1
|
Xu D, Gong Y, Zhang L, Xiao F, Wang X, Qin J, Tan L, Yang T, Lin Z, Xu Z, Liu X, Xiao F, Zhang F, Tang F, Zuo J, Luo X, Huang W, Yang L, Yang W. Modular Biomimetic Strategy Enables Discovery and SAR Exploration of Oxime Macrocycles as Influenza A Virus (H1N1) Inhibitors. J Med Chem 2024; 67:8201-8224. [PMID: 38736187 DOI: 10.1021/acs.jmedchem.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Although vaccination remains the prevalent prophylactic means for controlling Influenza A virus (IAV) infections, novel structural antivirus small-molecule drugs with new mechanisms of action for treating IAV are highly desirable. Herein, we describe a modular biomimetic strategy to expeditiously achieve a new class of macrocycles featuring oxime, which might target the hemagglutinin (HA)-mediated IAV entry into the host cells. SAR analysis revealed that the size and linker of the macrocycles play an important role in improving potency. Particularly, as a 14-membered macrocyclic oxime, 37 exhibited potent inhibitory activity against IAV H1N1 with an EC50 value of 23 nM and low cytotoxicity, which alleviated cytopathic effects and protected cell survival obviously after H1N1 infection. Furthermore, 37 showed significant synergistic activity with neuraminidase inhibitor oseltamivir in vitro.
Collapse
Affiliation(s)
- Dandan Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Gong
- Laboratory of Immunopharmacology, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianju Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Xiao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinran Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ji Qin
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Tan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeng Lin
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongliang Xu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiujuan Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuling Xiao
- Laboratory of Immunopharmacology, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feili Zhang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Tang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Yang
- Laboratory of Immunopharmacology, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Gaisina IN, Peet NP, Cheng H, Li P, Du R, Cui Q, Furlong K, Manicassamy B, Caffrey M, Thatcher GRJ, Rong L. Optimization of 4-Aminopiperidines as Inhibitors of Influenza A Viral Entry That Are Synergistic with Oseltamivir. J Med Chem 2020; 63:3120-3130. [PMID: 32069052 DOI: 10.1021/acs.jmedchem.9b01900] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vaccination is the most prevalent prophylactic means for controlling seasonal influenza infections. However, an effective vaccine usually takes at least 6 months to develop for the circulating strains. Therefore, new therapeutic options are needed for the acute treatment of influenza infections to control this virus and prevent epidemics/pandemics from developing. We have discovered fast-acting, orally bioavailable acylated 4-aminopiperidines with an effective mechanism of action targeting viral hemagglutinin (HA). Our data show that these compounds are potent entry inhibitors of influenza A viruses. We present docking studies that suggest an HA binding site for these inhibitors on H5N1. Compound 16 displayed a significant decrease of viral titer when evaluated in the infectious assays with influenza virus H1N1 (A/Puerto Rico/8/1934) or H5N1 (A/Vietnam/1203/2004) strains and the oseltamivir-resistant strain with the most common H274Y mutation. In addition, compound 16 showed significant synergistic activity with oseltamivir in vitro.
Collapse
Affiliation(s)
- Irina N Gaisina
- UICentre (Drug Discovery@UIC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States.,Chicago BioSolutions, Inc., 2242 West Harrison Street, Chicago, Illinois 60612, United States
| | - Norton P Peet
- Chicago BioSolutions, Inc., 2242 West Harrison Street, Chicago, Illinois 60612, United States
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, Illinois 60612, United States
| | - Ping Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 16369 Jinshi Road, Jinan, Shandong 250355, China
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 16369 Jinshi Road, Jinan, Shandong 250355, China
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 16369 Jinshi Road, Jinan, Shandong 250355, China
| | - Kevin Furlong
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, United States
| | - Balaji Manicassamy
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, United States.,Department of Microbiology and Immunology, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, United States
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, Illinois 60607, United States
| | - Gregory R J Thatcher
- UICentre (Drug Discovery@UIC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, Illinois 60612, United States
| |
Collapse
|
3
|
Kim MC, Lee YN, Kim YJ, Choi HJ, Kim KH, Lee YJ, Kang SM. Immunogenicity and efficacy of replication-competent recombinant influenza virus carrying multimeric M2 extracellular domains in a chimeric hemagglutinin conjugate. Antiviral Res 2017; 148:43-52. [PMID: 29107058 DOI: 10.1016/j.antiviral.2017.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023]
Abstract
Current influenza vaccines provide hemagglutinin (HA) strain-specific protection. To improve cross protection, we engineered replication-competent influenza A virus to express tandem repeats of heterologous M2 extracellular (M2e) domains in a chimeric HA. M2e epitopes conjugated to HA glycoproteins (M2e4x-HA) were found to be expressed on the surfaces of a replicable influenza virus as examined by electron microscopy. The recombinant influenza virus containing M2e4x-HA was moderately attenuated but superior to the parental virus in inducing M2e specific antibodies without compromising HA immunogenicity. Recombinant influenza virus immune mice showed better cross protection than parental virus immune mice. Immune sera from the mice with inoculation of live recombinant influenza virus expressing M2e4x-HA were effective in conferring protection against H1, H3, and H5 subtype influenza viruses. This study indicates that recombinant influenza virus expressing conserved protective epitopes in an HA chimeric form can provide a new approach for improving the efficacy of influenza vaccines.
Collapse
Affiliation(s)
- Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA; Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, 39660, Republic of Korea
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA; Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, 39660, Republic of Korea
| | - Yu-Jin Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, AB, T6G 2V4, Canada
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Youn-Jeong Lee
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, 39660, Republic of Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
4
|
Lei H, Peng X, Ouyang J, Zhao D, Jiao H, Shu H, Ge X. Protective immunity against influenza H5N1 virus challenge in chickens by oral administration of recombinant Lactococcus lactis expressing neuraminidase. BMC Vet Res 2015; 11:85. [PMID: 25880824 PMCID: PMC4389297 DOI: 10.1186/s12917-015-0399-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Highly pathogenic H5N1 avian influenza viruses pose a debilitating pandemic threat in poultry. Current influenza vaccines predominantly focus on hemagglutinin (HA) which anti-HA antibodies are often neutralizing, and are used routinely to assess vaccine immunogenicity. However, Neuraminidase (NA), the other major glycoprotein on the surface of the influenza virus, has historically served as the target for antiviral drug therapy and is much less studied in the context of humoral immunity. The aim of this study was to evaluate the protective immunity of NA based on Lactococcus lactis (L.lactis) expression system against homologous H5N1 virus challenge in a chicken model. RESULTS L.lactis/pNZ2103-NA which NA is derived from A/Vietnam/1203/2004 (H5N1) (VN/1203/04) was constructed based on L.lactis constitutive expression system in this study. Chickens vaccinated orally with 10(12) colony-forming unit (CFU) of L.lactis/pNZ2103-NA could elicit significant NA-specific serum IgG and mucosa IgA antibodies, as well as neuraminidase inhibition (NI) titer compared with chickens administered orally with saline or L.lactis/pNZ2103 control. Most importantly, the results revealed that chickens administered orally with L.lactis/pNZ2103-NA were completely protected from a lethal H5N1 virus challenge. CONCLUSIONS The data obtained in the present study indicate that recombinant L.lactis/pNZ2103-NA in the absence of adjuvant can be considered an effective mucosal vaccine against H5N1 infection in chickens via oral administration. Further, these findings support that recombinant L.lactis/pNZ2103-NA can be used to perform mass vaccination in poultry during A/H5N1 pandemic.
Collapse
Affiliation(s)
- Han Lei
- School of Medicine, Southwest Jiaotong University, Chengdu, 6111756, China. .,Department of Biomedical Engineering, State University of New York, Binghamton, 13902, USA. .,Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Xiaojue Peng
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Jiexiu Ouyang
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Daxian Zhao
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Huifeng Jiao
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Handing Shu
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Xinqi Ge
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| |
Collapse
|
5
|
Zhang N, Zheng BJ, Lu L, Zhou Y, Jiang S, Du L. Advancements in the development of subunit influenza vaccines. Microbes Infect 2014; 17:123-34. [PMID: 25529753 DOI: 10.1016/j.micinf.2014.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022]
Abstract
The ongoing threat of influenza epidemics and pandemics has emphasized the importance of developing safe and effective vaccines against infections from divergent influenza viruses. In this review, we first introduce the structure and life cycle of influenza A viruses, describing major influenza A virus-caused pandemics. We then compare different types of influenza vaccines and discuss current advancements in the development of subunit influenza vaccines, particularly those based on nucleoprotein (NP), extracellular domain of matrix protein 2 (M2e) and hemagglutinin (HA) proteins. We also illustrate potential strategies for improving the efficacy of subunit influenza vaccines.
Collapse
Affiliation(s)
- Naru Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Bo-Jian Zheng
- Department of Microbiology, University of Hong Kong, Pokfulam, Hong Kong
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.
| |
Collapse
|
6
|
Mehta SR, Vinterbo SA, Little SJ. Ensuring privacy in the study of pathogen genetics. THE LANCET. INFECTIOUS DISEASES 2014; 14:773-777. [PMID: 24721230 DOI: 10.1016/s1473-3099(14)70016-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Rapid growth in the genetic sequencing of pathogens in recent years has led to the creation of large sequence databases. This aggregated sequence data can be very useful for tracking and predicting epidemics of infectious diseases. However, the balance between the potential public health benefit and the risk to personal privacy for individuals whose genetic data (personal or pathogen) are included in such work has been difficult to delineate, because neither the true benefit nor the actual risk to participants has been adequately defined. Existing approaches to minimise the risk of privacy loss to participants are based on de-identification of data by removal of a predefined set of identifiers. These approaches neither guarantee privacy nor protect the usefulness of the data. We propose a new approach to privacy protection that will quantify the risk to participants, while still maximising the usefulness of the data to researchers. This emerging standard in privacy protection and disclosure control, which is known as differential privacy, uses a process-driven rather than data-centred approach to protecting privacy.
Collapse
Affiliation(s)
- Sanjay R Mehta
- Division of Infectious Diseases, University of California, San Diego, CA, USA.
| | - Staal A Vinterbo
- Division of Biomedical Informatics, University of California, San Diego, CA, USA
| | - Susan J Little
- Division of Infectious Diseases, University of California, San Diego, CA, USA
| |
Collapse
|
7
|
Lukashevich IS, Shirwan H. Adenovirus-Based Vectors for the Development of Prophylactic and Therapeutic Vaccines. NOVEL TECHNOLOGIES FOR VACCINE DEVELOPMENT 2014. [PMCID: PMC7121347 DOI: 10.1007/978-3-7091-1818-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Emerging and reemerging infectious diseases as well as cancer pose great global health impacts on the society. Vaccines have emerged as effective treatments to prevent or reduce the burdens of already developed diseases. This is achieved by means of activating various components of the immune system to generate systemic inflammatory reactions targeting infectious agents or diseased cells for control/elimination. DNA virus-based genetic vaccines gained significant attention in the past decades owing to the development of DNA manipulation technologies, which allowed engineering of recombinant viral vectors encoding sequences for foreign antigens or their immunogenic epitopes as well as various immunomodulatory molecules. Despite tremendous progress in the past 50 years, many hurdles still remain for achieving the full clinical potential of viral-vectored vaccines. This chapter will present the evolution of vaccines from “live” or “attenuated” first-generation agents to recombinant DNA and viral-vectored vaccines. Particular emphasis will be given to human adenovirus (Ad) for the development of prophylactic and therapeutic vaccines. Ad biological properties related to vaccine development will be highlighted along with their advantages and potential hurdles to be overcome. In particular, we will discuss (1) genetic modifications in the Ad capsid protein to reduce the intrinsic viral immunogenicity, (2) antigen capsid incorporation for effective presentation of foreign antigens to the immune system, (3) modification of the hexon and fiber capsid proteins for Ad liver de-targeting and selective retargeting to cancer cells, (4) Ad-based vaccines carrying “arming” transgenes with immunostimulatory functions as immune adjuvants, and (5) oncolytic Ad vectors as a new therapeutic approach against cancer. Finally, the combination of adenoviral vectors with other non-adenoviral vector systems, the prime/boost strategy of immunization, clinical trials involving Ad-based vaccines, and the perspectives for the field development will be discussed.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicolog Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| | - Haval Shirwan
- Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| |
Collapse
|
8
|
New small molecule entry inhibitors targeting hemagglutinin-mediated influenza a virus fusion. J Virol 2013; 88:1447-60. [PMID: 24198411 DOI: 10.1128/jvi.01225-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses are a major public health threat worldwide, and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The influenza virus glycoprotein hemagglutinin (HA) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-influenza drugs. Using pseudotype virus-based high-throughput screens, we have identified several new small molecules capable of inhibiting influenza virus entry. We prioritized two novel inhibitors, MBX2329 and MBX2546, with aminoalkyl phenol ether and sulfonamide scaffolds, respectively, that specifically inhibit HA-mediated viral entry. The two compounds (i) are potent (50% inhibitory concentration [IC50] of 0.3 to 5.9 μM); (ii) are selective (50% cytotoxicity concentration [CC(50)] of >100 μM), with selectivity index (SI) values of >20 to 200 for different influenza virus strains; (iii) inhibit a wide spectrum of influenza A viruses, which includes the 2009 pandemic influenza virus A/H1N1/2009, highly pathogenic avian influenza (HPAI) virus A/H5N1, and oseltamivir-resistant A/H1N1 strains; (iv) exhibit large volumes of synergy with oseltamivir (36 and 331 μM(2) % at 95% confidence); and (v) have chemically tractable structures. Mechanism-of-action studies suggest that both MBX2329 and MBX2546 bind to HA in a nonoverlapping manner. Additional results from HA-mediated hemolysis of chicken red blood cells (cRBCs), competition assays with monoclonal antibody (MAb) C179, and mutational analysis suggest that the compounds bind in the stem region of the HA trimer and inhibit HA-mediated fusion. Therefore, MBX2329 and MBX2546 represent new starting points for chemical optimization and have the potential to provide valuable future therapeutic options and research tools to study the HA-mediated entry process.
Collapse
|
9
|
Vaccination using recombinants influenza and adenoviruses encoding amastigote surface protein-2 are highly effective on protection against Trypanosoma cruzi infection. PLoS One 2013; 8:e61795. [PMID: 23637908 PMCID: PMC3634828 DOI: 10.1371/journal.pone.0061795] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/13/2013] [Indexed: 12/13/2022] Open
Abstract
In the present study we evaluated the protection raised by immunization with recombinant influenza viruses carrying sequences coding for polypeptides corresponding to medial and carboxi-terminal moieties of Trypanosoma cruzi ´s amastigote surface protein 2 (ASP2). Those viruses were used in sequential immunization with recombinant adenovirus (heterologous prime-boost immunization protocol) encoding the complete sequence of ASP2 (Ad-ASP2) in two mouse strains (C57BL/6 and C3H/He). The CD8 effector response elicited by this protocol was comparable to that observed in mice immunized twice with Ad-ASP2 and more robust than that observed in mice that were immunized once with Ad-ASP2. Whereas a single immunization with Ad-ASP2 sufficed to completely protect C57BL/6 mice, a higher survival rate was observed in C3H/He mice that were primed with recombinant influenza virus and boosted with Ad-ASP2 after being challenged with T. cruzi. Analyzing the phenotype of CD8+ T cells obtained from spleen of vaccinated C3H/He mice we observed that heterologous prime-boost immunization protocol elicited more CD8+ T cells specific for the immunodominant epitope as well as a higher number of CD8+ T cells producing TNF-α and IFN-γ and a higher mobilization of surface marker CD107a. Taken together, our results suggest that immunodominant subpopulations of CD8+ T elicited after immunization could be directly related to degree of protection achieved by different immunization protocols using different viral vectors. Overall, these results demonstrated the usefulness of recombinant influenza viruses in immunization protocols against Chagas Disease.
Collapse
|
10
|
Shelton H, Roberts KL, Molesti E, Temperton N, Barclay WS. Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility. J Gen Virol 2013; 94:1220-1229. [PMID: 23486663 PMCID: PMC3709624 DOI: 10.1099/vir.0.050526-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The H5N1 influenza A viruses have circulated widely in the avian population for 10 years with only sporadic infection of humans observed and no sustained human to human transmission. Vaccination against potential pandemic strains is one strategy in planning for future influenza pandemics; however, the success of live attenuated vaccines for H5N1 has been limited, due to poor replication in the human upper respiratory tract (URT). Mutations that increase the ability of H5N1 viruses to replicate in the URT will aid immunogenicity of these vaccines and provide information about humanizing adaptations in H5N1 strains that may signal transmissibility. As well as mediating receptor interactions, the haemagglutinin (HA) protein of influenza facilitates fusion of the viral membrane and genome entry into the host cell; this process is pH dependent. We have shown in this study that the pH at which a panel of avian influenza HA proteins, including H5, mediate fusion is higher than that for human influenza HA proteins, and that mutations in the H5 HA can reduce the pH of fusion. Coupled with receptor switching mutations, increasing the pH stability of the H5 HA resulted in increased viral shedding of H5N1 from the nasal cavity of ferrets and contact transmission to a co-housed animal. Ferret serum antibodies induced by infection with any of the mutated H5 HA viruses neutralized HA pseudotyped lentiviruses bearing homologous or heterologous H5 HAs, suggesting that this strategy to increase nasal replication of a vaccine virus would not compromise vaccine efficacy.
Collapse
Affiliation(s)
- Holly Shelton
- Division of Infectious Diseases, Imperial College London, St Mary's Campus, London, UK
| | - Kim L Roberts
- Division of Infectious Diseases, Imperial College London, St Mary's Campus, London, UK
| | - Eleonora Molesti
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Anson Building, Chatham Maritime ME4 4TB, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Anson Building, Chatham Maritime ME4 4TB, UK
| | - Wendy S Barclay
- Division of Infectious Diseases, Imperial College London, St Mary's Campus, London, UK
| |
Collapse
|
11
|
Clinthorne JF, Beli E, Duriancik DM, Gardner EM. NK cell maturation and function in C57BL/6 mice are altered by caloric restriction. THE JOURNAL OF IMMUNOLOGY 2012; 190:712-22. [PMID: 23241894 DOI: 10.4049/jimmunol.1201837] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NK cells are a heterogenous population of innate lymphocytes with diverse functional attributes critical for early protection from viral infections. We have previously reported a decrease in influenza-induced NK cell cytotoxicity in 6-mo-old C57BL/6 calorically restricted (CR) mice. In the current study, we extend our findings on the influence of CR on NK cell phenotype and function in the absence of infection. We demonstrate that reduced mature NK cell subsets result in increased frequencies of CD127(+) NK cells in CR mice, skewing the function of the total NK cell pool. NK cells from CR mice produced TNF-α and GM-CSF at a higher level, whereas IFN-γ production was impaired following IL-2 plus IL-12 or anti-NK1.1 stimulation. NK cells from CR mice were highly responsive to stimulation with YAC-1 cells such that CD27(-)CD11b(+) NK cells from CR mice produced granzyme B and degranulated at a higher frequency than CD27(-)CD11b(+) NK cells from ad libitum fed mice. CR has been shown to be a potent dietary intervention, yet the mechanisms by which the CR increases life span have yet to be fully understood. To our knowledge, these findings are the first in-depth analysis of the effects of caloric intake on NK cell phenotype and function and provide important implications regarding potential ways in which CR alters NK cell function prior to infection or cancer.
Collapse
Affiliation(s)
- Jonathan F Clinthorne
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
12
|
Abstract
The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future.
Collapse
|
13
|
Easterbrook JD, Schwartzman LM, Gao J, Kash JC, Morens DM, Couzens L, Wan H, Eichelberger MC, Taubenberger JK. Protection against a lethal H5N1 influenza challenge by intranasal immunization with virus-like particles containing 2009 pandemic H1N1 neuraminidase in mice. Virology 2012; 432:39-44. [PMID: 22727831 PMCID: PMC3725556 DOI: 10.1016/j.virol.2012.06.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/23/2012] [Accepted: 06/01/2012] [Indexed: 11/30/2022]
Abstract
Highly pathogenic H5N1 influenza shares the same neuraminidase (NA) subtype with the 2009 pandemic (H1N1pdm09), and cross-reactive NA immunity might protect against or mitigate lethal H5N1 infection. In this study, mice were either infected with a sublethal dose of H1N1pdm09 or were vaccinated and boosted with virus-like particles (VLP) consisting of the NA and matrix proteins, standardized by NA activity and administered intranasally, and were then challenged with a lethal dose of HPAI H5N1 virus. Mice previously infected with H1N1pdm09 survived H5N1 challenge with no detectable virus or respiratory tract pathology on day 4. Mice immunized with H5N1 or H1N1pdm09 NA VLPs were also fully protected from death, with a 100-fold and 10-fold reduction in infectious virus, respectively, and reduced pathology in the lungs. Human influenza vaccines that elicit not only HA, but also NA immunity may provide enhanced protection against the emergence of seasonal and pandemic viruses.
Collapse
Affiliation(s)
- Judith D. Easterbrook
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Louis M. Schwartzman
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jin Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA
| | - John C. Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David M. Morens
- Office of the Director, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura Couzens
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA
| | - Hongquan Wan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA
| | - Maryna C. Eichelberger
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Abstract
The influenza virus is a respiratory pathogen with a negative-sense, segmented RNA genome. Construction of recombinant influenza viruses in the laboratory was reported starting in the 1980s. Within a short period of time, pioneer researchers had devised methods that made it possible to construct influenza viral vectors from cDNA plasmid systems. Herein, we discuss the evolution of influenza virus reverse genetics, from helper virus-dependent systems, to helper virus-independent 17-plasmid systems, and all the way to 3- and 1- plasmid systems. Successes in the modification of different gene segments for various applications, including vaccine and gene therapies are highlighted.
Collapse
Affiliation(s)
- Junwei Li
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | | | | |
Collapse
|
15
|
Translational research in infectious disease: current paradigms and challenges ahead. Transl Res 2012; 159:430-53. [PMID: 22633095 PMCID: PMC3361696 DOI: 10.1016/j.trsl.2011.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/23/2011] [Accepted: 12/24/2012] [Indexed: 12/25/2022]
Abstract
In recent years, the biomedical community has witnessed a rapid scientific and technologic evolution after the development and refinement of high-throughput methodologies. Concurrently and consequentially, the scientific perspective has changed from the reductionist approach of meticulously analyzing the fine details of a single component of biology to the "holistic" approach of broadmindedly examining the globally interacting elements of biological systems. The emergence of this new way of thinking has brought about a scientific revolution in which genomics, proteomics, metabolomics, and other "omics" have become the predominant tools by which large amounts of data are amassed, analyzed, and applied to complex questions of biology that were previously unsolvable. This enormous transformation of basic science research and the ensuing plethora of promising data, especially in the realm of human health and disease, have unfortunately not been followed by a parallel increase in the clinical application of this information. On the contrary, the number of new potential drugs in development has been decreasing steadily, suggesting the existence of roadblocks that prevent the translation of promising research into medically relevant therapeutic or diagnostic application. In this article, we will review, in a noninclusive fashion, several recent scientific advancements in the field of translational research, with a specific focus on how they relate to infectious disease. We will also present a current picture of the limitations and challenges that exist for translational research, as well as ways that have been proposed by the National Institutes of Health to improve the state of this field.
Collapse
Key Words
- 2-de, 2-dimensional electrophoresis
- 2-d dige, 2-dimensional differential in-gel electrophoresis
- cf, cystic fibrosis
- ctsa, clinical and translational science awards program
- ebv, epstein-barr virus
- fda, u.s. food and drug administration
- gwas, genome-wide association studies
- hcv, hepatitis c virus
- hmp, human microbiome project
- hplc, high-pressure liquid chromatography
- lc, liquid chromatography
- lsb, laboratory of systems biology
- mab, monoclonal antibody
- mrm/srm, multiple reaction monitoring/selective reaction monitoring
- ms, mass spectrometry
- ms/ms, tandem mass spectrometry
- ncats, national center for advancing translational sciences
- ncrr, national center of research resources
- niaid, national institute of allergy and infectious disease
- nih, national institutes of health
- nme, new molecular entity
- nmr, nuclear magnetic resonance
- pbmc, peripheral blood mononuclear cell
- pcr, polymerase chain reaction
- prr, pathogen recognition receptor
- qqq, triple quadrupole mass spectrometry
- sars-cov, coronavirus associated with severe acute respiratory syndrome
- snp, single nucleotide polymorphism
- tb, tuberculosis
- uti, urinary tract infection
- yfv, yellow fever virus
Collapse
|
16
|
Eichelberger MC, Green MD. Animal models to assess the toxicity, immunogenicity and effectiveness of candidate influenza vaccines. Expert Opin Drug Metab Toxicol 2011; 7:1117-27. [PMID: 21749266 DOI: 10.1517/17425255.2011.602065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Every year, > 100 million doses of licensed influenza vaccine are administered worldwide, with relatively few serious adverse events reported. Initiatives to manufacture influenza vaccines on different platforms have come about to ensure timely production of strain-specific as well as universal vaccines. To prevent adverse events that may be associated with these new vaccines, it is important to evaluate the toxicity of new formulations in animal models. AREAS COVERED This review outlines preclinical studies that evaluate safety, immunogenicity and effectiveness of novel products to support further development and clinical trials. This has been done through a review of the latest literature describing vaccines under development. EXPERT OPINION The objective of preclinical safety tests is to demonstrate the absence of toxic contaminants and adventitious agents. Additional tests that characterize vaccine content more completely, or demonstrate the absence of exacerbated disease following virus challenge in vaccinated animals, may provide additional data to ensure the safety of new vaccine strategies.
Collapse
Affiliation(s)
- Maryna C Eichelberger
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | |
Collapse
|
17
|
Modifications in the polymerase genes of a swine-like triple-reassortant influenza virus to generate live attenuated vaccines against 2009 pandemic H1N1 viruses. J Virol 2010; 85:456-69. [PMID: 20962084 DOI: 10.1128/jvi.01503-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
On 11 June 2009, the World Health Organization (WHO) declared that the outbreaks caused by novel swine-origin influenza A (H1N1) virus had reached pandemic proportions. The pandemic H1N1 (H1N1pdm) virus is the predominant influenza virus strain in the human population. It has also crossed the species barriers and infected turkeys and swine in several countries. Thus, the development of a vaccine that is effective in multiple animal species is urgently needed. We have previously demonstrated that the introduction of temperature-sensitive mutations into the PB2 and PB1 genes of an avian H9N2 virus, combined with the insertion of a hemagglutinin (HA) tag in PB1, resulted in an attenuated (att) vaccine backbone for both chickens and mice. Because the new pandemic strain is a triple-reassortant (TR) virus, we chose to introduce the double attenuating modifications into a swine-like TR virus isolate, A/turkey/OH/313053/04 (H3N2) (ty/04), with the goal of producing live attenuated influenza vaccines (LAIV). This genetically modified backbone had impaired polymerase activity and restricted virus growth at elevated temperatures. In vivo characterization of two H1N1 vaccine candidates generated using the ty/04 att backbone demonstrated that this vaccine is highly attenuated in mice, as indicated by the absence of signs of disease, limited replication, and minimum histopathological alterations in the respiratory tract. A single immunization with the ty/04 att-based vaccines conferred complete protection against a lethal H1N1pdm virus infection in mice. More importantly, vaccination of pigs with a ty/04 att-H1N1 vaccine candidate resulted in sterilizing immunity upon an aggressive intratracheal challenge with the 2009 H1N1 pandemic virus. Our studies highlight the safety of the ty/04 att vaccine platform and its potential as a master donor strain for the generation of live attenuated vaccines for humans and livestock.
Collapse
|