investigate key functional variants associated with feed efficiency in pigs. Identification of differentially expressed genes in the duodenal and muscle tissues of low- and high-FCR pigs revealed that pathways related to digestion of dietary carbohydrate are responsible for differences in feed efficiency between individuals. Differential open chromatin regions identified by ATAC-seq were linked to genes involved in glycolytic and fatty acid processes. GWAS identified 211 significant single-nucleotide polymorphisms associated with feed efficiency traits, with candidate genes PPP1R14C, TH, and CTSD. Integration of duodenal ATAC-seq data and GWAS data identified six key functional variants, particularly in the 1500985-1509676 region on chromosome 2. In those regions, CTSD was found to be highly expressed in the duodenal tissues of pigs with a high feed conversion ratio, suggesting its role as a potential target gene. Overall, the integration of multi-omics data provided insights into the genetic basis of feed efficiency, offering valuable information for breeding more efficient pig breeds.
Collapse
Affiliation(s)
- Yue Xiang
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.X.); (Y.M.); (J.L.); (S.Z.); (K.L.)
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Jiahui Sun
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Guojian Ma
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Xueting Dai
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Yuan Meng
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.X.); (Y.M.); (J.L.); (S.Z.); (K.L.)
| | - Chong Fu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Yan Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Qiulin Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Jingjin Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.X.); (Y.M.); (J.L.); (S.Z.); (K.L.)
| | - Saixian Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.X.); (Y.M.); (J.L.); (S.Z.); (K.L.)
| | - Zhuqing Zheng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Liangliang Fu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Kui Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.X.); (Y.M.); (J.L.); (S.Z.); (K.L.)
| | - Xiaolong Qi
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.X.); (Y.M.); (J.L.); (S.Z.); (K.L.)
| |
Collapse
|
5
|
Lan Q, Li J, Zhang H, Zhou Z, Fang Y, Yang B. Mechanistic complement of autosomal dominant polycystic kidney disease: the role of aquaporins. J Mol Med (Berl) 2024; 102:773-785. [PMID: 38668786 DOI: 10.1007/s00109-024-02446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Autosomal dominant polycystic kidney disease is a genetic kidney disease caused by mutations in the genes PKD1 or PKD2. Its course is characterized by the formation of progressively enlarged cysts in the renal tubules bilaterally. The basic genetic explanation for autosomal dominant polycystic kidney disease is the double-hit theory, and many of its mechanistic issues can be explained by the cilia doctrine. However, the precise molecular mechanisms underpinning this condition's occurrence are still not completely understood. Experimental evidence suggests that aquaporins, a class of transmembrane channel proteins, including aquaporin-1, aquaporin-2, aquaporin-3, and aquaporin-11, are involved in the mechanism of autosomal dominant polycystic kidney disease. Aquaporins are either a potential new target for the treatment of autosomal dominant polycystic kidney disease, and further study into the physiopathological role of aquaporins in autosomal dominant polycystic kidney disease will assist to clarify the disease's pathophysiology and increase the pool of potential treatment options. We primarily cover pertinent findings on aquaporins in autosomal dominant polycystic kidney disease in this review.
Collapse
Affiliation(s)
- Qiumei Lan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Jie Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Hanqing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zijun Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Yaxuan Fang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Bo Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
- Department of Nephrology, The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No.88, Changling Road, Xiqing District, Tianjin, 300193, China.
| |
Collapse
|
6
|
Bhattacharjee A, Jana A, Bhattacharjee S, Mitra S, De S, Alghamdi BS, Alam MZ, Mahmoud AB, Al Shareef Z, Abdel-Rahman WM, Woon-Khiong C, Alexiou A, Papadakis M, Ashraf GM. The role of Aquaporins in tumorigenesis: implications for therapeutic development. Cell Commun Signal 2024; 22:106. [PMID: 38336645 PMCID: PMC10854195 DOI: 10.1186/s12964-023-01459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Abstract
Aquaporins (AQPs) are ubiquitous channel proteins that play a critical role in the homeostasis of the cellular environment by allowing the transit of water, chemicals, and ions. They can be found in many different types of cells and organs, including the lungs, eyes, brain, glands, and blood vessels. By controlling the osmotic water flux in processes like cell growth, energy metabolism, migration, adhesion, and proliferation, AQPs are capable of exerting their regulatory influence over a wide range of cellular processes. Tumour cells of varying sources express AQPs significantly, especially in malignant tumours with a high propensity for metastasis. New insights into the roles of AQPs in cell migration and proliferation reinforce the notion that AQPs are crucial players in tumour biology. AQPs have recently been shown to be a powerful tool in the fight against pathogenic antibodies and metastatic cell migration, despite the fact that the molecular processes of aquaporins in pathology are not entirely established. In this review, we shall discuss the several ways in which AQPs are expressed in the body, the unique roles they play in tumorigenesis, and the novel therapeutic approaches that could be adopted to treat carcinoma.
Collapse
Affiliation(s)
- Arkadyuti Bhattacharjee
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, USA
| | - Ankit Jana
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Swagato Bhattacharjee
- KoshKey Sciences Pvt Ltd, Canara Bank Layout, Karnataka, Bengaluru, Rajiv Gandhi Nagar, Kodigehalli, 560065, India
| | - Sankalan Mitra
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Swagata De
- Department of English, DDE Unit, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Zubair Alam
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Almadinah, Almunwarah, 71491, Saudi Arabia
| | - Zainab Al Shareef
- College of Medicine, and Research Institute for Medical and Health Sciences, Department of Basic Medical Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Wael M Abdel-Rahman
- College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Chan Woon-Khiong
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Wien, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Ghulam Md Ashraf
- College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
7
|
Ichikawa R, Takeda T, Kakigi A, Ito H, Kobayashi T, Hyodo M. Expression of AQP-10, -11 and -12 in the rat stria vascularis. Acta Otolaryngol 2024; 144:96-99. [PMID: 38511591 DOI: 10.1080/00016489.2024.2329286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Water homeostasis is essential for inner ear function. Several aquaporins (AQPs), which are water transport proteins in the cell or plasma membrane, have been reported in the lateral wall of the rat inner ear (cochlea). However, the presence of AQP-10, -11 and -12 has not been reported in the rat stria vascularis (SV) to date. AIMS/OBJECTIVES We have aimed to clarify the expression of AQP-10, -11 and -12 in the cochlea lateral wall. MATERIALS AND METHODS Using Wistar rats, we examined the expression of AQP-10, -11 and -12 in the cochlea lateral wall using molecular approaches and immunohistochemistry. RESULTS AQP-11 was molecular biologically expressed, but the expression of AQP-10 and -12 was not observed. Immunohistochemically, AQP-11 was diffusely localized in the basal cells and marginal cells of the rat SV but was not expressed at the apical site of marginal cells with double staining. The expression of AQP-10 and -12 was not observed. CONCLUSIONS AND SIGNIFICANCE Only AQP-11 was expressed in the basal cells and marginal cells, but it was not expressed at the apical site of marginal cells. Based on this study, AQP-11 may not have an important role in water flux between the perilymph and endolymph.
Collapse
Affiliation(s)
- Rie Ichikawa
- Department of Otolaryngology, Kochi Medical School, Nankoku, Japan
- Department of Otolaryngology, Niyodo Hospital, Ino, Japan
| | - Taizo Takeda
- Department of Otolaryngology, Kochi Medical School, Nankoku, Japan
| | - Akinobu Kakigi
- Department of Otolaryngology-Head & Neck Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Hiroaki Ito
- Department of Otolaryngology, Kochi Medical School, Nankoku, Japan
| | | | - Masamitsu Hyodo
- Department of Otolaryngology, Kochi Medical School, Nankoku, Japan
| |
Collapse
|
8
|
Kara H, Tekiner D. Distributions and expressions of Aquaporin-5 and 7 in the testes of developing male chicks. Anat Histol Embryol 2024; 53:e12978. [PMID: 37792899 DOI: 10.1111/ahe.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/16/2023] [Accepted: 09/10/2023] [Indexed: 10/06/2023]
Abstract
Aquaporins (AQPs) are integral membrane proteins that act as water channels for which a total of 13 orthologs of AQP genes in birds have been reported. Tissue expression and cellular or subcellular localization of AQPs have been poorly investigated in the male reproductive system of birds. We aimed to determine the distribution and localization of AQP5 and AQP7 proteins by immunocytochemistry in testicular tissues obtained from developing chicks (14, 21, 28, 35 and 42 days old). Totally 175 male chicks (Ross 308) were used in the study from which testicular tissue was removed, fixed in 10% formaldehyde solution, then embedded in paraffin blocks. Five μm sections were cut, mounted on poly-L-lysine slides, dried in an oven, then dehydrated using standard immunohistochemistry staining protocol. The sections were imaged with a Nikon Eclipse 50i trinocular light microscope. Immunohistochemical evaluation of the immune reactivity of AQP5 revealed a positive immune reaction in spermatocytes and interstitial areas of the testes in 14-day-old chicks. Testicular tissue AQP5 immune reactivity was observed in the tubule and the interstitial regions of 21-, 28-, 35- and 42-day-old chicks. AQP7 immune reactions were determined in the tubule and interstitial areas testes of developing chicks' testis tissue, with increasing positivity corresponding to older age. The expression of AQP5 and AQP7 appears to be species-specific due to differences in localization and expression in male chicks compared with studies of other mammals, which is likely to play an important role in regulating fluid and sperm volume. This research can serve as a base for future studies that will contribute to the understanding of the male genital system of AQPs.
Collapse
Affiliation(s)
- Hülya Kara
- Veterinary Faculty, Department of Anatomy, Atatürk University, Erzurum, Turkey
| | - Deniz Tekiner
- Veterinary Faculty, Department of Histology and Embryology, Atatürk University, Erzurum, Turkey
| |
Collapse
|
9
|
Importance of Water Transport in Mammalian Female Reproductive Tract. Vet Sci 2023; 10:vetsci10010050. [PMID: 36669051 PMCID: PMC9865491 DOI: 10.3390/vetsci10010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are involved in water homeostasis in tissues and are ubiquitous in the reproductive tract. AQPs are classified into classical aquaporins (AQP0, 1, 2, 4, 5, 6 and 8), aquaglycerolporins (AQP3, 7, 9, and 10) and superaquaporins (AQP11 and 12). Nine AQPs were described in the mammalian female reproductive tract. Some of their functions are influenced by sexual steroid hormones. The continuous physiological changes that occur throughout the sexual cycle, pregnancy and parturition, modify the expression of AQPs, thus creating at every moment the required water homeostasis. AQPs in the ovary regulate follicular development and ovulation. In the vagina and the cervix, AQPs are involved mainly in lubrication. In the uterus, AQPs are mostly mediated by estradiol and progesterone to prepare the endometrium for possible embryo implantation and fetal development. In the placenta, AQPs are responsible for the fluid support to the fetus to maintain fetal homeostasis that ensures correct fetal development as pregnancy goes on. This review is focused on understanding the role of AQPs in the mammalian female reproductive tract during the sexual cycle of pregnancy and parturition.
Collapse
|
10
|
Abulizi A, Dawuti A, Yang B. Aquaporins in Tumor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:303-315. [PMID: 36717503 DOI: 10.1007/978-981-19-7415-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent researches have demonstrated that aquaporins (AQPs), including water-selective channels, aquaglyceroporins and superaquaporins, are generally expressed in various tumors, such as lung, colorectal, liver, brain, breast tumors, etc. Therefore, it is imperative to study the accurate relationship between AQPs and tumor, which may provide innovative approaches to treat and prevent tumor development. In this chapter, we mainly reviewed the expression and pathophysiological function of AQPs in tumor, and summarize recent work on AQPs in tumor. Although, the underlying mechanism of AQP in tumor is not very clear, growing evidences suggest that cell migration, adhesion, angiogenesis, and division contribute to tumor development, in which AQPs might be involved. Therefore, it is still necessary to conduct further studies to determine the specific roles of AQPs in the tumor.
Collapse
Affiliation(s)
- Abudumijiti Abulizi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China.
| | - Awaguli Dawuti
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Ye Y, Ran J, Yang B, Mei Z. Aquaporins in Digestive System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:145-154. [PMID: 36717492 DOI: 10.1007/978-981-19-7415-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this chapter, we mainly discuss the expression and function of aquaporins (AQPs) expressed in digestive system. AQPs are highly conserved transmembrane protein responsible for water transport across cell membranes. AQPs in gastrointestinal tract include four members of aquaporin subfamily: AQP1, AQP4, AQP5, and AQP8, and three members of aquaglyceroporin subfamily: AQP3, AQP7, and AQP10. In the digestive glands, especially the liver, we discuss four members of aquaporin subfamily: AQP1, AQP4, AQP5, and AQP8, three members of aquaglyceroporin subfamily: AQP7, AQP9, and AQP12. In digestive system, the abnormal expression of AQPs is closely related to the occurrence and development of a variety of diseases. AQP1 is involved in saliva secretion and fat digestion and is closely related to gastric cancer and chronic liver disease; AQP3 is involved in the diarrhea and inflammatory bowel disease; AQP4 regulates gastric acid secretion and is associated with the development of gastric cancer; AQP5 is relevant to gastric carcinoma cell proliferation and migration; AQP7 is the major aquaglyceroporin in pancreatic β cells; AQP8 plays a role in pancreatic juice secretion and may be a potential target for the treatment of diarrhea; AQP9 plays considerable role in glycerol metabolism and hepatocellular carcinoma; Studies on the function of AQP10 and AQP12 are still limited. Further studies are necessary for specific locations and functions of AQPs in digestive system.
Collapse
Affiliation(s)
- Yuwei Ye
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jianhua Ran
- Department of Anatomy and Neuroscience Center, Chongqing Medical University, Chongqing, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhechuan Mei
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Li M, He M, Xu F, Guan Y, Tian J, Wan Z, Zhou H, Gao M, Chong T. Abnormal expression and the significant prognostic value of aquaporins in clear cell renal cell carcinoma. PLoS One 2022; 17:e0264553. [PMID: 35245343 PMCID: PMC8896691 DOI: 10.1371/journal.pone.0264553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/12/2022] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are a kind of transmembrane proteins that exist in various organs of the human body. AQPs play an important role in regulating water transport, lipid metabolism and glycolysis of cells. Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor of the kidney, and the prognosis is worse than other types of renal cell cancer (RCC). The impact of AQPs on the prognosis of ccRCC and the potential relationship between AQPs and the occurrence and development of ccRCC are demanded to be investigated. In this study, we first explored the expression pattern of AQPs by using Oncomine, UALCAN, and HPA databases. Secondly, we constructed protein-protein interaction (PPI) network and performed function enrichment analysis through STRING, GeneMANIA, and Metascape. Then a comprehensive analysis of the genetic mutant frequency of AQPs in ccRCC was carried out using the cBioPortal database. In addition, we also analyzed the main enriched biological functions of AQPs and the correlation with seven main immune cells. Finally, we confirmed the prognostic value of AQPs throughGEPIA and Cox regression analysis. We found that the mRNA expression levels of AQP0/8/9/10 were up-regulated in patients with ccRCC, while those of AQP1/2/3/4/5/6/7/11 showed the opposite. Among them, the expression differences of AQP1/2/3/4/5/6/7/8/9/11 were statistically significant. The differences in protein expression levels of AQP1/2/3/4/5/6 in ccRCC and normal renal tissues were consistent with the change trends of mRNA. The biological functions of AQPs were mainly concentrated in water transport, homeostasis maintenance, glycerol transport, and intracellular movement of sugar transporters. The high mRNA expression levels of AQP0/8/9 were significantly correlated with worse overall survival (OS), while those of AQP1/4/7 were correlated with better OS. AQP0/1/4/9 were prognostic-related factors, and AQP1/9 were independent prognostic factors. In general, this research has investigated the values of AQPs in ccRCC, which could become new survival markers for ccRCC targeted therapy.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Minxin He
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Fangshi Xu
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yibing Guan
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Juanhua Tian
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Ziyan Wan
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Haibin Zhou
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Mei Gao
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- * E-mail:
| |
Collapse
|
13
|
Molecular Characterization of Aquaporins Genes from the Razor Clam Sinonovacula constricta and Their Potential Role in Salinity Tolerance. FISHES 2022. [DOI: 10.3390/fishes7020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aquaporins (AQPs) play crucial roles in osmoregulation, but the knowledge about the functions of AQPs in Sinonovacula constricta is unclear. In this study, Sc-AQP1, Sc-AQP8, and Sc-AQP11 were identified from S. constricta, and the three Sc-AQPs are highly conserved compared to the known AQPs. The qRT-PCR analysis revealed that the highest mRNA expressions of Sc-AQP1, Sc-AQP8, and Sc-AQP11 were detected in the gill, digestive gland, and adductor muscle, respectively. In addition, the highest mRNA expression of Sc-AQP1 and Sc-AQP11 was detected in the D-shaped larvae stage, whereas that of SC-AQP8 was observed in the umbo larvae stage. The mRNA expression of Sc-AQP1, Sc-AQP8, and Sc-AQP11 significantly increased to 12.45-, 12.36-, and 27.44-folds post-exposure of low salinity (3.5 psu), while only Sc-AQP1 and Sc-AQP11 significantly increased post-exposure of high salinity (35 psu) (p < 0.01). The fluorescence in situ hybridization also showed that the salinity shift led to the boost of Sc-AQP1, Sc-AQP8, and Sc-AQP11 mRNA expression in gill filament, digestive gland, and adductor muscle, respectively. Knockdown of the Sc-AQP1 and Sc-AQP8 led to the decreased osmotic pressure in the hemolymph. Overall, these findings would contribute to the comprehension of the osmoregulation pattern of AQPs in S. constricta.
Collapse
|
14
|
Nutritional and Physiological Regulation of Water Transport in the Conceptus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:109-125. [PMID: 34807439 DOI: 10.1007/978-3-030-85686-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Water transport during pregnancy is essential for maintaining normal growth and development of conceptuses (embryo/fetus and associated membranes). Aquaporins (AQPs) are a family of small integral plasma membrane proteins that primarily transport water across the plasma membrane. At least 11 isoforms of AQPs (AQPs 1-9, 11, and 12) are differentially expressed in the mammalian placenta (amnion, allantois, and chorion), and organs (kidney, lung, brain, heart, and skin) of embryos/fetuses during prenatal development. Available evidence suggests that the presence of AQPs in the conceptus mediates water movement across the placenta to support the placentation, the homeostasis of amniotic and allantoic fluid volumes, as well as embryonic and fetal survival, growth and development. Abundances of AQPs in the conceptus can be modulated by nutritional status and physiological factors affecting the pregnant female. Here, we summarize the effects of maternal dietary factors (such as intakes of protein, arginine, lipids, all-trans retinoic acid, copper, zinc, and mercury) on the expression of AQPs in the conceptus. We also discuss the physiological changes in hormones (e.g., progesterone and estrogen), oxygen supply, nitric oxide, pH, and osmotic pressure associated with the regulation of fluid exchange between mother and fetus. These findings may help to improve the survival, growth, and development of embryo/fetus in livestock species and other mammals (including humans).
Collapse
|
15
|
Traberg-Nyborg L, Login FH, Edamana S, Tramm T, Borgquist S, Nejsum LN. Aquaporin-1 in breast cancer. APMIS 2021; 130:3-10. [PMID: 34758159 DOI: 10.1111/apm.13192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022]
Abstract
The canonical function of aquaporin (AQP) water channels is to facilitate passive transport of water across cellular membranes making them essential in the regulation of body water homeostasis. Moreover, AQPs, including AQP1, have been found to be overexpressed in multiple cancer types, including breast cancer, where AQP1 overexpression is associated with poor prognosis. AQPs have been shown to affect cellular processes associated with cancer progression and spread including cell migration, angiogenesis, and proliferation. Moreover, AQPs can regulate levels of adhesion proteins at cell-cell junctions, a regulatory role, which is still largely unexplored in cancer. Understanding the molecular mechanisms of how AQP1 contributes to breast cancer progression and metastatic processes is essential to establish AQP1 as a biomarker and to develop targeted anticancer treatments for breast cancer patients. This mini-review focuses on the role of AQP1 in breast cancer.
Collapse
Affiliation(s)
- Laura Traberg-Nyborg
- Department of Clinical Medicine, Aarhus University, Aarhus N.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus C
| | | | | | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, Aarhus N.,Department of Pathology, Aarhus University Hospital, Aarhus N
| | - Signe Borgquist
- Department of Clinical Medicine, Aarhus University, Aarhus N.,Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus N
| |
Collapse
|
16
|
Mirabella N, Pelagalli A, Liguori G, Rashedul MA, Squillacioti C. Differential abundances of AQP3 and AQP5 in reproductive tissues from dogs with and without cryptorchidism. Anim Reprod Sci 2021; 228:106735. [PMID: 33744817 DOI: 10.1016/j.anireprosci.2021.106735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/04/2023]
Abstract
Aquaporins (AQPs) are integral transmembrane proteins facilitating transport of water and small solutes, such as glycerol and urea, between cells. In male reproductive tracts, AQPs maintain a milieu conducive for sperm formation, maturation, and storage. The aim of this study was to clarify effects of testicular and epidydimal function on male fertility by investigating localisation and abundances of AQP3 and AQP5 in testes and epididymal segments from dogs with and without unilateral cryptorchidism. Immunohistochemistry results indicated AQP3 and AQP5 have different distribution patterns in reproductive tissues of dogs with and without unilateral cryptorchidism. The AQP3, an aquaglyceroprotein, is present in different germ and Sertoli cells in testis of dogs without cryptorchidism. The AQP5 protein was not detected in germ cells but was present in Sertoli and Leydig cells and in endothelia of blood vessels. In cryptorchid dogs, AQP3 was detected in early-developing germ and Sertoli cells, and AQP5 had a distribution pattern similar to testes of dogs without cryptorchidism. In the epididymis, AQP3 and AQP5 were localised in epithelial cells of dogs with and without cryptorchidism in a cell-specific manner. The AQP3 and AQP5 protein was in larger abundance in the gonads from dogs with and without cryptorchidism. In contrast, AQP3 and AQP5 abundance increased in each segment of the cryptorchid epididymis, likely as a compensatory mechanism associated with the pathologic condition. These results indicate involvement of AQP3 and AQP5 in spermatogenesis and sperm maturation. Results from the present study indicate dogs are a useful for comparative reproductive biology studies.
Collapse
Affiliation(s)
- Nicola Mirabella
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino 1, 80137, Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy; Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131, Naples, Italy
| | - Giovanna Liguori
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino 1, 80137, Naples, Italy.
| | - Mohammad Alam Rashedul
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology Justus Liebig University Giessen, Aulweg 123, 35385, Giessen, Germany
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino 1, 80137, Naples, Italy
| |
Collapse
|
17
|
Chow PH, Bowen J, Yool AJ. Combined Systematic Review and Transcriptomic Analyses of Mammalian Aquaporin Classes 1 to 10 as Biomarkers and Prognostic Indicators in Diverse Cancers. Cancers (Basel) 2020; 12:E1911. [PMID: 32679804 PMCID: PMC7409285 DOI: 10.3390/cancers12071911] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Aquaporin (AQP) channels enable regulated transport of water and solutes essential for fluid homeostasis, but they are gaining attention as targets for anticancer therapies. Patterns of AQP expression and survival rates for patients were evaluated by systematic review (PubMed and Embase) and transcriptomic analyses of RNAseq data (Human Protein Atlas database). Meta-analyses confirmed predominantly negative associations between AQP protein and RNA expression levels and patient survival times, most notably for AQP1 in lung, breast and prostate cancers; AQP3 in esophageal, liver and breast cancers; and AQP9 in liver cancer. Patterns of AQP expression were clustered for groups of cancers and associated with risk of death. A quantitative transcriptomic analysis of AQP1-10 in human cancer biopsies similarly showed that increased transcript levels of AQPs 1, 3, 5 and 9 were most frequently associated with poor survival. Unexpectedly, increased AQP7 and AQP8 levels were associated with better survival times in glioma, ovarian and endometrial cancers, and increased AQP11 with better survival in colorectal and breast cancers. Although molecular mechanisms of aquaporins in pathology or protection remain to be fully defined, results here support the hypothesis that overexpression of selected classes of AQPs differentially augments cancer progression. Beyond fluid homeostasis, potential roles for AQPs in cancers (suggested from an expanding appreciation of their functions in normal tissues) include cell motility, membrane process extension, transport of signaling molecules, control of proliferation and apoptosis, increased mechanical compliance, and gas exchange. AQP expression also has been linked to differences in sensitivity to chemotherapy treatments, suggesting possible roles as biomarkers for personalized treatments. Development of AQP pharmacological modulators, administered in cancer-specific combinations, might inspire new interventions for controlling malignant carcinomas.
Collapse
Affiliation(s)
| | | | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia; (P.H.C.); (J.B.)
| |
Collapse
|
18
|
Matafonova G, Batoev V. Review on low- and high-frequency sonolytic, sonophotolytic and sonophotochemical processes for inactivating pathogenic microorganisms in aqueous media. WATER RESEARCH 2019; 166:115085. [PMID: 31539667 DOI: 10.1016/j.watres.2019.115085] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 05/28/2023]
Abstract
Ultraviolet and ultrasound-based advanced oxidation processes (AOPs) are gaining considerable research attention for water treatment and disinfection. Compared to low-frequency ultrasound (LFUS, <100 kHz), high-frequency ultrasound (HFUS, >100 kHz and MHz range) for water disinfection remains much less investigated. The present review aims at surveying and discussing literature data on microbial inactivation in non-food aqueous media using HFUS alone and with AOPs. More specifically, the review covers sonophotolytic (US/UV) processes under sequential and simultaneous modes as well as sonophotochemical processes, where both low and high frequencies were applied. Addressing a state-of-the-art biomedical research, we have attempted to provide more insight into mechanical and sonochemical mechanisms of inactivation under ultrasonic exposure. Sonoporation, intracellular generation of reactive oxygen species (ROS), energy stimulation of aquaporins to deliver ROS, and injection of extracellular ROS into sonoporated cells have all been identified as primary ways of inactivation. Application of ultrasound in the 0.2-2 MHz range and mercury-free light sources to support the Minamata Convention on Mercury is an ongoing challenge for effective elimination of microbial pathogens from water and wastewater through sonophotolytic and sonophotochemical AOPs.
Collapse
Affiliation(s)
- Galina Matafonova
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russia.
| | - Valeriy Batoev
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russia
| |
Collapse
|
19
|
Abstract
Aquaporins are integral membrane proteins that facilitate the diffusion of water and other small, uncharged solutes across the cellular membrane and are widely distributed in organisms from humans to bacteria. However, the characteristics of prokaryotic aquaporins remain largely unknown. We investigated the distribution and sequence characterization of aquaporins in prokaryotic organisms and summarized the transport characteristics, physiological functions, and regulatory mechanisms of prokaryotic aquaporins. Aquaporin homologues were identified in 3315 prokaryotic genomes retrieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, but the protein clustering pattern is not completely congruent with the phylogeny of the species that carry them. Moreover, prokaryotic aquaporins display diversified aromatic/arginine constriction region (ar/R) amino acid compositions, implying multiple functions. The typical water and glycerol transport characterization, physiological functions, and regulations have been extensively studied in Escherichia coli AqpZ and GlpF. A Streptococcus aquaporin has recently been verified to facilitate the efflux of endogenous H2O2, which not only contributes to detoxification but also to species competitiveness, improving our understanding of prokaryotic aquaporins. Furthermore, recent studies revealed novel regulatory mechanisms of prokaryotic aquaporins at post-translational level. Thus, we propose that intensive investigation on prokaryotic aquaporins would extend the functional categories and working mechanisms of these ubiquitous, intrinsic membrane proteins.
Collapse
|
20
|
Covalently Linking Oligomerization-Impaired GlpF Protomers Does Not Completely Re-establish Wild-Type Channel Activity. Int J Mol Sci 2019; 20:ijms20040927. [PMID: 30791644 PMCID: PMC6412381 DOI: 10.3390/ijms20040927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/28/2022] Open
Abstract
Integral membrane proteins of the aquaporin family facilitate rapid water flux across cellular membranes in all domains of life. Although the water-conducting pore is clearly defined in an aquaporin monomer, all aquaporins assemble into stable tetramers. In order to investigate the role of protomer–protomer interactions, we analyzed the activity of heterotetramers containing increasing fractions of mutated monomers, which have an impaired oligomerization propensity and activity. In order to enforce interaction between the protomers, we designed and analyzed a genetically fused homotetramer of GlpF, the aquaglyceroporin of the bacterium Escherichia coli (E. coli). However, increasing fractions of the oligomerization-impaired mutant GlpF E43A affected the activity of the GlpF heterotetramer in a nearly linear manner, indicating that the reduced protein activity, caused by the introduced mutations, cannot be fully compensated by simply covalently linking the monomers. Taken together, the results underline the importance of exactly positioned monomer–monomer contacts in an assembled GlpF tetramer.
Collapse
|
21
|
Sreedharan S, Sankaranarayanan K. Water channel activity of putative aquaporin-6 present in Aedes aegypti. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21519. [PMID: 30456765 DOI: 10.1002/arch.21519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aquaporins (AQPs) are integral membrane channels that facilitate the bidirectional transport of water and sometimes other small solutes across biological membranes. AQPs are important in mediating environmental adaptations in mosquitoes and are considered as a novel target for the development of effective insecticides against mosquitoes. Here, we expressed Aedes aegypti AQP6 ( AaAQP6) in human embryonic kidney (HEK) 293 cells and analyzed the water permeability by a conventional swelling assay, that is, a real-time change in cell size corresponding to the cell swelling induced by hyposmotic solution. The swelling assay revealed that AaAQP6 is a mercury-sensitive water channel. Gene expression studies showed that AaAQP6 is highly expressed in the pupae than other developmental stages. Heterologous expression of AaAQP6 in HEK cell was mainly observed intracellularly suggesting AaAQP6 possibly could be a subcellular water channel and may play an osmoregulatory function in the pupae of A. aegypti.
Collapse
Affiliation(s)
- Sandhya Sreedharan
- Department of Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, India
| | - Kavitha Sankaranarayanan
- Department of Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, India
| |
Collapse
|
22
|
Wittekindt OH, Dietl P. Aquaporins in the lung. Pflugers Arch 2018; 471:519-532. [PMID: 30397774 PMCID: PMC6435619 DOI: 10.1007/s00424-018-2232-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/04/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022]
Abstract
The lung is the interface between air and blood where the exchange of oxygen and carbon dioxide occurs. The surface liquid that is directly exposed to the gaseous compartment covers both conducting airways and respiratory zone and forms the air-liquid interface. The barrier that separates this lining fluid of the airways and alveoli from the extracellular compartment is the pulmonary epithelium. The volume of the lining fluid must be kept in a range that guarantees an appropriate gas exchange and other functions, such as mucociliary clearance. It is generally accepted that this is maintained by balancing resorptive and secretory fluid transport across the pulmonary epithelium. Whereas osmosis is considered as the exclusive principle of fluid transport in the airways, filtration may contribute to alveolar fluid accumulation under pathologic conditions. Aquaporins (AQP) facilitate water flux across cell membranes, and as such, they provide a transcellular route for water transport across epithelia. However, their contribution to near-isosmolar fluid conditions in the lung still remains elusive. Herein, we discuss the role of AQPs in the lung with regard to fluid homeostasis across the respiratory epithelium.
Collapse
Affiliation(s)
- Oliver H Wittekindt
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Paul Dietl
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
23
|
Estrogen Modulates Glycerol Permeability in Sertoli Cells through Downregulation of Aquaporin-9. Cells 2018; 7:cells7100153. [PMID: 30274223 PMCID: PMC6211071 DOI: 10.3390/cells7100153] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022] Open
Abstract
High 17β-Estradiol (E2) levels are known to cause alterations of spermatogenesis and environments throughout the male reproductive tract. Sertoli cells (SCs) ensure an adequate environment inside the seminiferous tubule. Glycerol stands as essential for the maintenance of blood⁻testis barrier created by SCs, however, the role of E2 in this process is not known. Herein, we hypothesized that the effect of E2 on glycerol permeability in mouse SCs (mSCs) could be mediated by aquaglyceroporins. The expression of aquaglyceroporins was assessed by RT-PCR and qRT-PCR. Glycerol permeability was evaluated by stopped-flow light scattering. We were able to identify the expression of AQP3 and AQP9 in mSCs where AQP9 is more abundant than AQP3. Our results show that high E2 levels decrease AQP9 mRNA abundance with no influence on AQP3 in mSCs. Interestingly, high E2 levels decreased mSCs' permeability to glycerol, while downregulating AQP9 expression, thus suggesting a novel mechanism by which E2 modulates fluid secretion in the testis. In conclusion, E2 is an important regulator of mSCs physiology and secretion through changes in AQP9 expression and function. Thus, alterations in glycerol permeability induced by E2 may be the cause for male infertility in cases associated with the presence of high E2 levels.
Collapse
|
24
|
Takeuchi K, Hayashi S, Matumoto T, Hashimoto S, Takayama K, Chinzei N, Kihara S, Haneda M, Kirizuki S, Kuroda Y, Tsubosaka M, Nishida K, Kuroda R. Downregulation of aquaporin 9 decreases catabolic factor expression through nuclear factor‑κB signaling in chondrocytes. Int J Mol Med 2018; 42:1548-1558. [PMID: 29901079 DOI: 10.3892/ijmm.2018.3729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/07/2018] [Indexed: 11/06/2022] Open
Abstract
Aquaporins (AQPs) are small integral membrane proteins that are essential for water transport across membranes. AQP9, one of the 13 mammalian AQPs (including AQP0 to 12), has been reported to be highly expressed in hydrarthrosis and synovitis patients. Given that several studies have identified signal transduction as an additional function of AQPs, it is hypothesized that AQP9 may modulate inflammatory signal transduction in chondrocytes. Therefore, the present study used a model of interleukin (IL)‑1β‑induced inflammation to determine the mechanisms associated with AQP9 functions in chondrocytes. Osteoarthritis (OA) and normal cartilage samples were subjected to immunohistological analysis. In addition, matrix metalloproteinase (MMP)3, MMP13 and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS‑5) mRNA and protein analysis was conducted in normal human articular chondrocytes from the knee (NHAC‑Kn) stimulated with IL‑1β by reverse transcription‑polymerase chain reaction (RT‑qPCR) and western blotting, respectively. AQP9 knockdown was also performed by transfection of AQP9‑specific small interfering RNA using Lipofectamine. AQP1, 3, 7, 9 and 11 mRNA expression levels were detected in OA human chondrocytes and in IL‑1β‑treated normal human chondrocytes. The levels of AQP9, MMP‑3, MMP‑13 and ADAMTS‑5 mRNA were increased by treatment with 10 ng/ml IL‑1β in a time‑dependent manner, while knockdown of AQP9 expression significantly decreased the mRNA levels of the MMP3, MMP13 and ADAMTS‑5 genes, as well as the phosphorylation of IκB kinase (IKK). Treatment with a specific IKK inhibitor also significantly decreased the expression levels of MMP‑3, MMP‑13 and ADAMTS‑5 in response to IL‑1β stimulation. Furthermore, immunohistochemical analysis demonstrated that AQP9 and inflammatory markers were highly expressed in OA cartilage. In addition, the downregulation of AQP9 in cultured chondrocytes decreased the catabolic gene expression in response to IL‑1β stimulation through nuclear factor‑κB signaling. Therefore, AQP9 may be a promising target for the treatment of OA.
Collapse
Affiliation(s)
- Kazuhiro Takeuchi
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Shinya Hayashi
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Tomoyuki Matumoto
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Shingo Hashimoto
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Koji Takayama
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Nobuaki Chinzei
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Shinsuke Kihara
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Masahiko Haneda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Shinsuke Kirizuki
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Yuichi Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Masanori Tsubosaka
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| |
Collapse
|
25
|
De Ieso ML, Yool AJ. Mechanisms of Aquaporin-Facilitated Cancer Invasion and Metastasis. Front Chem 2018; 6:135. [PMID: 29922644 PMCID: PMC5996923 DOI: 10.3389/fchem.2018.00135] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 01/02/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and its incidence is rising with numbers expected to increase 70% in the next two decades. The fact that current mainline treatments for cancer patients are accompanied by debilitating side effects prompts a growing demand for new therapies that not only inhibit growth and proliferation of cancer cells, but also control invasion and metastasis. One class of targets gaining international attention is the aquaporins, a family of membrane-spanning water channels with diverse physiological functions and extensive tissue-specific distributions in humans. Aquaporins−1,−2,−3,−4,−5,−8, and−9 have been linked to roles in cancer invasion, and metastasis, but their mechanisms of action remain to be fully defined. Aquaporins are implicated in the metastatic cascade in processes of angiogenesis, cellular dissociation, migration, and invasion. Cancer invasion and metastasis are proposed to be potentiated by aquaporins in boosting tumor angiogenesis, enhancing cell volume regulation, regulating cell-cell and cell-matrix adhesions, interacting with actin cytoskeleton, regulating proteases and extracellular-matrix degrading molecules, contributing to the regulation of epithelial-mesenchymal transitions, and interacting with signaling pathways enabling motility and invasion. Pharmacological modulators of aquaporin channels are being identified and tested for therapeutic potential, including compounds derived from loop diuretics, metal-containing organic compounds, plant natural products, and other small molecules. Further studies on aquaporin-dependent functions in cancer metastasis are needed to define the differential contributions of different classes of aquaporin channels to regulation of fluid balance, cell volume, small solute transport, signal transduction, their possible relevance as rate limiting steps, and potential values as therapeutic targets for invasion and metastasis.
Collapse
Affiliation(s)
- Michael L De Ieso
- Department of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrea J Yool
- Department of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
26
|
Aquaporin Membrane Channels in Oxidative Stress, Cell Signaling, and Aging: Recent Advances and Research Trends. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1501847. [PMID: 29770164 PMCID: PMC5892239 DOI: 10.1155/2018/1501847] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/29/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are produced as a result of aerobic metabolism and as by-products through numerous physiological and biochemical processes. While ROS-dependent modifications are fundamental in transducing intracellular signals controlling pleiotropic functions, imbalanced ROS can cause oxidative damage, eventually leading to many chronic diseases. Moreover, increased ROS and reduced nitric oxide (NO) bioavailability are main key factors in dysfunctions underlying aging, frailty, hypertension, and atherosclerosis. Extensive investigation aims to elucidate the beneficial effects of ROS and NO, providing novel insights into the current medical treatment of oxidative stress-related diseases of high epidemiological impact. This review focuses on emerging topics encompassing the functional involvement of aquaporin channel proteins (AQPs) and membrane transport systems, also allowing permeation of NO and hydrogen peroxide, a major ROS, in oxidative stress physiology and pathophysiology. The most recent advances regarding the modulation exerted by food phytocompounds with antioxidant action on AQPs are also reviewed.
Collapse
|
27
|
Kourghi M, Pei JV, De Ieso ML, Nourmohammadi S, Chow PH, Yool AJ. Fundamental structural and functional properties of Aquaporin ion channels found across the kingdoms of life. Clin Exp Pharmacol Physiol 2018; 45:401-409. [PMID: 29193257 DOI: 10.1111/1440-1681.12900] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 01/09/2023]
Abstract
Aquaporin (AQP) channels in the major intrinsic protein (MIP) family are known to facilitate transmembrane water fluxes in prokaryotes and eukaryotes. Some classes of AQPs also conduct ions, glycerol, urea, CO2 , nitric oxide, and other small solutes. Ion channel activity has been demonstrated for mammalian AQPs 0, 1, 6, Drosophila Big Brain (BIB), soybean nodulin 26, and rockcress AtPIP2;1. More classes are likely to be discovered. Newly identified blockers are providing essential tools for establishing physiological roles of some of the AQP dual water and ion channels. For example, the arylsulfonamide AqB011 which selectively blocks the central ion pore of mammalian AQP1 has been shown to impair migration of HT29 colon cancer cells. Traditional herbal medicines are sources of selective AQP1 inhibitors that also slow cancer cell migration. The finding that plant AtPIP2;1 expressed in root epidermal cells mediates an ion conductance regulated by calcium and protons provided insight into molecular mechanisms of environmental stress responses. Expression of lens MIP (AQP0) is essential for maintaining the structure, integrity and transparency of the lens, and Drosophila BIB contributes to neurogenic signalling pathways to control the developmental fate of fly neuroblast cells; however, the ion channel roles remain to be defined for MIP and BIB. A broader portfolio of pharmacological agents is needed to investigate diverse AQP ion channel functions in situ. Understanding the dual water and ion channel roles of AQPs could inform the development of novel agents for rational interventions in diverse challenges from agriculture to human health.
Collapse
Affiliation(s)
- Mohamad Kourghi
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jinxin V Pei
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michael L De Ieso
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | | | - Pak Hin Chow
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
28
|
Lipopolysaccharide Modifies Glycerol Permeability and Metabolism in 3T3-L1 Adipocytes. Int J Mol Sci 2017; 18:ijms18122566. [PMID: 29186031 PMCID: PMC5751169 DOI: 10.3390/ijms18122566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/09/2017] [Accepted: 11/25/2017] [Indexed: 12/15/2022] Open
Abstract
Aquaglyceroporins-aquaporin membrane channels (AQP) that conduct glycerol and other small neutral solutes in addition to water-play major roles in obesity. In adipocytes, aquaglyceroporins mediate glycerol uptake and release across the plasma membrane, which are two key steps for triacylglycerols (TAGs) synthesis (lipogenesis) and hydrolysis (lipolysis). The aim of this study was to assess both glycerol permeability and metabolism in undifferentiated 3T3-L1 cells (UDCs) as well as in untreated (CTL-DCs) versus lipopolysaccharide (LPS-DCs)-treated differentiated 3T3-L1 adipocytes. Glycerol release, TAGs content and whole membrane glycerol permeability were significantly increased in DCs as compared to UDCs. Moreover, in DCs, LPS treatment significantly increased TAGs content and decreased glycerol permeability. In addition, a significant reduction in whole membrane glycerol permeability was observed in LPS-DCs as compared to CTL-DCs. The relative contributions of AQP3, AQP7 and AQP9 (facilitated diffusion), as well as that of the phospholipid bilayer (simple diffusion), to the whole membrane glycerol permeability, were estimated biophysically in UDCs, CTL-DCs and LPS-DCs, using selective AQP inhibitors. Further studies will be required to determine if modifications in either subcellular localization and/or activity of aquaglyceroporins could account for the data herein. Nevertheless, our findings provide novel insights in understanding the LPS-induced adipocyte hypertrophy that accompanies obesity.
Collapse
|
29
|
Kourghi M, Nourmohammadi S, Pei JV, Qiu J, McGaughey S, Tyerman SD, Byrt CS, Yool AJ. Divalent Cations Regulate the Ion Conductance Properties of Diverse Classes of Aquaporins. Int J Mol Sci 2017; 18:ijms18112323. [PMID: 29099773 PMCID: PMC5713292 DOI: 10.3390/ijms18112323] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022] Open
Abstract
Aquaporins (AQPs) are known to facilitate water and solute fluxes across barrier membranes. An increasing number of AQPs are being found to serve as ion channels. Ion and water permeability of selected plant and animal AQPs (plant Arabidopsis thaliana AtPIP2;1, AtPIP2;2, AtPIP2;7, human Homo sapiens HsAQP1, rat Rattus norvegicus RnAQP4, RnAQP5, and fly Drosophilamelanogaster DmBIB) were expressed in Xenopus oocytes and examined in chelator-buffered salines to evaluate the effects of divalent cations (Ca2+, Mg2+, Ba2+ and Cd2+) on ionic conductances. AtPIP2;1, AtPIP2;2, HsAQP1 and DmBIB expressing oocytes had ionic conductances, and showed differential sensitivity to block by external Ca2+. The order of potency of inhibition by Ca2+ was AtPIP2;2 > AtPIP2;1 > DmBIB > HsAQP1. Blockage of the AQP cation channels by Ba2+ and Cd2+ caused voltage-sensitive outward rectification. The channels with the highest sensitivity to Ca2+ (AtPIP2;1 and AtPIP2;2) showed a distinctive relief of the Ca2+ block by co-application of excess Ba2+, suggesting that divalent ions act at the same site. Recognizing the regulatory role of divalent cations may enable the discovery of other classes of AQP ion channels, and facilitate the development of tools for modulating AQP ion channels. Modulators of AQPs have potential value for diverse applications including improving salinity tolerance in plants, controlling vector-borne diseases, and intervening in serious clinical conditions involving AQPs, such as cancer metastasis, cardiovascular or renal dysfunction.
Collapse
Affiliation(s)
- Mohamad Kourghi
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Saeed Nourmohammadi
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jinxin V Pei
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jiaen Qiu
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Samantha McGaughey
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Stephen D Tyerman
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Caitlin S Byrt
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
30
|
Zhu S, Ran J, Yang B, Mei Z. Aquaporins in Digestive System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 969:123-130. [PMID: 28258570 DOI: 10.1007/978-94-024-1057-0_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this chapter, we mainly discuss the expression and function of aquaporins (AQPs ) expressed in digestive system . AQPs in gastrointestinal tract include four members of aquaporin subfamily: AQP1, AQP4, AQP5 and AQP8, and a member of aquaglyceroporin subfamily: AQP3. In the digestive glands, especially the liver, we discuss three members of aquaporin subfamily: AQP1, AQP5 and AQP8, a member of aquaglyceroporin subfamily: AQP9. AQP3 is involved in the diarrhea and inflammatory bowel disease; AQP5 is relevant to gastric carcinoma cell proliferation and migration; AQP9 plays considerable role in glycerol metabolism , urea transport and hepatocellular carcinoma. Further investigation is necessary for specific locations and functions of AQPs in digestive system.
Collapse
Affiliation(s)
- Shuai Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jianhua Ran
- Department of Anatomy and Neuroscience Center, Chongqing Medical University, Chongqing, 400016, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, 100191, China
| | - Zhechuan Mei
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
31
|
Ishibashi K, Morishita Y, Tanaka Y. The Evolutionary Aspects of Aquaporin Family. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 969:35-50. [PMID: 28258564 DOI: 10.1007/978-94-024-1057-0_2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aquaporins (AQPs ) are a family of transmembrane proteins present in almost all species including virus. They are grossly divided into three subfamilies based on the sequence around a highly conserved pore-forming NPA motif: (1) classical water -selective AQP (CAQP), (2) glycerol -permeable aquaglyceroporin (AQGP) and (3) AQP super-gene channel, superaquaporin (SAQP). AQP is composed of two tandem repeats of conserved three transmembrane domains and a NPA motif. AQP ancestors probably started in prokaryotes by the duplication of half AQP genes to be diversified into CAQPs or AQGPs by evolving a subfamily-specific carboxyl-terminal NPA motif. Both AQP subfamilies may have been carried over to unicellular eukaryotic ancestors, protists and further to multicellular organisms. Although fungus lineage has kept both AQP subfamilies, the plant lineage has lost AQGP after algal ancestors with extensive diversifications of CAQPs into PIP, TIP, SIP, XIP, HIP and LIP with a possible horizontal transfer of NIP from bacteria. Interestingly, the animal lineage has obtained new SAQP subfamily with highly deviated NPA motifs, especially at the amino-terminal halves in both prostomial and deuterostomial animals. The prostomial lineage has lost AQGP after hymenoptera, while the deuterostomial lineage has kept all three subfamilies up to the vertebrate with diversified CAQPs (AQP0, 1, 2, 4, 5, 6, 8) and AQGPs (AQP3, 7, 9, 10) with limited SAQPs (AQP11, 12) in mammals. Whole-genome duplications, local gene duplications and horizontal gene transfers may have produced the AQP diversity with adaptive selections and functional alternations in response to environment changes. With the above evolutionary perspective in mind, the function of each AQP could be speculated by comparison among species to get new insights into physiological roles of AQPs . This evolutionary guidance in AQP research will lead to deeper understandings of water and solute homeostasis.
Collapse
Affiliation(s)
- Kenichi Ishibashi
- Division of Pathophysiology, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan.
| | - Yoshiyuki Morishita
- Division of Nephrology, Saitama Medical Center, Jichi Medical University, 1-847 Ohmiya, Saitama-City, Saitama, 330-8503, Japan
| | - Yasuko Tanaka
- Division of Pathophysiology, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
32
|
Involvement of JNK/NFκB Signaling Pathways in the Lipopolysaccharide-Induced Modulation of Aquaglyceroporin Expression in 3T3-L1 Cells Differentiated into Adipocytes. Int J Mol Sci 2016; 17:ijms17101742. [PMID: 27763558 PMCID: PMC5085770 DOI: 10.3390/ijms17101742] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/26/2023] Open
Abstract
Aquaglyceroporins, belonging to the family of aquaporins (AQPs), are integral plasma membrane proteins permeable to water and glycerol that have emerged as key players in obesity. The aim of this study was to investigate the expression profile of AQPs in undifferentiated and differentiated 3T3-L1 cells and to investigate the changes in expression of aquaglyceroporins in 3T3-L1 cells differentiated into adipocytes and subjected to lipopolysaccharide (LPS) mimicking inflammation occurring during obesity. Furthermore, the study aimed at identifying the signaling cascade involved in the regulation of aquaglyceroporins expression upon LPS stimulation. 3T3-L1 cells were grown as undifferentiated cells (UDC; preadipocytes) or cells differentiated into adipocytes (DC, adipocytes). DC were incubated in the presence or absence of LPS with or without inhibitors of various protein kinases. AQPs mRNA expression levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR). AQP1, AQP2, AQP3, AQP9 and AQP11 mRNA were expressed in both UDC and DC, whereas AQP4, AQP7 and AQP8 mRNA were expressed only in DC. In DC, LPS up-regulated AQP3 mRNA levels (p < 0.05) compared to control; these effects were inhibited by CLI095, SP600125 and BAY11-7082 (p < 0.05). LPS decreased both AQP7 and AQP11 mRNA levels (p < 0.01) in DC as compared to control; this decrease was inhibited by CLI095 and BAY11-7082 (p < 0.05) and additionally by SP00125 for AQP7 (p < 0.05). SB203580 had no effect on LPS-induced AQP3, AQP7 and AQP11 mRNA levels modulations. In conclusion, our results clearly show that many AQPs are expressed in murine 3T3-L1 adipocytes. Moreover, in DCs, LPS led to decreased AQP7 and AQP11 mRNA levels but to increased AQP3 mRNA levels, resulting from the Toll-like receptor 4 (TLR4)-induced activation of JNK and/or NFκB pathway.
Collapse
|
33
|
Bajic JE, Eden GL, Lampton LS, Cheah KY, Lymn KA, Pei JV, Yool AJ, Howarth GS. Rhubarb extract partially improves mucosal integrity in chemotherapy-induced intestinal mucositis. World J Gastroenterol 2016; 22:8322-8333. [PMID: 27729739 PMCID: PMC5055863 DOI: 10.3748/wjg.v22.i37.8322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/07/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of orally gavaged aqueous rhubarb extract (RE) on 5-fluorouracil (5-FU)-induced intestinal mucositis in rats. METHODS Female Dark Agouti rats (n = 8/group) were gavaged daily (1 mL) with water, high-dose RE (HDR; 200 mg/kg) or low-dose RE (LDR; 20mg/kg) for eight days. Intestinal mucositis was induced (day 5) with 5-FU (150 mg/kg) via intraperitoneal injection. Intestinal tissue samples were collected for myeloperoxidase (MPO) activity and histological examination. Xenopus oocytes expressing aquaporin 4 water channels were prepared to examine the effect of aqueous RE on cell volume, indicating a potential mechanism responsible for modulating net fluid absorption and secretion in the gastrointestinal tract. Statistical significance was assumed at P < 0.05 by one-way ANOVA. RESULTS Bodyweight was significantly reduced in rats administered 5-FU compared to healthy controls (P < 0.01). Rats administered 5-FU significantly increased intestinal MPO levels (≥ 307%; P < 0.001), compared to healthy controls. However, LDR attenuated this effect in 5-FU treated rats, significantly decreasing ileal MPO activity (by 45%; P < 0.05), as compared to 5-FU controls. 5-FU significantly reduced intestinal mucosal thickness (by ≥ 29% P < 0.001) as compared to healthy controls. LDR significantly increased ileal mucosal thickness in 5-FU treated rats (19%; P < 0.05) relative to 5-FU controls. In xenopus oocytes expressing AQP4 water channels, RE selectively blocked water influx into the cell, induced by a decrease in external osmotic pressure. As water efflux was unaltered by the presence of extracellular RE, the directional flow of water across the epithelial barrier, in the presence of extracellular RE, indicated that RE may alleviate water loss across the epithelial barrier and promote intestinal health in chemotherapy-induced intestinal mucositis. CONCLUSION In summary, low dose RE improves selected parameters of mucosal integrity and reduces ileal inflammation, manifesting from 5-FU-induced intestinal mucositis.
Collapse
|
34
|
Aquaporins: Their role in gastrointestinal malignancies. Cancer Lett 2016; 373:12-18. [PMID: 26780474 DOI: 10.1016/j.canlet.2016.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/28/2015] [Accepted: 01/06/2016] [Indexed: 12/15/2022]
Abstract
Aquaporins (AQPs) are small (~30 kDa monomers) integral membrane water transport proteins that allow water to flow through cell membranes in reaction to osmotic gradients in cells. In mammals, the family of AQPs has thirteen (AQP0-12) unique members that mediate critical biological functions. Since AQPs can impact cell proliferation, migration and angiogenesis, their role in various human cancers is well established. Recently, AQPs have been explored as potential diagnostic and therapeutic targets in gastrointestinal (GI) cancers. GI cancers encompass multiple sites including the colon, esophagus, stomach and pancreas. Research in the last three decades has revealed biological aspects and signaling pathways critical for the development of GI cancers. Since the majority of these cancers are very aggressive and rapidly metastasizes, identifying effective targets is crucial for treatment. Preclinical studies have utilized inhibitors of specific AQPs and knock down of AQP expression using siRNA. Although several studies have explored the role of AQPs in colorectal, esophageal, gastric, hepatocellular and pancreatic cancers, there is no comprehensive review compiling the available information on GI cancers as has been published for other malignancies such as ovarian cancer. Due to the similarities and association of various sites of GI cancers, it is helpful to consider these results collectively in order to better understand the role of specific AQPs in critical GI cancers. This review summarizes the current knowledge of the role of AQPs in GI malignancies with particular focus on diagnosis and therapeutic applications.
Collapse
|
35
|
Kourghi M, Pei JV, De Ieso ML, Flynn G, Yool AJ. Bumetanide Derivatives AqB007 and AqB011 Selectively Block the Aquaporin-1 Ion Channel Conductance and Slow Cancer Cell Migration. Mol Pharmacol 2016; 89:133-40. [PMID: 26467039 PMCID: PMC6067643 DOI: 10.1124/mol.115.101618] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/13/2015] [Indexed: 12/24/2022] Open
Abstract
Aquaporins (AQPs) in the major intrinsic family of proteins mediate fluxes of water and other small solutes across cell membranes. AQP1 is a water channel, and under permissive conditions, a nonselective cation channel gated by cGMP. In addition to mediating fluid transport, AQP1 expression facilitates rapid cell migration in cell types including colon cancers and glioblastoma. Work here defines new pharmacological derivatives of bumetanide that selectively inhibit the ion channel, but not the water channel, activity of AQP1. Human AQP1 was analyzed in the Xenopus laevis oocyte expression system by two-electrode voltage clamp and optical osmotic swelling assays. The aquaporin ligand bumetanide derivative AqB011 was the most potent blocker of the AQP1 ion conductance (IC50 of 14 μM), with no effect on water channel activity (at up to 200 μM). The order of potency for inhibition of the ionic conductance was AqB011 > AqB007 >> AqB006 ≥ AqB001. Migration of human colon cancer (HT29) cells was assessed with a wound-closure assay in the presence of a mitotic inhibitor. AqB011 and AqB007 significantly reduced migration rates of AQP1-positive HT29 cells without affecting viability. The order of potency for AQP1 ion channel block matched the order for inhibition of cell migration, as well as in silico modeling of the predicted order of energetically favored binding. Docking models suggest that AqB011 and AqB007 interact with the intracellular loop D domain, a region involved in AQP channel gating. Inhibition of AQP1 ionic conductance could be a useful adjunct therapeutic approach for reducing metastasis in cancers that upregulate AQP1 expression.
Collapse
Affiliation(s)
- Mohamad Kourghi
- School of Medicine (M.K., J.V.P., M.L.D.I., A.J.Y.) and Institute for Photonics and Advanced Sensing (J.V.P., A.J.Y.), University of Adelaide, Adelaide, South Australia, Australia; and Spacefill Enterprises LLC, Oro Valley, Arizona (G.F.)
| | - Jinxin V Pei
- School of Medicine (M.K., J.V.P., M.L.D.I., A.J.Y.) and Institute for Photonics and Advanced Sensing (J.V.P., A.J.Y.), University of Adelaide, Adelaide, South Australia, Australia; and Spacefill Enterprises LLC, Oro Valley, Arizona (G.F.)
| | - Michael L De Ieso
- School of Medicine (M.K., J.V.P., M.L.D.I., A.J.Y.) and Institute for Photonics and Advanced Sensing (J.V.P., A.J.Y.), University of Adelaide, Adelaide, South Australia, Australia; and Spacefill Enterprises LLC, Oro Valley, Arizona (G.F.)
| | - Gary Flynn
- School of Medicine (M.K., J.V.P., M.L.D.I., A.J.Y.) and Institute for Photonics and Advanced Sensing (J.V.P., A.J.Y.), University of Adelaide, Adelaide, South Australia, Australia; and Spacefill Enterprises LLC, Oro Valley, Arizona (G.F.)
| | - Andrea J Yool
- School of Medicine (M.K., J.V.P., M.L.D.I., A.J.Y.) and Institute for Photonics and Advanced Sensing (J.V.P., A.J.Y.), University of Adelaide, Adelaide, South Australia, Australia; and Spacefill Enterprises LLC, Oro Valley, Arizona (G.F.)
| |
Collapse
|
36
|
Effect of intense pulsed light on the expression of aquaporin 3 in rat skin. Lasers Med Sci 2015; 30:1959-65. [PMID: 26231231 DOI: 10.1007/s10103-015-1788-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022]
Abstract
Intense pulsed light (IPL) technology has been popularly employed in clinical treatments for dermatological and cosmetic purposes in recent years; yet, the underlying mechanisms of its functions are not fully elucidated. On the other hand, aquaporin (AQP) 3, a member of a subgroup of the aquaporin family that transports both water and small solutes, such as glycerol, has been documented to play an important role in the skin homeostasis. We thus examined the possible involvement of AQP3 in the functional mechanisms of IPL irradiation. Rat dorsal skin areas were irradiated one to three times with IPL at doses of 15, 25, and 35 J/cm2. Skin specimens were collected 7 days after the final irradiation and analyzed for changes in histology, skin hydration, mRNA, and protein expressions of AQP3. IPL induced no significant variations in the mRNA expression levels. Twice or thrice irradiation at the dose of 25 or 35 J/cm2 significantly enhanced AQP3 protein expression. Immunofluorescence study revealed that AQP3 was mainly localized to keratinocyte membranes in the basal layer of epidermis, and the localization was unaltered by IPL. In addition, the pattern of IPL-induced changes in skin hydration was generally coincided with the expression profile of AQP3. These results suggest the possibility that one of the functional mechanisms of IPL might be related to the regulation of AQP3 protein expression.
Collapse
|
37
|
Tanaka Y, Morishita Y, Ishibashi K. Aquaporin10 is a pseudogene in cattle and their relatives. Biochem Biophys Rep 2015; 1:16-21. [PMID: 29124130 PMCID: PMC5668560 DOI: 10.1016/j.bbrep.2015.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 12/13/2022] Open
Abstract
Background Although AQP10 is mainly expressed in the human GI tract, its physiological role is unclear. In fact, we previously reported that mouse AQP10 is a pseudogene. It is possible that AQP10 is also a pseudogene in other animals. Methods Genome databases were searched for AQP10 orthologs and the genomic DNA of each candidate pseudogene was sequenced to confirm its mutations. The expression of the AQP10 mRNA was examined by RT-PCR in the small intestine where human AQP10 is highly expressed. Results The genomic database of some mammals had insertions and deletions in the exons of the AQP10 gene, including cattle (Bos taurus), sheep (Ovis aries) and goats (Capra hircus). In the bovine AQP10 gene, exon 1 and 5 had deletions resulting in a frame-shift or a premature termination, respectively, which were confirmed by the direct exon sequencing of the genomic DNA. In the RT-PCR experiments, the PCR primer sets for exon 1/2 and exon 4/5 failed to detect the bands for AQP10 mRNA in the duodenum and jejunum. Similar AQP10 gene mutations were also confirmed in the genomic DNA from sheep and goats. Although these animals were derived from porcine ancestors, the exons of the swine (Sus scrofa) AQP10 gene were complete without mutations. Therefore, AQP10 gene might have turned to a pseudogene around 65 million years before when cattle evolved from porcine ancestors. Conclusion AQP10 of ruminantia which regurgitate and rechew their food may have lost its role possibly due to the redundant expression of other aquaglyceroporins.
Collapse
Affiliation(s)
- Yasuko Tanaka
- Department of Medical Physiology, School of Pharmacy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, Department of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-city, Tochigi 329-0498, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, School of Pharmacy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
38
|
Soler DC, Bai X, Ortega L, Pethukova T, Nedorost ST, Popkin DL, Cooper KD, McCormick TS. The key role of aquaporin 3 and aquaporin 10 in the pathogenesis of pompholyx. Med Hypotheses 2015; 84:498-503. [PMID: 25725905 DOI: 10.1016/j.mehy.2015.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/26/2015] [Accepted: 02/05/2015] [Indexed: 12/31/2022]
Abstract
Pompholyx remains a chronic skin affliction without a compelling pathophysiological explanation. The disease is characterized by the sudden onset of vesicles exclusively in the palms and soles which generally resolves. However, the disease may progress and the vesicles may expand and fuse; with chronicity there is deep fissuring. Multiple therapeutic approaches are available, but the disease is often resistant to conventional treatments. Currently, oral alitretinoin is used for patients with resistant chronic disease; however, this therapy is only approved for use in the UK, Europe and Canada. In this paper we wish to put forward a hypothesis: exposure to water and the subsequent steep osmotic gradient imbalance are key factors driving skin dehydration seen in pompholyx patients once the disease becomes chronic. The mechanistic explanation for the epidermal fissuring might lie in the over-expression across the mid and upper epidermis, including the stratum corneum, of two water/glycerol channel proteins aquaporin 3 and aquaporin 10, expressed in the keratinocytes of afflicted pompholyx patients. The over-expression of these two aquaporins may bridge the abundantly hydrated dermis and basal epidermis to the outer environment allowing cutaneous water and glycerol to flow outward. The beneficial effects reported in alitretinoin-treated patients with chronic hand eczemas may be due potential regulation of aquaporin 3 and aquaporin 10 by alitretinoin.
Collapse
Affiliation(s)
- D C Soler
- Department of Dermatology, Case Western Reserve University, USA; The Murdough Family Center for Psoriasis, Cleveland, OH 44106, USA
| | - X Bai
- Center for RNA Molecular Biology, Case Western Reserve University, USA
| | - L Ortega
- School of Medicine, Case Western Reserve University, USA
| | - T Pethukova
- School of Medicine, Case Western Reserve University, USA
| | - S T Nedorost
- University Hospitals Case Medical Center and VA Medical Center, Cleveland, OH 44106, USA
| | - D L Popkin
- Department of Dermatology, Case Western Reserve University, USA; The Murdough Family Center for Psoriasis, Cleveland, OH 44106, USA; University Hospitals Case Medical Center and VA Medical Center, Cleveland, OH 44106, USA
| | - K D Cooper
- Department of Dermatology, Case Western Reserve University, USA; The Murdough Family Center for Psoriasis, Cleveland, OH 44106, USA; University Hospitals Case Medical Center and VA Medical Center, Cleveland, OH 44106, USA
| | - T S McCormick
- Department of Dermatology, Case Western Reserve University, USA; The Murdough Family Center for Psoriasis, Cleveland, OH 44106, USA.
| |
Collapse
|
39
|
Ricanek P, Lunde LK, Frye SA, Støen M, Nygård S, Morth JP, Rydning A, Vatn MH, Amiry-Moghaddam M, Tønjum T. Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease. Clin Exp Gastroenterol 2015; 8:49-67. [PMID: 25624769 PMCID: PMC4296881 DOI: 10.2147/ceg.s70119] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objectives The aim of this study was to investigate the relationship between aquaporin (AQP) water channel expression and the pathological features of early untreated inflammatory bowel disease (IBD) in humans. Methods Patients suspected to have IBD on the basis of predefined symptoms, including abdominal pain, diarrhea, and/or blood in stool for more than 10 days, were examined at the local hospital. Colonoscopy with biopsies was performed and blood samples were taken. Patients who did not meet the diagnostic criteria for IBD and who displayed no evidence of infection or other pathology in the gut were included as symptomatic non-IBD controls. AQP1, 3, 4, 5, 7, 8, and 9 messenger RNA (mRNA) levels were quantified in biopsies from the distal ileum and colon by quantitative real-time polymerase chain reaction. Protein expression of selected AQPs was assessed by confocal microscopy. Through multiple alignments of the deduced amino acid sequences, the putative three-dimensional structures of AQP1, 3, 7, and 8 were modeled. Results AQP1, 3, 7, and 8 mRNAs were detected in all parts of the intestinal mucosa. Notably, AQP1 and AQP3 mRNA levels were reduced in the ileum of patients with Crohn’s disease, and AQP7 and AQP8 mRNA levels were reduced in the ileum and the colon of patients with ulcerative colitis. Immunofluorescence confocal microscopy showed localization of AQP3, 7, and 8 at the mucosal epithelium, whereas the expression of AQP1 was mainly confined to the endothelial cells and erythrocytes. The reduction in the level of AQP3, 7, and 8 mRNA was confirmed by immunofluorescence, which also indicated a reduction of apical immunolabeling for AQP8 in the colonic surface epithelium and crypts of the IBD samples. This could indicate loss of epithelial polarity in IBD, leading to disrupted barrier function. Conclusion AQPs 1 and 8 and the aquaglyceroporins AQPs 3 and 7 are the AQPs predominantly expressed in the lower intestinal tract of humans. Their expression is significantly reduced in patients with IBD, and they are differentially expressed in specific bowel segments in patients with Crohn’s disease and ulcerative colitis. The data present a link between gut inflammation and water/solute homeostasis, suggesting that AQPs may play a significant role in IBD pathophysiology.
Collapse
Affiliation(s)
- Petr Ricanek
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway ; Department of Gastroenterology, Akershus University Hospital, Lørenskog and Campus Ahus, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
| | - Lisa K Lunde
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Stephan A Frye
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Mari Støen
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ståle Nygård
- Bioinformatics Core Facility, Institute for Medical Informatics, Oslo University Hospital and University of Oslo, Norway
| | - Jens P Morth
- Centre for Molecular Medicine, Nordic EMBL Partnership, University of Oslo, Norway ; Institute for Experimental Research, Oslo University Hospital (Ullevaal), Oslo, Norway
| | - Andreas Rydning
- Department of Gastroenterology, Akershus University Hospital, Lørenskog and Campus Ahus, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
| | - Morten H Vatn
- EpiGen Institute, Campus Ahus, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway ; Section of Gastroenterology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway ; Department of Microbiology, University of Oslo, Oslo, Norway
| |
Collapse
|
40
|
Frauenfelder C, Woods C, Hussey D, Ooi E, Klebe S, Carney AS. Aquaporin expression profiles in normal sinonasal mucosa and chronic rhinosinusitis. Int Forum Allergy Rhinol 2014; 4:901-8. [PMID: 25243928 DOI: 10.1002/alr.21415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 07/18/2014] [Accepted: 08/20/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Thickened secretions, mucosal edema, and polyp formation are pathological features in chronic rhinosinusitis (CRS) that could theoretically be caused by aberrant water flow through sinonasal mucosa. Aquaporins (AQPs) are a family of proteins with roles in water transport, with tissue-specific expression profiles. This study aims to determine if AQP expression in sinonasal mucosa is different between normal controls and patients with CRS, either with (CRSwNP) or without (CRSsNP) nasal polyps. METHODS During endoscopic sinus surgery or transsphenoidal surgery, sinonasal tissue was collected and classified as CRSwNP (n = 13), CRSsNP (n = 10), or normal (n = 10). Messenger RNA (mRNA) expression of human AQP0 to AQP12b was determined using quantitative real-time polymerase chain reaction (qRT-PCR). Cellular localization of AQP1, AQP3, AQP4, AQP5, AQP7, and AQP11 was determined by immunohistochemistry. RESULTS mRNA of AQP0 to AQP11 was identified in all samples. AQP12b mRNA was not detected. Significant differences in the mRNA expression levels of AQP4 and AQP11 were identified between normal and CRSwNP patients (p < 0.05). Differences in the cellular localization of AQPs were observed in both CRSsNP and CRSwNP patients vs normal controls. More intense localization to the cell cytoplasm was observed for AQP5 in glandular epithelium (CRSwNP; p < 0.05) and surface epithelium (CRSsNP; p < 0.05), and AQP4 in glandular epithelium (CRSsNP; p < 0.05). CONCLUSION This study characterized AQP mRNA expression and protein localization in normal human sinonasal tissue. Significant differences in mRNA expression were found for AQP4 and AQP11 in CRSwNP and differences in protein localization patterns of AQP4 and AQP5 were identified in both types of CRS.
Collapse
Affiliation(s)
- Claire Frauenfelder
- Department of Surgery, Flinders Medical Centre and Flinders University, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Aquaporins in salivary glands and pancreas. Biochim Biophys Acta Gen Subj 2014; 1840:1524-32. [DOI: 10.1016/j.bbagen.2013.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 12/23/2022]
|
42
|
Sugimoto N, Matsuzaki K, Ishibashi H, Tanaka M, Sawaki T, Fujita Y, Kawanami T, Masaki Y, Okazaki T, Sekine J, Koizumi S, Yachie A, Umehara H, Shido O. Upregulation of aquaporin expression in the salivary glands of heat-acclimated rats. Sci Rep 2014; 3:1763. [PMID: 23942196 PMCID: PMC3743064 DOI: 10.1038/srep01763] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/16/2013] [Indexed: 12/22/2022] Open
Abstract
It is known that aquaporin (AQP) 5 expression in the apical membrane of acinar cells in salivary glands is important for the secretion of saliva in rodents and humans. Although heat acclimation enhances saliva secretion in rodents, the molecular mechanism of how heat induces saliva secretion has not been determined. Here, we found that heat acclimation enhanced the expression of AQP5 and AQP1 in rat submandibular glands concomitant with the promotion of the HIF-1α pathway, leading to VEGF induction and CD31-positive angiogenesis. The apical membrane distribution of AQP5 in serous acinar cells enhanced after heat acclimation, while AQP1 expression was restricted to the endothelial cells in the submandibular glands. A network of AQPs may be involved in heat-acclimated regulation in saliva secretion. Because AQPs probably plays a crucial role in saliva secretion in humans, these findings may lead to a novel strategy for treating saliva hyposecretion.
Collapse
Affiliation(s)
- Naotoshi Sugimoto
- 1] Department of Physiology, Graduate School of Medical Science, Kanazawa University [2] Department of Environmental Physiology, School of Medicine, Shimane University
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fabrick JA, Pei J, Hull JJ, Yool AJ. Molecular and functional characterization of multiple aquaporin water channel proteins from the western tarnished plant bug, Lygus hesperus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:125-140. [PMID: 24333473 DOI: 10.1016/j.ibmb.2013.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 06/03/2023]
Abstract
Aquaporins (AQPs) are integral membrane channel proteins that facilitate the bidirectional transfer of water or other small solutes across biological membranes involved in numerous essential physiological processes. In arthropods, AQPs belong to several subfamilies, which contribute to osmoregulation, respiration, cryoprotection, anhydrobiosis, and excretion. We cloned and characterized five novel AQPs from the western tarnished plant bug, Lygus hesperus, a polyphagous insect pest of food and fiber crops throughout western North America. The L. hesperus AQPs (LhAQP1-5) belong to different phylogenetic subfamilies, have unique transcription profiles and cellular localizations, and all transport water (but not glycerol) when heterologously expressed in Xenopus laevis oocytes. Our results demonstrate that multiple AQPs with possible compensatory functions are produced in L. hesperus that likely play important roles in maintaining water homeostasis in this important insect pest.
Collapse
Affiliation(s)
- Jeffrey A Fabrick
- USDA-ARS, U.S. Arid Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138, USA.
| | - Jinxin Pei
- University of Adelaide, School of Medical Sciences, Frome Rd., Medical School South, Adelaide, SA 5005, Australia
| | - J Joe Hull
- USDA-ARS, U.S. Arid Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138, USA
| | - Andrea J Yool
- University of Adelaide, School of Medical Sciences, Frome Rd., Medical School South, Adelaide, SA 5005, Australia
| |
Collapse
|
44
|
Abstract
Aquaporins (AQPs) are a family of membrane water channels that basically function as regulators of intracellular and intercellular water flow. To date, thirteen aquaporins have been characterized. They are distributed wildly in specific cell types in multiple organs and tissues. Each AQP channel consists of six membrane-spanning alpha-helices that have a central water-transporting pore. Four AQP monomers assemble to form tetramers, which are the functional units in the membrane. Some of AQPs also transport urea, glycerol, ammonia, hydrogen peroxide, and gas molecules. AQP-mediated osmotic water transport across epithelial plasma membranes facilitates transcellular fluid transport and thus water reabsorption. AQP-mediated urea and glycerol transport is involved in energy metabolism and epidermal hydration. AQP-mediated CO2 and NH3 transport across membrane maintains intracellular acid-base homeostasis. AQPs are also involved in the pathophysiology of a wide range of human diseases (including water disbalance in kidney and brain, neuroinflammatory disease, obesity, and cancer). Further work is required to determine whether aquaporins are viable therapeutic targets or reliable diagnostic and prognostic biomarkers.
Collapse
|
45
|
Ishibashi K, Tanaka Y, Morishita Y. The role of mammalian superaquaporins inside the cell. Biochim Biophys Acta Gen Subj 2013; 1840:1507-12. [PMID: 24189537 DOI: 10.1016/j.bbagen.2013.10.039] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND The mammalian two superaquaporins, AQP11 and AQP12, are present inside the cell and their null phenotypes in mice suggest their unusual functions. SCOPE OF REVIEW The surveyed literature on these superaquaporins and our unpublished data has been incorporated to speculate their roles. MAJOR CONCLUSIONS AQP11 and AQP12 have unique NPA boxes with a signature cysteine residue. Although some water permeability of AQP11 was demonstrated in liposomes and cultured cells, its permeability to glycerol is unknown. The function of AQP12 still remains to be clarified. AQP11 null mice develop polycystic kidneys following large intracellular vacuoles in the proximal tubule, which may be caused by ER stress or vesicle fusion failure. The role of AQP11 in the kidney and liver seems to alleviate the tissue damage and facilitate the recovery. Its expression in the sperm, thymus and brain suggests its potential roles in these organs in spite of the apparently normal null phenotype. Although AQP12 null mice appear normal, they suffer from severe pancreatitis, suggesting its role in the fusion of zymogen granules. GENERAL SIGNIFICANCE As many issues are unsolved, the clarification of the function and roles of the superaquaporin may lead to the identification of new roles of AQPs. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Kenichi Ishibashi
- Department of Medical Physiology, School of Pharmacy, Meiji Pharmaceutical University, Tokyo, Japan.
| | - Yasuko Tanaka
- Department of Medical Physiology, School of Pharmacy, Meiji Pharmaceutical University, Tokyo, Japan
| | | |
Collapse
|
46
|
Gao L, Guo YJ. Isolation of a fruit ripening-related tonoplast aquaporin (GjTIP) gene from Gardenia jasminoides. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:555-561. [PMID: 24431525 PMCID: PMC3781284 DOI: 10.1007/s12298-013-0191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aquaporins are membrane water channels that play critical roles in controlling the water content of cells and tissues. In this work, a full-length cDNA encoding putative aquaporins was isolated from Gardenia jasminoides fruit cDNA library. The GjTIP cDNA is 1188 bp, contains a predicted 774 bp open reading frame that encodes 257 amino acids. A phylogenetic analysis conducted with previously characterized aquaporins from other plant species indicates that the cDNA encode putative tonoplast aquaporins (TIPs), and proposed that GjTIP has a tendency to be a mixed function aquaporin similar to the TIP1s from Arabidopsis and Gossypium raimondii. A typical "hourglasses" three-dimensional model of GjTIP was built. The expression of the GjTIP transcripts at fruits during maturation was conducted by RT-PCR analysis. The data revealed that the transcript levels of GjTIP have increased during fruit maturation.
Collapse
Affiliation(s)
- Lan Gao
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006 Peoples Republic of China
| | - Yi-jun Guo
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006 Peoples Republic of China
| |
Collapse
|
47
|
Nishimura H, Yang Y. Aquaporins in avian kidneys: function and perspectives. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1201-14. [PMID: 24068044 DOI: 10.1152/ajpregu.00177.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For terrestrial vertebrates, water economy is a prerequisite for survival, and the kidney is their major osmoregulatory organ. Birds are the only vertebrates other than mammals that can concentrate urine in adaptation to terrestrial environments. Aquaporin (AQP) and glyceroporin (GLP) are phylogenetically old molecules and have been found in plants, microbial organisms, invertebrates, and vertebrates. Currently, 13 AQPs/aquaGLPs and isoforms are known to be present in mammals. AQPs 1, 2, 3, 4, 6, 7, 8, and 11 are expressed in the kidney; of these, AQPs 1, 2, 3, 4, and 7 are shown to be involved in fluid homeostasis. In avian kidneys, AQPs 1, 2, 3, and 4 have been identified and characterized. Also, gene and/or amino acid sequences of AQP5, AQP7, AQP8, AQP9, AQP11, and AQP12 have been reported in birds. AQPs 2 and 3 are expressed along cortical and medullary collecting ducts (CDs) and are responsible, respectively, for the water inflow and outflow of CD epithelial cells. While AQP4 plays an important role in water exit in the CD of mammalian kidneys, it is unlikely to participate in water outflow in avian CDs. This review summarizes current knowledge on structure and function of avian AQPs and compares them to those in mammalian and nonmammalian vertebrates. Also, we aim to provide input into, and perspectives on, the role of renal AQPs in body water homeostasis during ontogenic and phylogenetic advancement.
Collapse
Affiliation(s)
- Hiroko Nishimura
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | | |
Collapse
|
48
|
Channel-mediated lactic acid transport: a novel function for aquaglyceroporins in bacteria. Biochem J 2013; 454:559-70. [DOI: 10.1042/bj20130388] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MIPs (major intrinsic proteins), also known as aquaporins, are membrane proteins that channel water and/or uncharged solutes across membranes in all kingdoms of life. Considering the enormous number of different bacteria on earth, functional information on bacterial MIPs is scarce. In the present study, six MIPs [glpF1 (glycerol facilitator 1)–glpF6] were identified in the genome of the Gram-positive lactic acid bacterium Lactobacillus plantarum. Heterologous expression in Xenopus laevis oocytes revealed that GlpF2, GlpF3 and GlpF4 each facilitated the transmembrane diffusion of water, dihydroxyacetone and glycerol. As several lactic acid bacteria have GlpFs in their lactate racemization operon (GlpF1/F4 phylogenetic group), their ability to transport this organic acid was tested. Both GlpF1 and GlpF4 facilitated the diffusion of D/L-lactic acid. Deletion of glpF1 and/or glpF4 in Lb. plantarum showed that both genes were involved in the racemization of lactic acid and, in addition, the double glpF1 glpF4 mutant showed a growth delay under conditions of mild lactic acid stress. This provides further evidence that GlpFs contribute to lactic acid metabolism in this species. This lactic acid transport capacity was shown to be conserved in the GlpF1/F4 group of Lactobacillales. In conclusion, we have functionally analysed the largest set of bacterial MIPs and demonstrated that the lactic acid membrane permeability of bacteria can be regulated by aquaglyceroporins.
Collapse
|
49
|
Amaroli A, Ferrando S, Gagliani MC, Gallus L, Masini MA. Identification of aquaporins in eggs and early embryogenesis of the sea urchin Paracentrotus lividus. Acta Histochem 2013; 115:257-63. [PMID: 22889702 DOI: 10.1016/j.acthis.2012.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
Abstract
Sea urchins are echinoderms, marine invertebrates found at the base of the deutorostome lineage, which show separate sexes and are external spawners. In the sea urchin, efficient regulation of water homeostasis is essential for many biological processes such as cellular respiration, normal fertilization and correct embryo growth. In order to clarify some of these processes, the present study reports on the identification and function of aquaporin proteins in the sea urchin. Our results show, by immunoblot, immunoelectron microscopy and immunofluorescence analysis, the presence of aquaporin1- and aquaporin3-like proteins in virgin eggs and in early embryogenesis of Paracentrotus lividus and, by using known inhibitors of aquaporin functions, the functional and relevant role of aquaporin-3 in the fertilization process. AQP3 in particular seems to play a crucial role in high velocity water flux formations involved in the detachment of the vitelline layer during the slow block of polyspermy, while the presence of AQP1 and the increase of AQP3 in the first phase of the P. lividus developmental cycle, suggest their involvement in the appropriate homeostasis for embryo development.
Collapse
|
50
|
Xie H, Liu F, Liu L, Dan J, Luo Y, Yi Y, Chen X, Li J. Protective role of AQP3 in UVA-induced NHSFs apoptosis via Bcl2 up-regulation. Arch Dermatol Res 2013; 305:397-406. [PMID: 23463292 DOI: 10.1007/s00403-013-1324-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 01/30/2013] [Accepted: 02/01/2013] [Indexed: 01/19/2023]
Abstract
Aquaporin-3 (AQP3), a water/glycerol-transporting protein that facilitates water, urea, and glycerol transport, can inhibit arsenite-induced apoptosis by up-regulating Bcl-2. However, whether it has a protective role in ultraviolet A (UVA)-induced apoptosis in normal human skin fibroblasts is not known. In this study, we demonstrate that mild UVA treatment fails to induce oxidative cell stress and apoptosis in normal human skin fibroblasts (NHSFs) overexpressing AQP3. After severe UVA irradiation, there was an increase in oxidative cell stress and apoptosis when AQP3 levels decreased. We also found that silencing AQP3 sensitized NHSFs to low-dose UVA. Overexpressing AQP3 was protective against high-dose UVA-induced oxidative stress and apoptosis. Besides, we observed that Bcl-2 may be involved in UVA-induced apoptosis. Our findings suggested that the water/glycerol-transporting protein AQP3 plays a role in resistance to UVA-induced apoptosis.
Collapse
Affiliation(s)
- Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | | | | | | | | | | | | |
Collapse
|