1
|
Jiang W, Pang X, Ha P, Li C, Chang GX, Zhang Y, Bossong LA, Ting K, Soo C, Zheng Z. Fibromodulin selectively accelerates myofibroblast apoptosis in cutaneous wounds by enhancing interleukin 1β signaling. Nat Commun 2025; 16:3499. [PMID: 40221432 PMCID: PMC11993684 DOI: 10.1038/s41467-025-58906-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Activated myofibroblasts deposit extracellular matrix material to facilitate rapid wound closure that can heal scarlessly during fetal development. However, adult myofibroblasts exhibit a relatively long life and persistent function, resulting in scarring. Thus, understanding how fetal and adult tissue regeneration differs may serve to identify factors that promote more optimal wound healing in adults with little or less scarring. We previously found that matricellular proteoglycan fibromodulin is one such factor promoting more optimal repair, but the underlying molecular and cellular mechanisms for these effects have not been fully elucidated. Here, we find that fibromodulin induces myofibroblast apoptosis after wound closure to reduce scarring in small and large animal models. Mechanistically, fibromodulin accelerates and prolongs the formation of the interleukin 1β-interleukin 1 receptor type 1-interleukin 1 receptor accessory protein ternary complex to increase the apoptosis of myofibroblasts and keloid- and hypertrophic scar-derived cells. As the persistence of myofibroblasts during tissue regeneration is a key cause of fibrosis in most organs, fibromodulin represents a promising, broad-spectrum anti-fibrotic therapeutic.
Collapse
Affiliation(s)
- Wenlu Jiang
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiaoxiao Pang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral, Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Pin Ha
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Grace Xinlian Chang
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuxin Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral, Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Lawrence A Bossong
- Department of Neuroscience, Princeton University, Princeton, NJ, 08540, USA
| | - Kang Ting
- American Dental Association Forsyth Institute, Cambridge, MA, 02142, USA.
- School of Dentistry, National Yang-Ming Chiao Tung University, Taipei, 30010, Taiwan.
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhong Zheng
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Yüksel A, Karadoğan D, Hürsoy N, Telatar TG, Kabil NK, Marım F, Kaya İ, Er AB, Erçelik M, Yuluğ DP, Şenel MY, İlgar C, Gültekin Ö, Karakaya SÇ, Kara BY, Özçelik N, Selimoğlu İ, Er KU, Kotan A, Keskin HV, Akgün M. Post-COVID Interstitial Lung Disease: How do We Deal with This New Entity? Balkan Med J 2024; 41:377-386. [PMID: 39192585 PMCID: PMC11588920 DOI: 10.4274/balkanmedj.galenos.2024.2024-3-82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Background In the postacute phase of coronavirus disease-2019 (COVID-19), survivors may have persistent symptoms, lung function abnormalities, and sequelae lesions on thoracic computed tomography (CT). This new entity has been defined as post-COVID interstitial lung disease (ILD) or residual disease. Aims To evaluate the characteristics, risk factors and clinical significance of post-COVID ILD. Study Design Multicenter cross-sectional analysis of data from a randomized clinical study. Methods In this study, patients with persistent respiratory symptoms 3 months after recovery from COVID-19 were evaluated by two pulmonologists and a radiologist. post-COVID ILD was defined as the presence of respiratory symptoms, hypoxemia, restrictive defect on lung function tests, and interstitial changes on follow-up high-resolution computed tomography (HRCT). Results At the three-month follow-up, 375 patients with post-COVID-19 syndrome were evaluated, and 262 patients were found to have post-COVID ILD. The most prevalent complaints were dyspnea (n = 238, 90.8%), exercise intolerance (n = 166, 63.4%), fatigue (n = 142, 54.2%), and cough (n = 136, 52%). The mean Medical Research Council dyspnea score was 2.1 ± 0.9, oxygen saturation was 92.2 ± 5.9%, and 6-minute walking distance was 360 ± 140 meters. The mean diffusing capacity of the lung for carbon monoxide was 58 ± 21, and the forced vital capacity was 70% ± 19%. Ground glass opacities and fibrotic bands were the most common findings on thoracic HRCT. Fibrosis-like lesions such as interlobular septal thickening and traction bronchiectasis were observed in 38.3% and 27.9% of the patients, respectively. No honeycomb cysts were observed. Active smoking [odds ratio (OR), 1.96; 95% confidence interval (CI), 1.44-2.67), intensive care unit admission during the acute phase (OR, 1.46; 95% CI, 1.1-1.95), need for high-flow nasal oxygen (OR, 1.55; 95% CI, 1.42-1.9) or non-invasive ventilation (OR, 1.31; 95% CI, 0.8-2.07), and elevated serum lactate dehydrogenase levels (OR, 1.23; 95% CI 1.18-1.28) were associated with the development of post-COVID ILD. At the 6-month follow-up, the respiratory symptoms and pulmonary functions had improved spontaneously without any specific treatment in 35 patients (13.4%). The radiological interstitial lesions had spontaneously regressed in 54 patients (20.6%). Conclusion The co-existence of respiratory symptoms, radiological parenchymal lesions, and pulmonary functional abnormalities which suggest a restrictive ventilatory defect should be defined as post-COVID-19 ILD. However, the term “fibrosis” should be used carefully. Active smoking, severe COVID-19, and elevated lactate dehydrogenase level are the main risk factors of this condition. These post-COVID functional and radiological changes could disappear over time in 20% of the patients.
Collapse
Affiliation(s)
- Aycan Yüksel
- Department of Respiratory Medicine Başkent University Faculty of Medicine, Ankara, Türkiye
| | - Dilek Karadoğan
- Department of Respiratory Medicine Recep Tayyip Erdoğan University Faculty of Medicine, Rize, Türkiye
| | - Nur Hürsoy
- Department of Radiology Recep Tayyip Erdoğan University Faculty of Medicine, Rize, Türkiye
| | - Tahsin Gökhan Telatar
- Department of Public Health Recep Tayyip Erdoğan University Faculty of Medicine, Rize, Türkiye
| | - Neslihan Köse Kabil
- Department of Respiratory Medicine Yalova Training and Research Hospital, Yalova, Türkiye
| | - Feride Marım
- Department of Respiratory Medicine Kütahya Health Sciences University Faculty of Medicine, Kütahya, Türkiye
| | - İlknur Kaya
- Department of Respiratory Medicine Kütahya Health Sciences University Faculty of Medicine, Kütahya, Türkiye
| | - Aslıhan Banu Er
- Department of Respiratory Medicine Uşak University Faculty of Medicine, Uşak, Türkiye
| | - Merve Erçelik
- Department of Respiratory Medicine Süleyman Demirel University Faculty of Medicine, Isparta, Türkiye
| | - Demet Polat Yuluğ
- Department of Respiratory Medicine Mersin City Hospital, Mersin, Türkiye
| | - Merve Yumrukuz Şenel
- Department of Respiratory Medicine Balıkesir University Faculty of Medicine, Balıkesir, Türkiye
| | - Ceren İlgar
- Department of Respiratory Medicine Ufuk University Faculty of Medicine, Ankara, Türkiye
| | - Ökkeş Gültekin
- Department of Respiratory Medicine Oltu State Hospital, Erzurum, Türkiye
| | - Selin Çakmakcı Karakaya
- Subdivision of Work and Occupational Diseases Hacettepe University Faculty of Medicine, Ankara Türkiye
| | - Bilge Yılmaz Kara
- Department of Respiratory Medicine Recep Tayyip Erdoğan University Faculty of Medicine, Rize, Türkiye
| | - Neslihan Özçelik
- Department of Respiratory Medicine Recep Tayyip Erdoğan University Faculty of Medicine, Rize, Türkiye
| | - İnci Selimoğlu
- Department of Respiratory Medicine Recep Tayyip Erdoğan University Faculty of Medicine, Rize, Türkiye
| | - Kübra Uyar Er
- Department of Respiratory Medicine Recep Tayyip Erdoğan University Faculty of Medicine, Rize, Türkiye
| | - Abdurrahman Kotan
- Department of Respiratory Medicine Recep Tayyip Erdoğan University Faculty of Medicine, Rize, Türkiye
| | - Hasan Veysel Keskin
- Department of Respiratory Medicine Recep Tayyip Erdoğan University Faculty of Medicine, Rize, Türkiye
| | - Metin Akgün
- Department of Respiratory Medicine Ağrı İbrahim Çeçen University Faculty of Medicine, Ağrı, Türkiye
| |
Collapse
|
3
|
Shaker O, El Amir M, Elfatah YA, Elwi HM. Expression patterns of lncRNA MALAT-1 in SARS-COV-2 infection and its potential effect on disease severity via miR-200c-3p and SIRT1. Biochem Biophys Rep 2023; 36:101562. [PMID: 37965063 PMCID: PMC10641570 DOI: 10.1016/j.bbrep.2023.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Downregulating Angiotensin Converting Enzyme2 (ACE2) expression may be a shared mechanism for RNA viruses. Aim Evaluate the expressions of ACE2 effectors: the long non-coding RNA 'MALAT-1', the micro-RNA 'miR-200c-3p' and the histone deacetylase 'SIRT1' in SARS-COV-2 patients and correlate to disease severity. Sera samples from 98 SARS-COV-2 patients and 30 healthy control participants were collected. qRT-PCR was used for MALAT-1 and miR-200c-3p expression. SIRT1 was measured using ELISA. Results In sera of COVID-19 patients, gene expression of miR-200c-3p is increased while MALAT-1 is decreased. SIRT1 protein level is decreased (P value < 0.001). Findings are accentuated with increased disease severity. Serum MALAT-1, miR-200c-3p and SIRT1 could be used as diagnostic markers at cut off values of 0.04 (95.9 % sensitivity), 5.59 (94.9 % sensitivity, 99 % specificity), and 7.4 (98 % sensitivity) respectively. A novel MALAT-1-miR-200c-3p-SIRT1 pathway may be involved in the regulation of SARS-COV-2 severity.
Collapse
Affiliation(s)
- Olfat Shaker
- Medical Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| | - Monica El Amir
- Medical Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| | - Yasmine Abd Elfatah
- Internal Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| | - Heba M. Elwi
- Medical Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| |
Collapse
|
4
|
de Nola G, Leclercq B, Mougel A, Taront S, Simonneau C, Forneris F, Adriaenssens E, Drobecq H, Iamele L, Dubuquoy L, Melnyk O, Gherardi E, de Jonge H, Vicogne J. Dimerization of kringle 1 domain from hepatocyte growth factor/scatter factor provides a potent MET receptor agonist. Life Sci Alliance 2022; 5:5/12/e202201424. [PMID: 35905995 PMCID: PMC9348577 DOI: 10.26508/lsa.202201424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 12/22/2022] Open
Abstract
We designed and characterized a potent full MET receptor agonist consisting of two recombinantly linked HGF/SF kringle 1 domains and demonstrated its potential in epithelial tissue regeneration. Hepatocyte growth factor/scatter factor (HGF/SF) and its cognate receptor MET play several essential roles in embryogenesis and regeneration in postnatal life of epithelial organs such as the liver, kidney, lung, and pancreas, prompting a strong interest in harnessing HGF/SF-MET signalling for regeneration of epithelial organs after acute or chronic damage. The limited stability and tissue diffusion of native HGF/SF, however, which reflect the tightly controlled, local mechanism of action of the morphogen, have led to a major search of HGF/SF mimics for therapy. In this work, we describe the rational design, production, and characterization of K1K1, a novel minimal MET agonist consisting of two copies of the kringle 1 domain of HGF/SF in tandem orientation. K1K1 is highly stable and displays biological activities equivalent or superior to native HGF/SF in a variety of in vitro assay systems and in a mouse model of liver disease. These data suggest that this engineered ligand may find wide applications in acute and chronic diseases of the liver and other epithelial organs dependent of MET activation.
Collapse
Affiliation(s)
- Giovanni de Nola
- Department of Molecular Medicine, University of Pavia, Unit of Immunology and General Pathology Section, Pavia, Italy
| | - Bérénice Leclercq
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 9017, CIIL, Center for Infection and Immunity of Lille, Lille, France
| | - Alexandra Mougel
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 9017, CIIL, Center for Infection and Immunity of Lille, Lille, France
| | - Solenne Taront
- University of Lille, Inserm, CHU Lille, U1286, INFINITE, Institute for Translational Research in Inflammation, Lille, France
| | - Claire Simonneau
- Roche Pharmaceutical Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Eric Adriaenssens
- University of Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020, UMR 1277, Canther, Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Hervé Drobecq
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 9017, CIIL, Center for Infection and Immunity of Lille, Lille, France
| | - Luisa Iamele
- Department of Molecular Medicine, University of Pavia, Unit of Immunology and General Pathology Section, Pavia, Italy
| | - Laurent Dubuquoy
- University of Lille, Inserm, CHU Lille, U1286, INFINITE, Institute for Translational Research in Inflammation, Lille, France
| | - Oleg Melnyk
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 9017, CIIL, Center for Infection and Immunity of Lille, Lille, France
| | - Ermanno Gherardi
- Department of Molecular Medicine, University of Pavia, Unit of Immunology and General Pathology Section, Pavia, Italy
| | - Hugo de Jonge
- Department of Molecular Medicine, University of Pavia, Unit of Immunology and General Pathology Section, Pavia, Italy
| | - Jérôme Vicogne
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 9017, CIIL, Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
5
|
Fonte L, Acosta A, Sarmiento ME, Norazmi MN, Ginori M, de Armas Y, Calderón EJ. Overlapping of Pulmonary Fibrosis of Postacute COVID-19 Syndrome and Tuberculosis in the Helminth Coinfection Setting in Sub-Saharan Africa. Trop Med Infect Dis 2022; 7:tropicalmed7080157. [PMID: 36006249 PMCID: PMC9416620 DOI: 10.3390/tropicalmed7080157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
There is an increasing attention to the emerging health problem represented by the clinical and functional long-term consequences of SARS-CoV-2 infection, referred to as postacute COVID-19 syndrome. Clinical, radiographic, and autopsy findings have shown that a high rate of fibrosis and restriction of lung function are present in patients who have recovered from COVID-19. Patients with active TB, or those who have recovered from it, have fibrotic scarred lungs and, consequently, some degree of impaired respiratory function. Helminth infections trigger predominantly type 2 immune responses and the release of regulatory and fibrogenic cytokines, such as TGF-β. Here, we analyze the possible consequences of the overlapping of pulmonary fibrosis secondary to COVID-19 and tuberculosis in the setting of sub-Saharan Africa, the region of the world with the highest prevalence of helminth infection.
Collapse
Affiliation(s)
- Luis Fonte
- Department of Parasitology, Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba
- Correspondence: (L.F.); (E.J.C.)
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.A.); (M.E.S.); (M.N.N.)
| | - María E. Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.A.); (M.E.S.); (M.N.N.)
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.A.); (M.E.S.); (M.N.N.)
| | - María Ginori
- Department of Teaching, Polyclinic “Plaza de la Revolución”, Havana 11300, Cuba;
| | - Yaxsier de Armas
- Department of Clinical Microbiology Diagnostic, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba;
- Department of Pathology, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba
| | - Enrique J. Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Depatamento de Medicina, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
- Correspondence: (L.F.); (E.J.C.)
| |
Collapse
|
6
|
Almhanna H, Al-Mamoori NAM, Naser HH. mRNA expression of the severe acute respiratory syndrome-coronavirus 2 angiotensin-converting enzyme 2 receptor in the lung tissue of Wistar rats according to age. Vet World 2022; 15:427-434. [PMID: 35400965 PMCID: PMC8980378 DOI: 10.14202/vetworld.2022.427-434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/12/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Aim: Angiotensin-converting enzyme 2 (ACE2) is expressed and plays functional and physiological roles in different tissues of the body. This study aimed to distinguish the levels of expression of ACE2 in the lung tissue at different ages of rats. Materials and Methods: In this study, 18 male rats were used and divided into three groups according to age. Real-time quantitative polymerase chain reaction (RT-qPCR) was conducted to determine the levels of the quantification of eosinophil cationic protein mRNA transcript. In addition, tissue specimens of the lung were stained with routine hematoxylin and eosin stains. Results: This study confirmed that RT-qPCR amplification plots of ACE2 gene exhibited clearly expression of the lung tissue of rats in the different groups and there are strong different threshold cycles numbers according to the age at 2 weeks, 2 months, and 6-8 months. Consequently, the expression of ACE2 was completely different between groups depending on the age of the rats. The RT-qPCR results showed that the older animal group (age of 6-8 months) had a significantly higher expression of ACE2 than the other animal groups (ages of 2 weeks and 2 months). In the same way, the second group (age of 2 months) had a significantly higher expression of ACE2 than the first group (age of 2 weeks). This study confirmed that the ACE2 expression is influenced by the age of rats. Conclusion: This study concluded that the expression of the ACE2 receptor of coronavirus disease 2019 would be different according to the age of rats, and this result suggested that expression of ACE2 in lung tissue could determine infection and pathogenesis of COVID-19 during different ages of rats or some individual differences.
Collapse
Affiliation(s)
- Hazem Almhanna
- Department of Anatomy, Histology and Embryology, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Nabeel Abd Murad Al-Mamoori
- Department of Anatomy, Histology and Embryology, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Hassan Hachim Naser
- Department of Microbiology, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| |
Collapse
|
7
|
Singh DK, Aladyeva E, Das S, Singh B, Esaulova E, Swain A, Ahmed M, Cole J, Moodley C, Mehra S, Schlesinger LS, Artyomov MN, Khader SA, Kaushal D. Myeloid cell interferon responses correlate with clearance of SARS-CoV-2. Nat Commun 2022; 13:679. [PMID: 35115549 PMCID: PMC8814034 DOI: 10.1038/s41467-022-28315-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 01/07/2023] Open
Abstract
Emergence of mutant SARS-CoV-2 strains associated with an increased risk of COVID-19-related death necessitates better understanding of the early viral dynamics, host responses and immunopathology. Single cell RNAseq (scRNAseq) allows for the study of individual cells, uncovering heterogeneous and variable responses to environment, infection and inflammation. While studies have reported immune profiling using scRNAseq in terminal human COVID-19 patients, performing longitudinal immune cell dynamics in humans is challenging. Macaques are a suitable model of SARS-CoV-2 infection. Our longitudinal scRNAseq of bronchoalveolar lavage (BAL) cell suspensions from young rhesus macaques infected with SARS-CoV-2 (n = 6) demonstrates dynamic changes in transcriptional landscape 3 days post- SARS-CoV-2-infection (3dpi; peak viremia), relative to 14-17dpi (recovery phase) and pre-infection (baseline) showing accumulation of distinct populations of both macrophages and T-lymphocytes expressing strong interferon-driven inflammatory gene signature at 3dpi. Type I interferon response is induced in the plasmacytoid dendritic cells with appearance of a distinct HLADR+CD68+CD163+SIGLEC1+ macrophage population exhibiting higher angiotensin-converting enzyme 2 (ACE2) expression. These macrophages are significantly enriched in the lungs of macaques at 3dpi and harbor SARS-CoV-2 while expressing a strong interferon-driven innate anti-viral gene signature. The accumulation of these responses correlated with decline in viremia and recovery.
Collapse
Affiliation(s)
- Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Ekaterina Aladyeva
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Bindu Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Ekaterina Esaulova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Amanda Swain
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Journey Cole
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Chivonne Moodley
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Larry S Schlesinger
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Maxim N Artyomov
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA.
| |
Collapse
|
8
|
Farghaly S, Badedi M, Ibrahim R, Sadhan MH, Alamoudi A, Alnami A, Muhajir A. Clinical characteristics and outcomes of post-COVID-19 pulmonary fibrosis: A case-control study. Medicine (Baltimore) 2022; 101:e28639. [PMID: 35060549 PMCID: PMC8772621 DOI: 10.1097/md.0000000000028639] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/27/2021] [Indexed: 01/05/2023] Open
Abstract
The development of pulmonary fibrosis is a rare complication of the novel coronavirus disease 2019 (COVID-19). Limited information is available in the literature about that, and the present study aimed to address this gap.This case-control study included 64 patients with post-COVID-19 pulmonary fibrosis who were hospitalized for COVID-19.The percentage of patients aged ≥65 years (44%) who demised was higher than those who survived (25%). Male patients (62%) had higher mortality than female patients (37%). The most frequently reported clinical symptoms were shortness of breath (98%), cough (91%), and fever (70%). Most COVID-19 patients with pulmonary fibrosis (81%) were admitted to an intensive care unit (ICU), and 63% required mechanical ventilation. Bilateral lung infiltrates (94%), "ground glass" opacity (91%), "honeycomb" lung (25%), and pulmonary consolidation (9%) were commonly identified in COVID-19 patients with pulmonary fibrosis who survived. The findings for computed tomography and dyspnea scale were significantly higher in severe cases admitted to the ICU who required mechanical ventilation. A higher computerized tomography score also correlated significantly with a longer duration of stay in hospital and a higher degree of dyspnea. Half of the COVID-19 patients with pulmonary fibrosis (50%) who survived required oxygen therapy, and those with "honeycomb" lung required long-term oxygen therapy to a far greater extent than others. Cox regression revealed that smoking and asthma were significantly associated with ICU admission and the risk of mortality.Post-COVID-19 pulmonary fibrosis is a severe complication that leads to permanent lung damage or death.
Collapse
Affiliation(s)
- Shereen Farghaly
- Pulmonology Department, King Fahad Central Hospital, Jazan Health Affairs, Saudi Arabia
| | - Mohammed Badedi
- Administration of Research & Studies, Jazan Health Affairs, Saudi Arabia
| | - Rehab Ibrahim
- Pulmonology Department, King Fahad Central Hospital, Jazan Health Affairs, Saudi Arabia
| | - Murad H. Sadhan
- Radiology Department, King Fahad Central Hospital, Jazan Health Affairs, Saudi Arabia
| | - Aymn Alamoudi
- Faculty of Public Health and Tropical Medicine, Jazan University, Saudi Arabia
| | - Awaji Alnami
- Administration of Research & Studies, Jazan Health Affairs, Saudi Arabia
| | | |
Collapse
|
9
|
Salvi S, Ghorpade D, Dhoori S, Dhar R, Dumra H, Chhajed P, Bhattacharya P, Rajan S, Talwar D, Christopher D, Mohan M, Udwadia Z. Role of antifibrotic drugs in the management of post-COVID-19 interstitial lung disease: A review of literature and report from an expert working group. Lung India 2022; 39:177-186. [PMID: 35259802 PMCID: PMC9053913 DOI: 10.4103/lungindia.lungindia_659_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
10
|
Sgalla G, Comes A, Lerede M, Richeldi L. COVID-related fibrosis: insights into potential drug targets. Expert Opin Investig Drugs 2021; 30:1183-1195. [PMID: 34842488 DOI: 10.1080/13543784.2021.2010188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Lung injury in severe COVID-19 pneumonia can rapidly evolve to established pulmonary fibrosis, with prognostic implications in the acute phase of the disease and long-lasting impact on the quality of life of COVID-19 survivors. This is an emerging medical need, and it has been hypothesized that antifibrotic treatments could have a role in ameliorating the fibrotic process in the lungs of these patients. AREAS COVERED The safety and efficacy of available antifibrotic drugs (nintedanib and pirfenidone) and novel promising agents are being assessed in several ongoing clinical trials that were performed either in critically ill patients admitted to intensive care, or in discharged patients presenting fibrotic sequalae from COVID-19. Literature search was performed using Medline and Clinicaltrials.org databases (2001-2021). EXPERT OPINION Despite the strong rationale support the use of antifibrotic therapies in COVID-related fibrosis, there are several uncertainties regarding the timing for their introduction and the real risks/benefits ratio of antifibrotic treatment in the acute and the chronic phases of the disease. The findings of ongoing clinical trials and the long-term observation of longitudinal cohorts will eventually clarify the best management approach for these patients.
Collapse
Affiliation(s)
- Giacomo Sgalla
- UOC Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Alessia Comes
- Istituto di Medicina Interna Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Marialessia Lerede
- Istituto di Medicina Interna Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Luca Richeldi
- UOC Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Istituto di Medicina Interna Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|
11
|
Kumar I, Prakash A, Ranjan M, Chakrabarti SS, Shukla RC, Verma A. Short-term follow-up HRCT Chest of COVID-19 survivors and association with persistent dyspnea. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [PMCID: PMC8453470 DOI: 10.1186/s43055-021-00607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background There is an increasing concern that a proportion of the survivors of COVID 19 might develop fibrotic and/or other non-reversible lung changes. The aim of this retrospective study was to review the imaging findings of HRCT of lungs in a cohort of COVID 19 survivors, coming for short-term clinical follow-up and to assess the relation of the observed HRCT changes with the presence of dyspnea. Results In total, 40 patients with residual CT findings were included in this study with a mean age of 44.3 years and male: female ratio of 3:2. The presence of residual ground-glass opacities (85%) and reticular opacities (80%) was the most common findings. 25% of the cases had cystic changes in their lung. The presence of dyspnea was significantly associated with male sex and a history of smoking. On HRCT, the presence of cystic changes, involvement of > 10 lung segments, and an HRCT severity score > 7 were significantly associated with dyspnea. Conclusion Survivors of COVID 19 demonstrate persistent changes in the lung on HRCT. We recommend that a follow-up HRCT should be performed in these patients to identify those with post-COVID sequelae.
Collapse
|
12
|
Giacomelli C, Piccarducci R, Marchetti L, Romei C, Martini C. Pulmonary fibrosis from molecular mechanisms to therapeutic interventions: lessons from post-COVID-19 patients. Biochem Pharmacol 2021; 193:114812. [PMID: 34687672 PMCID: PMC8546906 DOI: 10.1016/j.bcp.2021.114812] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
Pulmonary fibrosis (PF) is characterised by several grades of chronic inflammation and collagen deposition in the interalveolar space and is a hallmark of interstitial lung diseases (ILDs). Recently, infectious agents have emerged as driving causes for PF development; however, the role of viral/bacterial infections in the initiation and propagation of PF is still debated. In this context, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the current coronavirus disease 2019 (COVID-19) pandemic, has been associated with acute respiratory distress syndrome (ARDS) and PF development. Although the infection by SARS-CoV-2 can be eradicated in most cases, the development of fibrotic lesions cannot be precluded; furthermore, whether these lesions are stable or progressive fibrotic events is still unknown. Herein, an overview of the main molecular mechanisms driving the fibrotic process together with the currently approved and newly proposed therapeutic solutions was given. Then, the most recent data that emerged from post-COVID-19 patients was discussed, in order to compare PF and COVID-19-dependent PF, highlighting shared and specific mechanisms. A better understanding of PF aetiology is certainly needed, also to develop effective therapeutic strategies and COVID-19 pathology is offering one more chance to do it. Overall, the work reported here could help to define new approaches for therapeutic intervention in the diversity of the ILD spectrum.
Collapse
Affiliation(s)
- Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Rebecca Piccarducci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Chiara Romei
- Multidisciplinary Team of Interstitial Lung Disease, Radiology Department, Pisa University Hospital, Via Paradisa 2, Pisa 56124, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy,Corresponding author
| |
Collapse
|
13
|
Nabeh OA, Matter LM, Khattab MA, Esraa Menshawey. "The possible implication of endothelin in the pathology of COVID-19-induced pulmonary hypertension". Pulm Pharmacol Ther 2021; 71:102082. [PMID: 34601121 PMCID: PMC8483983 DOI: 10.1016/j.pupt.2021.102082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022]
Abstract
COVID-19 pandemic has changed the world dramatically since was first reported in Wuhan city, China [1]. Not only as a respiratory illness that could lead to fatal respiratory failure, but also some evidences suggest that it can propagate as a chronic disease associated with a variety of persistent post COVID-19 pathologies that affect patients' life [2,3]. Pulmonary hypertension (PH) is one of the challenging diseases that may develop as a consequence of SARS-COV-2 infection in some COVID-19 survivors [4,5]. The vasopressor, proliferative, proinflammatory, and prothrombotic actions of endothelin [6] may be encountered in the COVID-19-induced PH pathology. And so, endothelin blockers may have an important role to restrict the development of serious PH outcomes with special precautions considering patients with significant hypoxemia.
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- M.Sc/ Assistant Lecturer, Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt; M.Sc, Cardiovascular Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Lamiaa Mohammed Matter
- MD/Lecturer, Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt; Professional Diploma of Family Medicine, Arab Institute for Continuing Professional Development, Arab Medical Union, Egypt.
| | - Mahmoud Ahmed Khattab
- M.Sc/ Assistant Lecturer, Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt; M.Sc Internal Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Esraa Menshawey
- Medical Student, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
14
|
Role of pirfenidone in TGF-β pathways and other inflammatory pathways in acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection: a theoretical perspective. Pharmacol Rep 2021; 73:712-727. [PMID: 33880743 PMCID: PMC8057922 DOI: 10.1007/s43440-021-00255-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes pulmonary injury or multiple-organ injury by various pathological pathways. Transforming growth factor-beta (TGF-β) is a key factor that is released during SARS-CoV-2 infection. TGF-β, by internalization of the epithelial sodium channel (ENaC), suppresses the anti-oxidant system, downregulates the cystic fibrosis transmembrane conductance regulator (CFTR), and activates the plasminogen activator inhibitor 1 (PAI-1) and nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-kB). These changes cause inflammation and lung injury along with coagulopathy. Moreover, reactive oxygen species play a significant role in lung injury, which levels up during SARS-CoV-2 infection. Drug Suggestion Pirfenidone is an anti-fibrotic drug with an anti-oxidant activity that can prevent lung injury during SARS-CoV-2 infection by blocking the maturation process of transforming growth factor-beta (TGF-β) and enhancing the protective role of peroxisome proliferator-activated receptors (PPARs). Pirfenidone is a safe drug for patients with hypertension or diabetes and its side effect tolerated well. Conclusion The drug as a theoretical perspective may be an effective and safe choice for suppressing the inflammatory response during COVID-19. The recommendation would be a combination of pirfenidone and N-acetylcysteine to achieve maximum benefit during SARS-CoV-2 treatment.
Collapse
|
15
|
Vallée A, Lecarpentier Y, Vallée JN. Interplay of Opposing Effects of the WNT/β-Catenin Pathway and PPARγ and Implications for SARS-CoV2 Treatment. Front Immunol 2021; 12:666693. [PMID: 33927728 PMCID: PMC8076593 DOI: 10.3389/fimmu.2021.666693] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has quickly reached pandemic proportions. Cytokine profiles observed in COVID-19 patients have revealed increased levels of IL-1β, IL-2, IL-6, and TNF-α and increased NF-κB pathway activity. Recent evidence has shown that the upregulation of the WNT/β-catenin pathway is associated with inflammation, resulting in a cytokine storm in ARDS (acute respire distress syndrome) and especially in COVID-19 patients. Several studies have shown that the WNT/β-catenin pathway interacts with PPARγ in an opposing interplay in numerous diseases. Furthermore, recent studies have highlighted the interesting role of PPARγ agonists as modulators of inflammatory and immunomodulatory drugs through the targeting of the cytokine storm in COVID-19 patients. SARS-CoV2 infection presents a decrease in the angiotensin-converting enzyme 2 (ACE2) associated with the upregulation of the WNT/β-catenin pathway. SARS-Cov2 may invade human organs besides the lungs through the expression of ACE2. Evidence has highlighted the fact that PPARγ agonists can increase ACE2 expression, suggesting a possible role for PPARγ agonists in the treatment of COVID-19. This review therefore focuses on the opposing interplay between the canonical WNT/β-catenin pathway and PPARγ in SARS-CoV2 infection and the potential beneficial role of PPARγ agonists in this context.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation, Foch Hospital, Suresnes, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Jean-Noël Vallée
- University Hospital Center (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France.,Laboratory of Mathematics and Applications (LMA), Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France
| |
Collapse
|
16
|
Hum C, Loiselle J, Ahmed N, Shaw TA, Toudic C, Pezacki JP. MicroRNA Mimics or Inhibitors as Antiviral Therapeutic Approaches Against COVID-19. Drugs 2021; 81:517-531. [PMID: 33638807 PMCID: PMC7910799 DOI: 10.1007/s40265-021-01474-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Coronaviruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the coronavirus disease 2019 (COVID-19) pandemic, present a significant threat to human health by inflicting a wide variety of health complications and even death. While conventional therapeutics often involve administering small molecules to fight viral infections, small non-coding RNA sequences, known as microRNAs (miRNAs/miR-), may present a novel antiviral strategy. We can take advantage of their ability to modulate host-virus interactions through mediating RNA degradation or translational inhibition. Investigations into miRNA and SARS-CoV-2 interactions can reveal novel therapeutic approaches against this virus. The viral genomes of SARS-CoV-2, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) were searched using the Nucleotide Basic Local Alignment Search Tool (BLASTn) for highly similar sequences, to identify potential binding sites for miRNAs hypothesized to play a role in SARS-CoV-2 infection. miRNAs that target angiotensin-converting enzyme 2 (ACE2), the receptor used by SARS-CoV-2 and SARS-CoV for host cell entry, were also predicted. Several relevant miRNAs were identified, and their potential roles in regulating SARS-CoV-2 infections were further assessed. Current treatment options for SARS-CoV-2 are limited and have not generated sufficient evidence on safety and efficacy for treating COVID-19. Therefore, by investigating the interactions between miRNAs and SARS-CoV-2, miRNA-based antiviral therapies, including miRNA mimics and inhibitors, may be developed as an alternative strategy to fight COVID-19.
Collapse
Affiliation(s)
- Christine Hum
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Julia Loiselle
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Tyler A Shaw
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Caroline Toudic
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
17
|
Rosa BA, Ahmed M, Singh DK, Choreño-Parra JA, Cole J, Jiménez-Álvarez LA, Rodríguez-Reyna TS, Singh B, Gonzalez O, Carrion R, Schlesinger LS, Martin J, Zúñiga J, Mitreva M, Kaushal D, Khader SA. IFN signaling and neutrophil degranulation transcriptional signatures are induced during SARS-CoV-2 infection. Commun Biol 2021; 4:290. [PMID: 33674719 PMCID: PMC7935909 DOI: 10.1038/s42003-021-01829-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023] Open
Abstract
SARS-CoV-2 virus has infected more than 92 million people worldwide resulting in the Coronavirus disease 2019 (COVID-19). Using a rhesus macaque model of SARS-CoV-2 infection, we have characterized the transcriptional signatures induced in the lungs of juvenile and old macaques following infection. Genes associated with Interferon (IFN) signaling, neutrophil degranulation and innate immune pathways are significantly induced in macaque infected lungs, while pathways associated with collagen formation are downregulated, as also seen in lungs of macaques with tuberculosis. In COVID-19, increasing age is a significant risk factor for poor prognosis and increased mortality. Type I IFN and Notch signaling pathways are significantly upregulated in lungs of juvenile infected macaques when compared with old infected macaques. These results are corroborated with increased peripheral neutrophil counts and neutrophil lymphocyte ratio in older individuals with COVID-19 disease. Together, our transcriptomic studies have delineated disease pathways that improve our understanding of the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
- Bruce A Rosa
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Journey Cole
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Luis Armando Jiménez-Álvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Tatiana Sofía Rodríguez-Reyna
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Bindu Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Olga Gonzalez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ricardo Carrion
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Larry S Schlesinger
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - John Martin
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Makedonka Mitreva
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
18
|
Stewart CA, Gay CM, Ramkumar K, Cargill KR, Cardnell RJ, Nilsson MB, Heeke S, Park EM, Kundu ST, Diao L, Wang Q, Shen L, Xi Y, Zhang B, Della Corte CM, Fan Y, Kundu K, Gao B, Avila K, Pickering CR, Johnson FM, Zhang J, Kadara H, Minna JD, Gibbons DL, Wang J, Heymach JV, Byers LA. Lung cancer models reveal SARS-CoV-2-induced EMT contributes to COVID-19 pathophysiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.05.28.122291. [PMID: 32577652 PMCID: PMC7302206 DOI: 10.1101/2020.05.28.122291] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
COVID-19 is an infectious disease caused by SARS-CoV-2, which enters host cells via the cell surface proteins ACE2 and TMPRSS2. Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2. We find that ACE2 expression is restricted to a select population of highly epithelial cells. Notably, infection with SARS-CoV-2 in cancer cell lines, bronchial organoids, and patient nasal epithelium, induces metabolic and transcriptional changes consistent with epithelial to mesenchymal transition (EMT), including upregulation of ZEB1 and AXL, resulting in an increased EMT score. Additionally, a transcriptional loss of genes associated with tight junction function occurs with SARS-CoV-2 infection. The SARS-CoV-2 receptor, ACE2, is repressed by EMT via TGFbeta, ZEB1 overexpression and onset of EGFR TKI inhibitor resistance. This suggests a novel model of SARS-CoV-2 pathogenesis in which infected cells shift toward an increasingly mesenchymal state, associated with a loss of tight junction components with acute respiratory distress syndrome-protective effects. AXL-inhibition and ZEB1-reduction, as with bemcentinib, offers a potential strategy to reverse this effect. These observations highlight the utility of aerodigestive and, especially, lung cancer model systems in exploring the pathogenesis of SARS-CoV-2 and other respiratory viruses, and offer important insights into the potential mechanisms underlying the morbidity and mortality of COVID-19 in healthy patients and cancer patients alike.
Collapse
Affiliation(s)
- C Allison Stewart
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kavya Ramkumar
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kasey R Cargill
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert J Cardnell
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Monique B Nilsson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simon Heeke
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth M Park
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samrat T Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingnan Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carminia Maria Della Corte
- Department of Precision Medicine, Oncology Division, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Youhong Fan
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boning Gao
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberley Avila
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Faye M Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John D Minna
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Averett Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Daga M, Mawari G, Chand S, Aarthi J, Raghu RV, Kumar N. Are patients with comorbidities more prone to sequalae in severe COVID-19. INDIAN JOURNAL OF MEDICAL SPECIALITIES 2021. [DOI: 10.4103/injms.injms_37_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Ahmed F. A Network-Based Analysis Reveals the Mechanism Underlying Vitamin D in Suppressing Cytokine Storm and Virus in SARS-CoV-2 Infection. Front Immunol 2020; 11:590459. [PMID: 33362771 PMCID: PMC7756074 DOI: 10.3389/fimmu.2020.590459] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/30/2020] [Indexed: 01/08/2023] Open
Abstract
Background SARS-CoV-2 causes ongoing pandemic coronavirus disease of 2019 (COVID-19), infects the cells of the lower respiratory tract that leads to a cytokine storm in a significant number of patients resulting in severe pneumonia, shortness of breathing, respiratory and organ failure. Extensive studies suggested the role of Vitamin D in suppressing cytokine storm in COVID-19 and reducing viral infection; however, the precise molecular mechanism is not clearly known. In this work, bioinformatics and systems biology approaches were used to understand SARS-CoV-2 induced cytokine pathways and the potential mechanism of Vitamin D in suppressing cytokine storm and enhancing antiviral response. Results This study used transcriptome data and identified 108 differentially expressed host genes (DEHGs) in SARS-CoV-2 infected normal human bronchial epithelial (NHBE) cells compared to control. Then, the DEHGs was integrated with the human protein-protein interaction data to generate a SARS-CoV-2 induced host gene regulatory network (SiHgrn). Analysis of SiHgrn identified a sub-network "Cluster 1" with the highest MCODE score, 31 up-regulated genes, and predominantly associated immune and inflammatory response. Interestingly, the iRegulone tool identified that "Cluster 1" is under the regulation of transcription factors STAT1, STAT2, STAT3, POU2F2, and NFkB1, collectively referred to as "host response signature network". Functional enrichment analysis with NDEx revealed that the "host response signature network" is predominantly associated with critical pathways, including "cytokines and inflammatory response", "non-genomic action of Vitamin D", "the human immune response to tuberculosis", and "lung fibrosis". Finally, in-depth analysis and literature mining revealed that Vitamin D binds with its receptor and could work through two different pathways: (i) it inhibits the expression of pro-inflammatory cytokines through blocking the TNF induced NFkB1 signaling pathway; and (ii) it initiates the expression of interferon-stimulating genes (ISGs) for antiviral defense program through activating the IFN-α induced Jak-STAT signaling pathway. Conclusion This comprehensive study identified the pathways associated with cytokine storm in SARS-CoV-2 infection. The proposed underlying mechanism of Vitamin D could be promising in suppressing the cytokine storm and inducing a robust antiviral response in severe COVID-19 patients. The finding in this study urgently needs further experimental validations for the suitability of Vitamin D in combination with IFN-α to control severe COVID-19.
Collapse
Affiliation(s)
- Firoz Ahmed
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia.,University of Jeddah Center for Scientific and Medical Research, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Hajjo R, Sabbah DA, Bardaweel SK. Chemocentric Informatics Analysis: Dexamethasone Versus Combination Therapy for COVID-19. ACS OMEGA 2020; 5:29765-29779. [PMID: 33251412 PMCID: PMC7689662 DOI: 10.1021/acsomega.0c03597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/03/2020] [Indexed: 05/08/2023]
Abstract
COVID-19 is a biphasic infectious disease with no approved vaccine or pharmacotherapy. The first drug that has shown promise in reducing COVID-19 mortality in severely-ill patients is dexamethasone, a cheap, well-known anti-inflammatory glucocorticoid, approved for the treatment of inflammatory conditions including respiratory diseases such as asthma and tuberculosis. However, about 80% of COVID-19 patients requiring oxygenation, and about 67% of patients on ventilators, are not responsive to dexamethasone therapy mainly. Additionally, using higher doses of dexamethasone for prolonged periods of time can lead to severe side effects and some patients may develop corticosteroid resistance leading to treatment failure. In order to increase the therapeutic efficacy of dexamethasone in COVID-19 patients, while minimizing dexamethasone-related complications that could result from using higher doses of the drug, we applied a chemocentric informatics approach to identify combination therapies. Our results indicated that combining dexamethasone with fast long-acting beta-2 adrenergic agonists (LABAs), such as formoterol and salmeterol, can ease respiratory symptoms hastily, until dexamethasone's anti-inflammatory and immunosuppressant effects kick in. Our studies demonstrated that LABAs and dexamethasone (or other glucocorticoids) exert synergistic effects that will augment both anti-inflammatory and fibronectin-mediated anticoagulant effects. We also propose other alternatives to LABAs that are supported by sound systems biology evidence, such as nitric oxide. Other drugs such as sevoflurane and treprostinil interact with the SARS-CoV-2 interactome and deserve further exploration. Moreover, our chemocentric informatics approach provides systems biology evidence that combination therapies for COVID-19 will have higher chances of perturbing the SARS-CoV-2 human interactome, which may negatively impact COVID-19 disease pathways.
Collapse
Affiliation(s)
- Rima Hajjo
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Dima A. Sabbah
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Sanaa K. Bardaweel
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
22
|
An aberrant STAT pathway is central to COVID-19. Cell Death Differ 2020; 27:3209-3225. [PMID: 33037393 PMCID: PMC7545020 DOI: 10.1038/s41418-020-00633-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is caused by SARS-CoV-2 infection and characterized by diverse clinical symptoms. Type I interferon (IFN-I) production is impaired and severe cases lead to ARDS and widespread coagulopathy. We propose that COVID-19 pathophysiology is initiated by SARS-CoV-2 gene products, the NSP1 and ORF6 proteins, leading to a catastrophic cascade of failures. These viral components induce signal transducer and activator of transcription 1 (STAT1) dysfunction and compensatory hyperactivation of STAT3. In SARS-CoV-2-infected cells, a positive feedback loop established between STAT3 and plasminogen activator inhibitor-1 (PAI-1) may lead to an escalating cycle of activation in common with the interdependent signaling networks affected in COVID-19. Specifically, PAI-1 upregulation leads to coagulopathy characterized by intravascular thrombi. Overproduced PAI-1 binds to TLR4 on macrophages, inducing the secretion of proinflammatory cytokines and chemokines. The recruitment and subsequent activation of innate immune cells within an infected lung drives the destruction of lung architecture, which leads to the infection of regional endothelial cells and produces a hypoxic environment that further stimulates PAI-1 production. Acute lung injury also activates EGFR and leads to the phosphorylation of STAT3. COVID-19 patients' autopsies frequently exhibit diffuse alveolar damage (DAD) and increased hyaluronan (HA) production which also leads to higher levels of PAI-1. COVID-19 risk factors are consistent with this scenario, as PAI-1 levels are increased in hypertension, obesity, diabetes, cardiovascular diseases, and old age. We discuss the possibility of using various approved drugs, or drugs currently in clinical development, to treat COVID-19. This perspective suggests to enhance STAT1 activity and/or inhibit STAT3 functions for COVID-19 treatment. This might derail the escalating STAT3/PAI-1 cycle central to COVID-19.
Collapse
|
23
|
Taştemur Ş, Ataseven H. Is it possible to use Proton Pump Inhibitors in COVID-19 treatment and prophylaxis? Med Hypotheses 2020; 143:110018. [PMID: 32679422 PMCID: PMC7834647 DOI: 10.1016/j.mehy.2020.110018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
Coronaviruses (CoV), discovered after 1960, caused human life-threatening outbreaks. SARS-CoV2, which appeared in Wuhan, China in December 2019, causing Severe Acute Respiratory Syndrome and has different features than other coronaviruses, has been determined and the disease caused by the virus has been called "Coronavirus Disease-2019" (COVID-19). This disease activates both the natural and acquired immune system. The cytokin storm, in which blood levels of proinflammatory cytokines are detected excessively high is developing and the uncontrolled inflammatory response causes local and systemic tissue damages. Although a spesific drug has not been found yet, the medications currently in use for other indications, whose pharmacokinetic- pharmacodynamic properties and toxic doses are already known; are included in the treatment practice of COVID-19. These drugs affect the entry of the virus into the cell and its intracellular distribution. They also have anti-inflammatory and immunomodulating effects too. Therefore, we think that Proton Pump Inhibitors (PPI's) with similar mechanisms of action may also be involved in COVID-19 treatment and prophylaxis.
Collapse
Affiliation(s)
- Şeyma Taştemur
- Department of Internal Medicine, Sivas Numune Hospital, Sivas, Turkey.
| | - Hilmi Ataseven
- Department of Internal Medicine, Discipline of Gastroenterology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey.
| |
Collapse
|
24
|
Gentile F, Aimo A, Forfori F, Catapano G, Clemente A, Cademartiri F, Emdin M, Giannoni A. COVID-19 and risk of pulmonary fibrosis: the importance of planning ahead. Eur J Prev Cardiol 2020; 27:1442-1446. [PMID: 32551971 PMCID: PMC7717346 DOI: 10.1177/2047487320932695] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Alberto Aimo
- />Fondazione Toscana G. Monasterio, Pisa, Italy
- />Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Francesco Forfori
- />Intensive Care Unit, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | | | | | | | - Michele Emdin
- />Fondazione Toscana G. Monasterio, Pisa, Italy
- />Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Alberto Giannoni
- />Fondazione Toscana G. Monasterio, Pisa, Italy
- />Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
25
|
Garcia-Revilla J, Deierborg T, Venero JL, Boza-Serrano A. Hyperinflammation and Fibrosis in Severe COVID-19 Patients: Galectin-3, a Target Molecule to Consider. Front Immunol 2020; 11:2069. [PMID: 32973815 PMCID: PMC7461806 DOI: 10.3389/fimmu.2020.02069] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 disease have become so far the most important sanitary crisis in the XXI century. In light of the events, any clinical resource should be considered to alleviate this crisis. Severe COVID-19 cases present a so-called cytokine storm as the most life-threatening symptom accompanied by lung fibrosis. Galectin-3 has been widely described as regulator of both processes. Hereby, we present compelling evidences on the potential role of galectin-3 in COVID-19 in the regulation of the inflammatory response, fibrosis and infection progression. Moreover, we provide a strong rationale of the utility of measuring plasma galectin-3 as a prognosis biomarker for COVID-19 patients and propose that inhibition of galectin-3 represents a feasible and promising new therapeutical approach.
Collapse
Affiliation(s)
- Juan Garcia-Revilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, BMC, Lund University, Lund, Sweden
| | - Jose Luis Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio Boza-Serrano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Experimental Medical Sciences, Experimental Dementia Research Laboratory, BMC, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Rosa BA, Ahmed M, Singh DK, Choreño-Parra JA, Cole J, Jiménez-Álvarez LA, Rodríguez-Reyna TS, Singh B, Gonzalez O, Carrion R, Schlesinger LS, Martin J, Zúñiga J, Mitreva M, Khader SA, Kaushal D. IFN signaling and neutrophil degranulation transcriptional signatures are induced during SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32793903 PMCID: PMC7418717 DOI: 10.1101/2020.08.06.239798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The novel virus SARS-CoV-2 has infected more than 14 million people worldwide resulting in the Coronavirus disease 2019 (COVID-19). Limited information on the underlying immune mechanisms that drive disease or protection during COVID-19 severely hamper development of therapeutics and vaccines. Thus, the establishment of relevant animal models that mimic the pathobiology of the disease is urgent. Rhesus macaques infected with SARS-CoV-2 exhibit disease pathobiology similar to human COVID-19, thus serving as a relevant animal model. In the current study, we have characterized the transcriptional signatures induced in the lungs of juvenile and old rhesus macaques following SARS-CoV-2 infection. We show that genes associated with Interferon (IFN) signaling, neutrophil degranulation and innate immune pathways are significantly induced in macaque infected lungs, while pathways associated with collagen formation are downregulated. In COVID-19, increasing age is a significant risk factor for poor prognosis and increased mortality. We demonstrate that Type I IFN and Notch signaling pathways are significantly upregulated in lungs of juvenile infected macaques when compared with old infected macaques. These results are corroborated with increased peripheral neutrophil counts and neutrophil lymphocyte ratio in older individuals with COVID-19 disease. In contrast, pathways involving VEGF are downregulated in lungs of old infected macaques. Using samples from humans with SARS-CoV-2 infection and COVID-19, we validate a subset of our findings. Finally, neutrophil degranulation, innate immune system and IFN gamma signaling pathways are upregulated in both tuberculosis and COVID-19, two pulmonary diseases where neutrophils are associated with increased severity. Together, our transcriptomic studies have delineated disease pathways to improve our understanding of the immunopathogenesis of COVID-19 to facilitate the design of new therapeutics for COVID-19.
Collapse
Affiliation(s)
- Bruce A Rosa
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - José Alberto Choreño-Parra
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Journey Cole
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - Luis Armando Jiménez-Álvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Tatiana Sofía Rodríguez-Reyna
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Bindu Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - Olga Gonzalez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - Ricardo Carrion
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - Larry S Schlesinger
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - John Martin
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Joaquín Zúñiga
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Makedonka Mitreva
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| |
Collapse
|
27
|
Kruglikov IL, Scherer PE. The Role of Adipocytes and Adipocyte-Like Cells in the Severity of COVID-19 Infections. Obesity (Silver Spring) 2020; 28:1187-1190. [PMID: 32339391 PMCID: PMC7267593 DOI: 10.1002/oby.22856] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
Coronavirus disease-2019 (COVID-19), caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), demonstrates high morbidity and mortality caused by development of a severe acute respiratory syndrome connected with extensive pulmonary fibrosis. In this Perspective, we argue that adipocytes and adipocyte-like cells, such as pulmonary lipofibroblasts, may play an important role in the pathogenic response to SARS-CoV-2. Expression of angiotensin-converting enzyme 2 (the functional receptor for SARS-CoV) is upregulated in adipocytes of patients with obesity and diabetes, which turns adipose tissue into a potential target and viral reservoir. This may explain why obesity and diabetes are potential comorbidities for COVID-19 infections. Similar to the recently established adipocyte-myofibroblast transition, pulmonary lipofibroblasts located in the alveolar interstitium and closely related to classical adipocytes demonstrate the ability to transdifferentiate into myofibroblasts that play an integral part of pulmonary fibrosis. This may significantly increase the severity of the local response to SARS-CoV-2 in the lung. To reduce the severity and mortality associated with COVID-19, we propose to probe for the clinical response to thiazolidinediones, peroxisome proliferator activated receptor γ agonists that are well-known antidiabetic drugs. Thiazolidinediones are able to stabilize lipofibroblasts in their "inactive" state, preventing the transition to myofibroblasts and thereby reducing the development of pulmonary fibrosis and stimulating its resolution.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes CenterDepartment of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
28
|
Abstract
The global pandemic secondary to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is leading to unprecedented global morbidity and mortality. With a bewildering array of complications, renal involvement in various forms is common, including serum electrolyte derangements. Hypokalaemia secondary to SARS-CoV-2 was common in a reported Chinese cohort. Here we review the emerging evidence on hypokalaemia and SARS-CoV-2 infection, the potential pathophysiological mechanisms based on early clinical and histopathological data and important clinical implications. Mechanisms of hypokalaemia are multifactorial and so the electrolyte disturbance can be difficult to avoid. We provide further support to the theory of renin-angiotensin-aldosterone (RAS) activation, discuss the strengths and weaknesses of implicating RAS involvement and highlight the importance of calculating the transtubular potassium gradient to identify those at risk of hypokalaemia and its complications.
Collapse
Affiliation(s)
- Holly Mabillard
- Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newacstle upon Tyne, Tyne and Wear, NE77DN, UK
| | - John A. Sayer
- Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newacstle upon Tyne, Tyne and Wear, NE77DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE13BZ, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE45PL, UK
| |
Collapse
|