1
|
De Rosa A, McGaughey S, Magrath I, Byrt C. Molecular membrane separation: plants inspire new technologies. THE NEW PHYTOLOGIST 2023; 238:33-54. [PMID: 36683439 DOI: 10.1111/nph.18762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plants draw up their surrounding soil solution to gain water and nutrients required for growth, development and reproduction. Obtaining adequate water and nutrients involves taking up both desired and undesired elements from the soil solution and separating resources from waste. Desirable and undesirable elements in the soil solution can share similar chemical properties, such as size and charge. Plants use membrane separation mechanisms to distinguish between different molecules that have similar chemical properties. Membrane separation enables distribution or retention of resources and efflux or compartmentation of waste. Plants use specialised membrane separation mechanisms to adapt to challenging soil solution compositions and distinguish between resources and waste. Coordination and regulation of these mechanisms between different tissues, cell types and subcellular membranes supports plant nutrition, environmental stress tolerance and energy management. This review considers membrane separation mechanisms in plants that contribute to specialised separation processes and highlights mechanisms of interest for engineering plants with enhanced performance in challenging conditions and for inspiring the development of novel industrial membrane separation technologies. Knowledge gained from studying plant membrane separation mechanisms can be applied to developing precision separation technologies. Separation technologies are needed for harvesting resources from industrial wastes and transitioning to a circular green economy.
Collapse
Affiliation(s)
- Annamaria De Rosa
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Samantha McGaughey
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Isobel Magrath
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Caitlin Byrt
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| |
Collapse
|
2
|
Zhang G, Yan Y, Zeng X, Wang Y, Zhang Y. Quantitative Proteomics Analysis Reveals Proteins Associated with High Melatonin Content in Barley Seeds under NaCl-Induced Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8492-8510. [PMID: 35759742 DOI: 10.1021/acs.jafc.2c00466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil salinization limits hull-less barley cultivation in the Qinghai-Tibet Plateau of China. However, some wild hull-less barley seeds accumulate high melatonin (MEL) during germination with improved salt tolerance; but the mechanism of melatonin-mediated salt tolerance in hull-less barley is not well understood at the protein level. This study investigated proteome changes resulting in high melatonin content in germinating hull-less barley seeds under high saline conditions. The proteome profiles of seed treatment with 240 mM-NaCl (N), water (H), and control (C) taken 7 days after germination were compared using the TMT-based quantitative proteomics. Our results indicate that salt stress-induced global changes in the proteomes of germinating hull-less barley seeds, altering the expression and abundance of proteins related to cell cycle and control, carbohydrate and energy metabolism, and amino acid transport and metabolism including proteins related to melatonin production. Furthermore, proteins associated with cellular redox homeostasis, osmotic stress response, and secondary metabolites derived primarily from amino acid metabolism, purine degradation, and shikimate pathways increased significantly in abundance and may contribute to the high melatonin content in seeds under salt stress. Consequently, triggering the robust response to oxidative stress occasioned by the NaCl-induced salt stress, improved seed germination and strong adaptation to salt stress.
Collapse
Affiliation(s)
- Guoqiang Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yingying Yan
- Institute of Agricultural Products Processing & Food Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Xingquan Zeng
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yulin Wang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yuhong Zhang
- Institute of Agricultural Products Processing & Food Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| |
Collapse
|
3
|
Singh A, Roychoudhury A. Gene regulation at transcriptional and post-transcriptional levels to combat salt stress in plants. PHYSIOLOGIA PLANTARUM 2021; 173:1556-1572. [PMID: 34260753 DOI: 10.1111/ppl.13502] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Soil salinity is a major challenge that will be faced more and more by human population in the near future. Higher salt concentrations in the soil limit the growth and production of crops, which poses serious threats to global food production. Various plant breeding approaches have been followed in the past which are reported to reduce the effect of salt stress by inducing the level of protective metabolites like osmolytes and antioxidants. Conventional breeding approaches are time-consuming and not cost-effective. In recent times, genetic engineering has been largely followed to confer salt tolerance through introgressions of single transgenes or stacking multiple transgenes. However, most of such works are limited only at the laboratory level and field trials are still awaited to prove the long-term efficacy of such transgenics. In this review, we attempt to present a broad overview of the current strategies undertaken to develop halophytic and salt-tolerant crops. The salt-induced damages in the plants are highlighted, followed by representing the novel traits, associated with salt stress, which can be used for engineering salt tolerance in glycophytic crops. Additionally, the role of transcriptional and epigenetic regulation in plants for amelioration of salt-induced damages has been reviewed. The role of post-transcriptional mechanisms such as microRNA regulation, genome editing and alternative splicing, during salt stress, and their implications in the development of salt-tolerant crops are also discussed. Finally, we present a short overview about the role of ion transporters and rhizobacteria in the engineering of salt tolerance in crop species.
Collapse
Affiliation(s)
- Ankur Singh
- Post-Graduate Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India
| | - Aryadeep Roychoudhury
- Post-Graduate Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India
| |
Collapse
|
4
|
Yin X, Xia Y, Xie Q, Cao Y, Wang Z, Hao G, Song J, Zhou Y, Jiang X. The protein kinase complex CBL10-CIPK8-SOS1 functions in Arabidopsis to regulate salt tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1801-1814. [PMID: 31858132 PMCID: PMC7242078 DOI: 10.1093/jxb/erz549] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/08/2019] [Indexed: 05/10/2023]
Abstract
Salt tolerance in plants is mediated by Na+ extrusion from the cytosol by the plasma membrane Na+/H+ antiporter SOS1. This is activated in Arabidopsis root by the protein kinase complex SOS2-SOS3 and in Arabidopsis shoot by the protein kinase complex CBL10-SOS2, with SOS2 as a key node in the two pathways. The sos1 mutant is more sensitive than the sos2 mutant, suggesting that other partners may positively regulate SOS1 activity. Arabidopsis has 26 CIPK family proteins of which CIPK8 is the closest homolog to SOS2. It is hypothesized that CIPK8 can activate Na+ extrusion by SOS1 similarly to SOS2. The plasma membrane Na+/H+ exchange activity of transgenic yeast co-expressing CBL10, CIPK8, and SOS1 was higher than that of untransformed and SOS1 transgenic yeast, resulting in a lower Na+ accumulation and a better growth phenotype under salinity. However, CIPK8 could not interact with SOS3, and the co-expression of SOS3, CIPK8, and SOS1 in yeast did not confer a significant salt tolerance phenotype relative to SOS1 transgenic yeast. Interestingly, cipk8 displayed a slower Na+ efflux, a higher Na+ level, and a more sensitive phenotype than wild-type Arabidopsis, but grew better than sos2 under salinity stress. As expected, sos2cipk8 exhibited a more severe salt damage phenotype relative to cipk8 or sos2. Overexpression of CIPK8 in both cipk8 and sos2cipk8 attenuated the salt sensitivity phenotype. These results suggest that CIPK8-mediated activation of SOS1 is CBL10-dependent and SOS3-independent, indicating that CIPK8 and SOS2 activity in shoots is sufficient for regulating Arabidopsis salt tolerance.
Collapse
Affiliation(s)
- Xiaochang Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- School of Life Science, Taishan Medical University, Tai’an, China
| | - Youquan Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Qing Xie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yuxin Cao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zhenyu Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Gangping Hao
- School of Life Science, Taishan Medical University, Tai’an, China
| | - Jie Song
- Shandong Key Laboratory of Plant Stress/College of Life Science, Shandong Normal University, Jinan, China
| | - Yang Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Correspondence: or
| | - Xingyu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources/Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Correspondence: or
| |
Collapse
|
5
|
Wani SH, Kumar V, Khare T, Guddimalli R, Parveda M, Solymosi K, Suprasanna P, Kavi Kishor PB. Engineering salinity tolerance in plants: progress and prospects. PLANTA 2020; 251:76. [PMID: 32152761 DOI: 10.1007/s00425-020-03366-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/24/2020] [Indexed: 05/20/2023]
Abstract
There is a need to integrate conceptual framework based on the current understanding of salt stress responses with different approaches for manipulating and improving salt tolerance in crop plants. Soil salinity exerts significant constraints on global crop production, posing a serious challenge for plant breeders and biotechnologists. The classical transgenic approach for enhancing salinity tolerance in plants revolves by boosting endogenous defence mechanisms, often via a single-gene approach, and usually involves the enhanced synthesis of compatible osmolytes, antioxidants, polyamines, maintenance of hormone homeostasis, modification of transporters and/or regulatory proteins, including transcription factors and alternative splicing events. Occasionally, genetic manipulation of regulatory proteins or phytohormone levels confers salinity tolerance, but all these may cause undesired reduction in plant growth and/or yields. In this review, we present and evaluate novel and cutting-edge approaches for engineering salt tolerance in crop plants. First, we cover recent findings regarding the importance of regulatory proteins and transporters, and how they can be used to enhance salt tolerance in crop plants. We also evaluate the importance of halobiomes as a reservoir of genes that can be used for engineering salt tolerance in glycophytic crops. Additionally, the role of microRNAs as critical post-transcriptional regulators in plant adaptive responses to salt stress is reviewed and their use for engineering salt-tolerant crop plants is critically assessed. The potentials of alternative splicing mechanisms and targeted gene-editing technologies in understanding plant salt stress responses and developing salt-tolerant crop plants are also discussed.
Collapse
Affiliation(s)
- Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Anantnag, Jammu and Kashmir, 192 101, India.
| | - Vinay Kumar
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
- Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
| | - Tushar Khare
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
| | | | | | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE-Eötvös Loránd University, Budapest, 1053, Hungary
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, 522 213, India
| |
Collapse
|
6
|
Munns R, Passioura JB, Colmer TD, Byrt CS. Osmotic adjustment and energy limitations to plant growth in saline soil. THE NEW PHYTOLOGIST 2020; 225:1091-1096. [PMID: 31006123 DOI: 10.1111/nph.15862] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/18/2019] [Indexed: 05/18/2023]
Abstract
Plant roots must exclude almost all of the Na+ and Cl- in saline soil while taking up water, otherwise these ions would build up to high concentrations in leaves. Plants evaporate c. 50 times more water than they retain, so 98% exclusion would result in shoot NaCl concentrations equal to that of the external medium. Taking up just 2% of the NaCl allows a plant to osmotically adjust the Na+ and Cl- in vacuoles, while organic solutes provide the balancing osmotic pressure in the cytoplasm. We quantify the costs of this exclusion by roots, the regulation of Na+ and Cl- transport through the plant, and the costs of osmotic adjustment with organic solutes in roots.
Collapse
Affiliation(s)
- Rana Munns
- ARC Centre of Excellence in Plant Energy Biology, and School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | | | - Timothy D Colmer
- ARC Industrial Transformation Research Hub on Legumes for Sustainable Agriculture, and School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Caitlin S Byrt
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| |
Collapse
|
7
|
Rugiu L, Panova M, Pereyra RT, Jormalainen V. Gene regulatory response to hyposalinity in the brown seaweed Fucus vesiculosus. BMC Genomics 2020; 21:42. [PMID: 31931708 PMCID: PMC6958763 DOI: 10.1186/s12864-020-6470-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/08/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Rockweeds are among the most important foundation species of temperate rocky littoral shores. In the Baltic Sea, the rockweed Fucus vesiculosus is distributed along a decreasing salinity gradient from the North Atlantic entrance to the low-salinity regions in the north-eastern margins, thus, demonstrating a remarkable tolerance to hyposalinity. The underlying mechanisms for this tolerance are still poorly understood. Here, we exposed F. vesiculosus from two range-margin populations to the hyposaline (2.5 PSU - practical salinity unit) conditions that are projected to occur in the region by the end of this century as a result of climate change. We used transcriptome analysis (RNA-seq) to determine the gene expression patterns associated with hyposalinity acclimation, and examined the variation in these patterns between the sampled populations. RESULTS Hyposalinity induced different responses in the two populations: in one, only 26 genes were differentially expressed between salinity treatments, while the other population demonstrated up- or downregulation in 3072 genes. In the latter population, the projected future hyposalinity induced an acute response in terms of antioxidant production. Genes associated with membrane composition and structure were also heavily involved, with the upregulation of fatty acid and actin production, and the downregulation of ion channels and alginate pathways. Changes in gene expression patterns clearly indicated an inhibition of the photosynthetic machinery, with a consequent downregulation of carbohydrate production. Simultaneously, energy consumption increased, as revealed by the upregulation of genes associated with respiration and ATP synthesis. Overall, the genes that demonstrated the largest increase in expression were ribosomal proteins involved in translation pathways. The fixation rate of SNP:s was higher within genes responding to hyposalinity than elsewhere in the transcriptome. CONCLUSIONS The high fixation rate in the genes coding for salinity acclimation mechanisms implies strong selection for them. The among-population differentiation that we observed in the transcriptomic response to hyposalinity stress suggests that populations of F. vesiculosus may differ in their tolerance to future desalination, possibly as a result of local adaptation to salinity conditions within the Baltic Sea. These results emphasise the importance of considering interspecific genetic variation when evaluating the consequences of environmental change.
Collapse
Affiliation(s)
- Luca Rugiu
- Department of Marine Sciences –Tjärnö, University of Gothenburg, SE 452 96 Strömstad, Sweden
| | - Marina Panova
- Department of Marine Sciences –Tjärnö, University of Gothenburg, SE 452 96 Strömstad, Sweden
| | - Ricardo Tomás Pereyra
- Department of Marine Sciences –Tjärnö, University of Gothenburg, SE 452 96 Strömstad, Sweden
| | - Veijo Jormalainen
- Department of Biology, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
8
|
Godfrey JM, Ferguson L, Sanden BL, Tixier A, Sperling O, Grattan SR, Zwieniecki MA. Sodium interception by xylem parenchyma and chloride recirculation in phloem may augment exclusion in the salt tolerant Pistacia genus: context for salinity studies on tree crops. TREE PHYSIOLOGY 2019; 39:1484-1498. [PMID: 31095335 DOI: 10.1093/treephys/tpz054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/01/2019] [Accepted: 05/02/2019] [Indexed: 05/25/2023]
Abstract
Working in tandem with root exclusion, stems may provide salt-tolerant woody perennials with some additional capacity to restrict sodium (Na) and chloride (Cl) accumulation in leaves. The Pistacia genus, falling at the nexus of salt tolerance and human intervention, provided an ideal set of organisms for studying the influences of both variable root exclusion and potentially variable discontinuities at the bud union on stem processes. In three experiments covering a wide range of salt concentrations (0 to 150 mM NaCl) and tree ages (1, 2 and 10 years) as well as nine rootstock-scion combinations we show that proportional exclusion of both Na and Cl reached up to ~85% efficacy, but efficacy varied by both rootstock and budding treatment. Effective Na exclusion was augmented by significant retrieval of Na from the xylem sap, as evidenced by declines in the Na concentrations of both sap and wood tissue along the transpiration stream. However, while we observed little to no differences between the concentrations of the two ions in leaves, analogous declines in sap concentrations of Cl were not observed. We conclude that some parallel but separate mechanism must be acting on Cl to provide leaf protection from toxicity specific to this ion and suggest that this mechanism is recirculation of Cl in the phloem. The presented findings underline the importance of holistic assessments of salt tolerance in woody perennials. In particular, greater emphasis might be placed on the dynamics of salt sequestration in the significant storage volumes offered by the stems of woody perennials and on the potential for phloem discontinuity introduced with a bud/graft union.
Collapse
Affiliation(s)
- Jessie M Godfrey
- Plant Sciences Department, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Louise Ferguson
- Plant Sciences Department, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Blake L Sanden
- Kern County Cooperative Extension, University of California, 1031 South Mount Vernon Avenue, Bakersfield, CA 93307, USA
| | - Aude Tixier
- Institut National de la Recherche Agronomique (INRA), UMR1347 Agroécologie, Aubiere, France
| | - Or Sperling
- Agricultural Research Organization (ARO), Gilat Center, Petah Tikva, Israel
| | - Steve R Grattan
- Department of Land, Air and Water Resources, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Maciej A Zwieniecki
- Plant Sciences Department, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
9
|
Ahmad I, Mian A, Maathuis FJM. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2689-98. [PMID: 26969743 PMCID: PMC4861017 DOI: 10.1093/jxb/erw103] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Potassium (K(+)) is the most important cationic nutrient for all living organisms and has roles in most aspects of plant physiology. To assess the impact of one of the main K(+) uptake components, the K(+) inward rectifying channel AKT1, we characterized both loss of function and overexpression of OsAKT1 in rice. In many conditions, AKT1 expression correlated with K(+) uptake and tissue K(+) levels. No salinity-related growth phenotype was observed for either loss or gain of function mutants. However, a correlation between AKT1 expression and root Na(+) when the external Na/K ratio was high suggests that there may be a role for AKT1 in Na(+) uptake in such conditions. In contrast to findings with Arabidopsis thaliana, we did not detect any change in growth of AKT1 loss of function mutants in the presence of NH4 (+) Nevertheless, NH4 (+)-dependent inhibition was detected during K(+) uptake assays in loss of function and wild type plants, depending on pre-growth conditions. The most prominent result of OsAKT1 overexpression was a reduction in sensitivity to osmotic/drought stress in transgenic plants: the data suggest that AKT1 overexpression improved rice osmotic and drought stress tolerance by increasing tissue levels of K(+), especially in the root.
Collapse
Affiliation(s)
- Izhar Ahmad
- Department of Biology, University of York, York YO10 5DD, UK
| | - Afaq Mian
- Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
10
|
Muralidhar A, Shabala L, Broady P, Shabala S, Garrill A. Mechanisms underlying turgor regulation in the estuarine alga Vaucheria erythrospora (Xanthophyceae) exposed to hyperosmotic shock. PLANT, CELL & ENVIRONMENT 2015; 38:1514-1527. [PMID: 25546818 DOI: 10.1111/pce.12503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
Aquatic organisms are often exposed to dramatic changes in salinity in the environment. Despite decades of research, many questions related to molecular and physiological mechanisms mediating sensing and adaptation to salinity stress remain unanswered. Here, responses of Vaucheria erythrospora, a turgor-regulating xanthophycean alga from an estuarine habitat, have been investigated. The role of ion uptake in turgor regulation was studied using a single cell pressure probe, microelectrode ion flux estimation (MIFE) technique and membrane potential (Em ) measurements. Turgor recovery was inhibited by Gd(3+) , tetraethylammonium chloride (TEA), verapamil and orthovanadate. A NaCl-induced shock rapidly depolarized the plasma membrane while an isotonic sorbitol treatment hyperpolarized it. Turgor recovery was critically dependent on the presence of Na(+) but not K(+) and Cl(-) in the incubation media. Na(+) uptake was strongly decreased by amiloride and changes in net Na(+) and H(+) fluxes were oppositely directed. This suggests active uptake of Na(+) in V. erythrospora mediated by an antiport Na(+) /H(+) system, functioning in the direction opposite to that of the SOS1 exchanger in higher plants. The alga also retains K(+) efficiently when exposed to high NaCl concentrations. Overall, this study provides insights into mechanisms enabling V. erythrospora to regulate turgor via ion movements during hyperosmotic stress.
Collapse
Affiliation(s)
- Abishek Muralidhar
- School of Biological Sciences, University of Canterbury, Christchurch, 8011, New Zealand
| | - Lana Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Paul Broady
- School of Biological Sciences, University of Canterbury, Christchurch, 8011, New Zealand
| | - Sergey Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Ashley Garrill
- School of Biological Sciences, University of Canterbury, Christchurch, 8011, New Zealand
| |
Collapse
|
11
|
Foflonker F, Price DC, Qiu H, Palenik B, Wang S, Bhattacharya D. Genome of the halotolerant green alga Picochlorum sp. reveals strategies for thriving under fluctuating environmental conditions. Environ Microbiol 2014; 17:412-26. [PMID: 24965277 DOI: 10.1111/1462-2920.12541] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/15/2014] [Indexed: 01/04/2023]
Abstract
An expected outcome of climate change is intensification of the global water cycle, which magnifies surface water fluxes, and consequently alters salinity patterns. It is therefore important to understand the adaptations and limits of microalgae to survive changing salinities. To this end, we sequenced the 13.5 Mbp genome of the halotolerant green alga Picochlorum SENEW3 (SE3) that was isolated from a brackish water pond subject to large seasonal salinity fluctuations. Picochlorum SE3 encodes 7367 genes, making it one of the smallest and most gene dense eukaryotic genomes known. Comparison with the pico-prasinophyte Ostreococcus tauri, a species with a limited range of salt tolerance, reveals the enrichment of transporters putatively involved in the salt stress response in Picochlorum SE3. Analysis of cultures and the protein complement highlight the metabolic flexibility of Picochlorum SE3 that encodes genes involved in urea metabolism, acetate assimilation and fermentation, acetoin production and glucose uptake, many of which form functional gene clusters. Twenty-four cases of horizontal gene transfer from bacterial sources were found in Picochlorum SE3 with these genes involved in stress adaptation including osmolyte production and growth promotion. Our results identify Picochlorum SE3 as a model for understanding microalgal adaptation to stressful, fluctuating environments.
Collapse
Affiliation(s)
- Fatima Foflonker
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | | | | | | | | | | |
Collapse
|
12
|
Ordoñez NM, Shabala L, Gehring C, Shabala S. Noninvasive microelectrode ion flux estimation technique (MIFE) for the study of the regulation of root membrane transport by cyclic nucleotides. Methods Mol Biol 2013; 1016:95-106. [PMID: 23681574 DOI: 10.1007/978-1-62703-441-8_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Changes in ion permeability and subsequently intracellular ion concentrations play a crucial role in intracellular and intercellular communication and, as such, confer a broad array of developmental and adaptive responses in plants. These changes are mediated by the activity of plasma-membrane based transport proteins many of which are controlled by cyclic nucleotides and/or other signaling molecules. The MIFE technique for noninvasive microelectrode ion flux measuring allows concurrent quantification of net fluxes of several ions with high spatial (μm range) and temporal (ca. 5 s) resolution, making it a powerful tool to study various aspects of downstream signaling events in plant cells. This chapter details basic protocols enabling the application of the MIFE technique to study regulation of root membrane transport in general and cyclic nucleotide mediated transport in particular.
Collapse
Affiliation(s)
- Natalia Maria Ordoñez
- Division of Chemical and Life Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | | |
Collapse
|