1
|
Horn D, Salzano AD, Jenewein EC, Weise KK, Schaeffel F, Mathis U, Khanal S. Topical review: Potential mechanisms of atropine for myopia control. Optom Vis Sci 2025:00006324-990000000-00271. [PMID: 40168189 DOI: 10.1097/opx.0000000000002249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
SIGNIFICANCE Atropine is effective at slowing myopia progression in children, but the mechanism of action by which it controls myopia remains unclear. This article is an evidenced-based review of potential receptor-based mechanisms by which atropine may act to slow the progression of myopia.The rising number of individuals with myopia worldwide and the association between myopia and vision-threatening ocular pathologies have made myopia control treatments one of the fastest growing areas of ophthalmic research. High-concentration atropine (1%) is the most effective treatment for slowing myopia progression to date; low concentrations of atropine (≤0.05%) appear partially effective and are currently being used to slow myopia progression in children. While significant progress has been made in the past few decades in understanding fundamental mechanisms by which atropine may control myopia, the precise characterization of how atropine works for myopia control remains incomplete. It is plausible that atropine slows myopia via its affinity to muscarinic receptors and influence on accommodation, but animal studies suggest that this is likely not the case. Other studies have shown that, in addition to muscarinic receptors, atropine can also bind, or affect the action of, dopamine, alpha-2-adrenergic, gamma-aminobutyric acid, and cytokine receptors in slowing myopia progression. This review summarizes atropine's effects on different receptor pathways of ocular tissues and discusses how these effects may or may not contribute to slowing myopia progression. Given the relatively broad array of receptor-based mechanisms implicated in atropine control of myopia, a single mode of action of atropine is unlikely; rather atropine may be exerting its myopia control effects directly or indirectly via several mechanisms at multiple levels of ocular tissues, all of which likely trigger the response in the same direction to inhibit eye growth and myopia progression.
Collapse
Affiliation(s)
- Darryl Horn
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania
| | - Aaron D Salzano
- Department of Vision Therapy and Pediatrics, Pacific University College of Optometry, Forest Grove, Oregon
| | - Erin C Jenewein
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania
| | - Katherine K Weise
- Department of Optometry and Vision Science, University of Alabama at Birmingham School of Optometry, Birmingham, Alabama
| | - Frank Schaeffel
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland
- Section Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Ute Mathis
- Section Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Safal Khanal
- Department of Optometry and Vision Science, University of Alabama at Birmingham School of Optometry, Birmingham, Alabama
| |
Collapse
|
2
|
Alkharfy KM, Ahmad A, Almuaijel S, Bin Hashim A, Raish M, Jan BL, Rehman NU, Anwar F, Rehman MT, Alajmi MF. The vascular effects of peppermint ( Mentha longifolia. L) on aorta in a mouse model: an ex-vivo and computational study. J Biomol Struct Dyn 2024:1-16. [PMID: 39663630 DOI: 10.1080/07391102.2024.2439616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/24/2024] [Indexed: 12/13/2024]
Abstract
The present study examined the vascular effects of peppermint or mint (Mentha longifolia L.) using an abdominal aortic rings model. Concentration-response curves for mint oil were generated after precontracting isolated mouse aorta with phenylephrine. The effect of different receptor antagonists and ion channel or enzyme inhibitors on the vasorelaxant potential of mint oil were studied. Molecular docking studies were conducted using computational techniques to investigate the potential interactions between the bioactive constituents of mint oil and key vascular targets. The tension of aortic rings, which had been contracted by phenylephrine, relaxed as a function of the concentration of mint oil (0.0002-2 mg/mL). Pretreatment of the rings with the nitric oxide synthase inhibitor (L-NAME), a nonselective β-blocker (propranolol), and a muscarinic receptor blocker (atropine) didn't show significant resistance to the vasodilatory effects of the mint oil. The vasodilatory effects of mint oil were significantly diminished when the rings were pretreated with glibenclamide, an inhibitor of ATP-sensitive K+ channels. In addition, indomethacin, a cyclooxygenase (COX) inhibitor, did influence mint oil's tension in the preparations precontracted with phenylephrine. The present findings imply that ATP-sensitive K+ channels activation, blocking of Ca2+ channels, and inhibition of COX play a role in mediating the mint oil-induced vasorelaxation. Molecular docking studies of mint oil constituents showed that β-Elemene and Aromadendrene can interact with K+ and Ca2+ channels through various hydrophobic interactions with key amino acid residues. Additional work is needed to confirm the possible beneficial application of mint oil or its constituents in regulating the vascular tone.
Collapse
Affiliation(s)
- Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Almuaijel
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Bin Hashim
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Basit L Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Farooq Anwar
- Department of Food Sciences, Faculty of Food Sciences and Technology, Universiti Putra Malaysia 43400, Serdang, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamad F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Sikiric P, Boban Blagaic A, Strbe S, Beketic Oreskovic L, Oreskovic I, Sikiric S, Staresinic M, Sever M, Kokot A, Jurjevic I, Matek D, Coric L, Krezic I, Tvrdeic A, Luetic K, Batelja Vuletic L, Pavic P, Mestrovic T, Sjekavica I, Skrtic A, Seiwerth S. The Stable Gastric Pentadecapeptide BPC 157 Pleiotropic Beneficial Activity and Its Possible Relations with Neurotransmitter Activity. Pharmaceuticals (Basel) 2024; 17:461. [PMID: 38675421 PMCID: PMC11053547 DOI: 10.3390/ph17040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
We highlight the particular aspects of the stable gastric pentadecapeptide BPC 157 pleiotropic beneficial activity (not destroyed in human gastric juice, native and stable in human gastric juice, as a cytoprotection mediator holds a response specifically related to preventing or recovering damage as such) and its possible relations with neurotransmitter activity. We attempt to resolve the shortage of the pleiotropic beneficial effects of BPC 157, given the general standard neurotransmitter criteria, in classic terms. We substitute the lack of direct conclusive evidence (i.e., production within the neuron or present in it as a precursor molecule, released eliciting a response on the receptor on the target cells on neurons and being removed from the site of action once its signaling role is complete). This can be a network of interconnected evidence, previously envisaged in the implementation of the cytoprotection effects, consistent beneficial particular evidence that BPC 157 therapy counteracts dopamine, serotonin, glutamate, GABA, adrenalin/noradrenalin, acetylcholine, and NO-system disturbances. This specifically includes counteraction of those disturbances related to their receptors, both blockade and over-activity, destruction, depletion, tolerance, sensitization, and channel disturbances counteraction. Likewise, BPC 157 activates particular receptors (i.e., VGEF and growth hormone). Furthermore, close BPC 157/NO-system relations with the gasotransmitters crossing the cell membrane and acting directly on molecules inside the cell may envisage particular interactions with receptors on the plasma membrane of their target cells. Finally, there is nerve-muscle relation in various muscle disturbance counteractions, and nerve-nerve relation in various encephalopathies counteraction, which is also exemplified specifically by the BPC 157 therapy application.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonio Kokot
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Danijel Matek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Kresimir Luetic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lovorka Batelja Vuletic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Pavic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Mestrovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivica Sjekavica
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Chen YY, Tsai TH, Liu YL, Lin HJ, Wang IJ. The impact of light properties on ocular growth and myopia development. Taiwan J Ophthalmol 2024; 14:143-150. [PMID: 39027063 PMCID: PMC11253990 DOI: 10.4103/tjo.tjo-d-24-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 07/20/2024] Open
Abstract
The objective of this article is to comprehensively review the effect of environmental lighting on ocular growth and refractive status in both animal and clinical studies, with an emphasis on the underlying mechanisms. This review was performed by searching research articles and reviews utilizing the terms "myopia," "light therapy," "axial length," "refractive error," and "emmetropization" in PubMed datasets. The review was finalized in December 2023. In the animal studies, high lighting brightness, illumination periods aligning with circadian rhythm, and color contrast signals including multiple wavelengths all help regulate ocular growth against myopia. Long wavelengths have been found to induce myopia in chicks, mice, fish, and guinea pigs, whereas shorter wavelengths lead to hyperopia. In contrast, red light has been observed to have a protective effect against myopia in tree shrews and rhesus monkeys. Apart from wavelength, flicker status also showed inconsistent effects on ocular growth, which could be attributed to differences in ocular refractive status, evolutionary disparities in retinal cone cells across species, and the selection of myopia induction models in experiments. In the clinical studies, current evidence suggests a control effect with red light therapy. Although the lighting conditions diverge from those in animal experiments, further reports are needed to assess the long-term effects. In conclusion, this review encompasses research related to the impact of light exposure on myopia and further explores the retinoscleral signaling pathway in refractive development. The aim is to establish a theoretical foundation for optimizing environmental factors in lighting design to address the epidemic of childhood myopia.
Collapse
Affiliation(s)
- Ying-Yi Chen
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Tzu-Hsun Tsai
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Lin Liu
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Onyszkiewicz M, Hilmers J, Rejdak R, Zrenner E, Straßer T. Effects of Miosis on the Visual Acuity Space under Varying Conditions of Contrast and Ambient Luminance in Presbyopia. J Clin Med 2024; 13:1209. [PMID: 38592033 PMCID: PMC10931829 DOI: 10.3390/jcm13051209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Presbyopia is an age-related ocular condition, typically affecting individuals aged over 40 years, characterized by a gradual and irreversible decline in the eye's ability to focus on nearby objects. Correction methods for presbyopia encompass the use of corrective lenses, surgical interventions (corneal or lens based), and, more recently, the FDA-approved topical administration of 1.25% pilocarpine. While prior research has demonstrated the efficacy of daily pilocarpine eye drop application in enhancing near visual acuity by increasing the depth of focus leveraging the pinhole effect, limited knowledge exists regarding its influence on visual acuity under varying conditions of contrast and ambient luminance. Methods: This study aims to investigate the impact of these variables on visual acuity, employing the VA-CAL test, among 11 emmetropic and 11 presbyopic volunteers who reported subjective difficulties with near vision. This study includes evaluations under natural conditions with a pinhole occluder (diameter of 2 mm), and subsequent administration of 1% pilocarpine (Pilomann, Bausch + Lomb, Laval, Canada). Results: The VA-CAL results demonstrate the expected, statistically significant effects of contrast and ambient luminance on visual acuity in both emmetropic and presbyopic volunteers. Furthermore, in emmetropic individuals, the application of pilocarpine resulted in a statistically significant reduction in visual acuity. In contrast, presbyopes did not exhibit statistically significant differences in the visual acuity space under either the pinhole or pilocarpine conditions when compared to natural conditions. Conclusions: The pharmacological treatment of presbyopia with pilocarpine eye drops, intended to enhance near vision, does not adversely affect visual acuity in presbyopes. This suggests that pilocarpine may offer a viable alternative for individuals averse to wearing corrective eyewear.
Collapse
Affiliation(s)
- Maksymilian Onyszkiewicz
- Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (M.O.); (E.Z.)
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Julian Hilmers
- Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (M.O.); (E.Z.)
- STZ Eyetrial, University Eye Hospital Tuebingen, 72076 Tuebingen, Germany;
| | - Robert Rejdak
- STZ Eyetrial, University Eye Hospital Tuebingen, 72076 Tuebingen, Germany;
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (M.O.); (E.Z.)
- University Eye Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Torsten Straßer
- Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (M.O.); (E.Z.)
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
6
|
Yang J, Ouyang X, Fu H, Hou X, Liu Y, Xie Y, Yu H, Wang G. Advances in biomedical study of the myopia-related signaling pathways and mechanisms. Biomed Pharmacother 2021; 145:112472. [PMID: 34861634 DOI: 10.1016/j.biopha.2021.112472] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
Myopia has become one of the most critical health problems in the world with the increasing time spent indoors and increasing close work. Pathological myopia may have multiple complications, such as myopic macular degeneration, retinal detachment, cataracts, open-angle glaucoma, and severe cases that can cause blindness. Mounting evidence suggests that the cause of myopia can be attributed to the complex interaction of environmental exposure and genetic susceptibility. An increasing number of researchers have focused on the genetic pathogenesis of myopia in recent years. Scleral remodeling and excessive axial elongating induced retina thinning and even retinal detachment are myopia's most important pathological manifestations. The related signaling pathways are indispensable in myopia occurrence and development, such as dopamine, nitric oxide, TGF-β, HIF-1α, etc. We review the current major and recent progress of biomedicine on myopia-related signaling pathways and mechanisms.
Collapse
Affiliation(s)
- Jing Yang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Xinli Ouyang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Hong Fu
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Xinyu Hou
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Yan Liu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yongfang Xie
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| | - Haiqun Yu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| | - Guohui Wang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
7
|
Tolaymat M, Sundel MH, Alizadeh M, Xie G, Raufman JP. Potential Role for Combined Subtype-Selective Targeting of M 1 and M 3 Muscarinic Receptors in Gastrointestinal and Liver Diseases. Front Pharmacol 2021; 12:786105. [PMID: 34803723 PMCID: PMC8600121 DOI: 10.3389/fphar.2021.786105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 01/17/2023] Open
Abstract
Despite structural similarity, the five subtypes comprising the cholinergic muscarinic family of G protein-coupled receptors regulate remarkably diverse biological functions. This mini review focuses on the closely related and commonly co-expressed M1R and M3R muscarinic acetylcholine receptor subtypes encoded respectively by CHRM1 and CHRM3. Activated M1R and M3R signal via Gq and downstream initiate phospholipid turnover, changes in cell calcium levels, and activation of protein kinases that alter gene transcription and ultimately cell function. The unexpectedly divergent effects of M1R and M3R activation, despite similar receptor structure, distribution, and signaling, are puzzling. To explore this conundrum, we focus on the gastrointestinal (GI) tract and liver because abundant data identify opposing effects of M1R and M3R activation on the progression of gastric, pancreatic, and colon cancer, and liver injury and fibrosis. Whereas M3R activation promotes GI neoplasia, M1R activation appears protective. In contrast, in murine liver injury models, M3R activation promotes and M1R activation mitigates liver fibrosis. We analyze these findings critically, consider their therapeutic implications, and review the pharmacology and availability for research and therapeutics of M1R and M3R-selective agonists and antagonists. We conclude by considering gaps in knowledge and other factors that hinder the application of these drugs and the development of new agents to treat GI and liver diseases.
Collapse
Affiliation(s)
- Mazen Tolaymat
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Margaret H Sundel
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Madeline Alizadeh
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Guofeng Xie
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States.,VA Maryland Healthcare System, Baltimore, MD, United States.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States.,VA Maryland Healthcare System, Baltimore, MD, United States.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Dankis M, Aydogdu O, Tobin G, Winder M. Acute Inhibitory Effects of Antidepressants on Lacrimal Gland Secretion in the Anesthetized Rat. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 34096973 PMCID: PMC8185405 DOI: 10.1167/iovs.62.7.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Patients that medicate with antidepressants commonly report dryness of eyes. The cause is often attributed to the anticholinergic properties of the drugs. However, regulation of tear production includes a substantial reflex-evoked component and is regulated via distinct centers in the brain. Further, the anticholinergic component varies greatly among antidepressants with different mechanisms of action. In the current study it was wondered if acute administration of antidepressants can disturb production of tears by affecting the afferent and/or central pathway. Methods Tear production was examined in vivo in anesthetized rats in the presence or absence of the tricyclic antidepressant (TCA) clomipramine or the selective serotonin reuptake inhibitor (SSRI) escitalopram. The reflex-evoked production of tears was measured by challenging the surface of the eye with menthol (0.1 mM) and cholinergic regulation was examined by intravenous injection with the nonselective muscarinic agonist methacholine (1–5 µg/kg). Results Acute administration of clomipramine significantly attenuated both reflex-evoked and methacholine-induced tear production. However, escitalopram only attenuated reflex-evoked tear production, while methacholine-induced production of tears remained unaffected. Conclusions This study shows that antidepressants with different mechanisms of action can impair tear production by attenuating reflex-evoked signaling. Further, antimuscarinic actions are verified as a likely cause of lacrimal gland hyposecretion in regard to clomipramine but not escitalopram. Future studies on antidepressants with different selectivity profiles and mechanisms of action are required to further elucidate the mechanisms by which antidepressants affect tear production.
Collapse
Affiliation(s)
- Martin Dankis
- Department of Pharmacology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ozgu Aydogdu
- Department of Pharmacology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Tobin
- Department of Pharmacology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael Winder
- Department of Pharmacology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Wang WY, Chen C, Chang J, Chien L, Shih YF, Lin LLK, Pang CP, Wang IJ. Pharmacotherapeutic candidates for myopia: A review. Biomed Pharmacother 2021; 133:111092. [PMID: 33378986 DOI: 10.1016/j.biopha.2020.111092] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 01/11/2023] Open
Abstract
This review provides insights into the mechanism underlying the pathogenesis of myopia and potential targets for clinical intervention. Although the etiology of myopia involves both environmental and genetic factors, recent evidence has suggested that the prevalence and severity of myopia appears to be affected more by environmental factors. Current pharmacotherapeutics are aimed at inhibiting environmentally induced changes in visual input and subsequent changes in signaling pathways during myopia pathogenesis and progression. Recent studies on animal models of myopia have revealed specific molecules potentially involved in the regulation of eye development. Among them, the dopamine receptor plays a critical role in controlling myopia. Subsequent studies have reported pharmacotherapeutic treatments to control myopia progression. In particular, atropine treatment yielded favorable outcomes and has been extensively used; however, current studies are aimed at optimizing its efficacy and confirming its safety. Furthermore, future studies are required to assess the efficacy of combinatorial use of low-dose atropine and contact lenses or orthokeratology.
Collapse
Affiliation(s)
- Wen-Yi Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Camille Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Justine Chang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Lillian Chien
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Feng Shih
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Luke L K Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, KLN, Hong Kong, China.
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
10
|
Dry Eyes, Ocular Lubricants, and Use of Systemic Medications Known or Suspected to Cause Dry Eyes in Residents of Aged Care Services. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155349. [PMID: 32722254 PMCID: PMC7432788 DOI: 10.3390/ijerph17155349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Ocular issues are common, burdensome, and under-researched among residents of aged care services. This study aims to investigate the prevalence of dry eyes or use of ocular lubricants among residents, and the possible association with systemic medications known or suspected to cause dry eyes. A cross-sectional study of 383 residents of six aged care services in South Australia was conducted. Data were extracted from participants' medical histories, medication charts, and validated assessments. The main exposure was systemic medications known to cause, contribute to, or aggravate dry eyes. The primary outcome was documented dry eyes or regular administration of ocular lubricants. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between systemic medications and dry eyes/use of ocular lubricants. Dry eyes were documented for 53 (13.8%) residents and 98 (25.6%) residents were administered ocular lubricants. Overall, 116 (30.3%) residents had documented dry eyes/used ocular lubricants. Of these, half (n = 58) were taking a medication known to cause, contribute to, or aggravate dry eyes. Taking one or more medications listed as known to cause dry eyes was associated with having dry eyes/use of ocular lubricants (OR 1.83, 95% CI 1.15-2.94). In sub-analyses, no individual medication was associated with dry eyes/use of ocular lubricants. Dry eyes and use of ocular lubricants are common in residential aged care. Our hypothesis generating findings suggest the need for further research into the clinical significance of systemic medications as a possible cause of dry eyes.
Collapse
|
11
|
Ocak OB, Inal A, Tülü Aygün B, Kırmacı Kabakci A, Kemer Atik B, Yurttaser Ocak S, Gökyiğit B. Refraction under general anesthesia in children, using cycloplegic refraction only as a reference. Strabismus 2020; 28:73-78. [PMID: 31985321 DOI: 10.1080/09273972.2020.1714669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To compare the measurements of cycloplegic refraction and refraction (R1-1) under general anesthesia (GA) when using the same portable auto-refractometer (ARF) in pediatric patients. METHODS 36Thirty-six to 60-month-old patients who underwent refraction measurements using a portable ARF (Retinomax® K plus 3, Righton, Japan), who did not receive prior cycloplegics under this GA and who had cycloplegic refraction using 1% cyclopentolate and the same Retinomax® device < 3 months prior this GA, between 2015 and 2018, were included in this study. The agreement (Bland-Altman analysis) and correlation (Pearson correlation) between the mean values of the measurements were analyzed. RESULTS Two-hundred-twenty-two right eyes of 222 patients (114 male and 108 female) were included in this study. The mean age was 45.04 ± 11.24 months. The mean spherical refractions (R1-1, R2-1) under GA and cycloplegic refraction were 1.08 ± 3.50 diopter (D) (-8.00 to +8.00) and 2.58 ± 3.28 D (-6.50 to +9.25), respectively. A strong positive correlation was detected between the two measurements (r = 0.95). When comparing measurements, the mean measurement under GA was -1.49 D (95% confidence interval: lower limit, -3.63; upper limit, +0.63) more myopic than the mean cycloplegic refraction (R1-1) value (Bland-Altman analysis test). The differences between the measurements were within ± 1 D in 92 eyes (41.44%) and within ± 2 D in 180 eyes (81.01%). No significant difference was detected when comparing the cylindrical refractive error values (p > .05). CONCLUSION Refractive measurements under GA were more myopic than cycloplegic refraction (R1-1) measurements. It is important to consider that complete cycloplegia is not achieved under GA.
Collapse
Affiliation(s)
- Osman Bulut Ocak
- Beyoglu Eye Training and Research Hospital, University of Health Sciences , Istanbul
| | - Asli Inal
- Beyoglu Eye Training and Research Hospital, University of Health Sciences , Istanbul
| | - Beril Tülü Aygün
- Beyoglu Eye Training and Research Hospital, University of Health Sciences , Istanbul
| | - Aslı Kırmacı Kabakci
- Okmeydanı Training and Research Hospital, University of Health Sciences , Istanbul
| | - Burcu Kemer Atik
- Gaziosmanpaşa Taksim Training and Research Hospital, University of Health Sciences , Istanbul
| | - Serap Yurttaser Ocak
- Okmeydanı Training and Research Hospital, University of Health Sciences , Istanbul
| | - Birsen Gökyiğit
- Beyoglu Eye Training and Research Hospital, University of Health Sciences , Istanbul
| |
Collapse
|
12
|
Himmel H, Eriksson Faelker T. Pupillary function test in rat: Establishment of imaging setup and pharmacological validation within modified Irwin test. J Pharmacol Toxicol Methods 2019; 99:106588. [DOI: 10.1016/j.vascn.2019.106588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/26/2019] [Accepted: 05/23/2019] [Indexed: 01/23/2023]
|
13
|
Wang LZ, Syn N, Li S, Barathi VA, Tong L, Neo J, Beuerman RW, Zhou L. The penetration and distribution of topical atropine in animal ocular tissues. Acta Ophthalmol 2019; 97:e238-e247. [PMID: 30259687 DOI: 10.1111/aos.13889] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE To conduct a multi-tissue investigation on the penetration and distribution of topical atropine in myopia treatment, and determine if atropine is detectable in the untreated contralateral eye after uniocular instillation. METHODS Nine mature New Zealand white rabbits were evenly divided into three groups. Each group was killed at 5, 24 and 72 hr, respectively, following uniocular instillation of 0.05 ml of 1% atropine. Tissues were sampled after enucleation: conjunctiva, sclera, cornea, iris, ciliary body, lens, retina, aqueous, and vitreous humors. The assay for atropine was performed using liquid chromatography-mass spectrometry (LC-MS), and molecular tissue distribution was illustrated using matrix-assisted laser desorption ionization-imaging mass spectrometry (MALDI-IMS) via an independent experiment on murine eyes. RESULTS At 5 hr, the highest (mean ± SEM) concentration of atropine was detected in the conjunctiva (19.05 ± 5.57 ng/mg, p < 0.05) with a concentration gradient established anteriorly to posteriorly, as supported by MALDI-IMS. At 24 hr, preferential binding of atropine to posterior ocular tissues occurred, demonstrating a reversal of the initial concentration gradient. Atropine has good ocular bioavailability with concentrations of two magnitudes higher than its binding affinity in most tissues at 3 days. Crossing-over of atropine to the untreated eye occurred within 5 hr post-administration. CONCLUSION Both transcorneal and transconjunctival-scleral routes are key in atropine absorption. Posterior ocular tissues could be important sites of action by atropine in myopic reduction. In uniocular atropine trials, cross-over effects on the placebo eye should be adjusted to enhance results reliability. Combining the use of LC-MS and MALDI-IMS can be a viable approach in the study of the ocular pharmacokinetics of atropine.
Collapse
Affiliation(s)
- Louis Zizhao Wang
- Singapore Eye Research Institute The Academia Singapore city Singapore
- Yong Loo Lin School of Medicine National University of Singapore Singapore city Singapore
| | - Nicholas Syn
- Yong Loo Lin School of Medicine National University of Singapore Singapore city Singapore
| | - Shiya Li
- Dyson School of Design Engineering Imperial College London London UK
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute The Academia Singapore city Singapore
- Department of Ophthalmology Yong Loo Lin School of Medicine National University of Singapore Singapore city Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program Duke‐NUS Medical School Singapore city Singapore
| | - Louis Tong
- Singapore Eye Research Institute The Academia Singapore city Singapore
- Department of Ophthalmology Yong Loo Lin School of Medicine National University of Singapore Singapore city Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program Duke‐NUS Medical School Singapore city Singapore
- Singapore National Eye Centre Singapore city Singapore
| | | | - Roger W. Beuerman
- Singapore Eye Research Institute The Academia Singapore city Singapore
- Department of Ophthalmology Yong Loo Lin School of Medicine National University of Singapore Singapore city Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program Duke‐NUS Medical School Singapore city Singapore
| | - Lei Zhou
- Singapore Eye Research Institute The Academia Singapore city Singapore
- Department of Ophthalmology Yong Loo Lin School of Medicine National University of Singapore Singapore city Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program Duke‐NUS Medical School Singapore city Singapore
| |
Collapse
|
14
|
Mori N, Mochizuki T, Yamazaki F, Takei S, Mano H, Matsugi T, Setou M. MALDI imaging mass spectrometry revealed atropine distribution in the ocular tissues and its transit from anterior to posterior regions in the whole-eye of rabbit after topical administration. PLoS One 2019; 14:e0211376. [PMID: 30682156 PMCID: PMC6347209 DOI: 10.1371/journal.pone.0211376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
It is essential to elucidate drug distribution in the ocular tissues and drug transit in the eye for ophthalmic pharmaceutical manufacturers. Atropine is a reversible muscarinic receptor used to treat various diseases. However, its distribution in ocular tissues is still incompletely understood. Matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) evaluates drug distribution in biological samples. However, there have been few investigations of drug distribution in ocular tissues, including whole-eye segments. In the present study, we explored the spatial distribution of atropine in the whole-eye segment by MALDI-IMS, and then evaluated the changes in atropine level along the anterior-posterior and superior-inferior axes. A 1% atropine solution was administered to a rabbit and after 30 min, its eye was enucleated, sectioned, and analyzed by MALDI-IMS. Atropine accumulated primarily in the tear menisci but was found at substantially lower concentrations in the tissue surrounding the conjunctival sacs. Relative differences in atropine levels between the anterior and posterior regions provided insights into the post-instillation behavior of atropine. Atropine signal intensities differed among corneal layers and between the superior and inferior eyeball regions. Differences in signal intensity among tissues indicated that the drug migrated to the posterior regions via a periocular-scleral route. Line scan analysis elucidated atropine transit from the anterior to the posterior region. This information is useful for atropine delivery in the ocular tissues and indicates that MALDI-IMS is effective for revealing drug distribution in whole-eye sections.
Collapse
Affiliation(s)
- Naoto Mori
- Nara Research and Development Center, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, Japan
| | - Takaharu Mochizuki
- Nara Research and Development Center, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, Japan
| | - Fumiyoshi Yamazaki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shiro Takei
- Laboratory of Fish Biology, Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Hidetoshi Mano
- Nara Research and Development Center, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, Japan
| | - Takeshi Matsugi
- Nara Research and Development Center, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu, Shizuoka, Japan
- Department of Anatomy, The university of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
15
|
Chan LW, Hsieh YT, Hsu WC, Cheng HC, Shen EP. Optic Disc Parameters of Myopic Children with Atropine Treatment. Curr Eye Res 2017; 42:1614-1619. [PMID: 28937823 DOI: 10.1080/02713683.2017.1359846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To characterize optic disc parameters, retinal nerve fiber layer thickness (RNFLT), and the intraocular pressure (IOP) of myopic children under continual topical 0.25% atropine treatment. METHODS From October 1, 2010 to September 31, 2011, 67 eyes of 35 myopic children were recruited. The children were treated with 0.25% atropine nightly for myopia control. Visual acuity, refraction, IOP, axial length (AL, IOL Master), RNFLT, and optic disc parameters (Stratus OCT) were measured at enrollment and every 2 months. All patients had at least 1 year of follow-up. RESULTS Enrolled children had a mean age of 10.3 ± 2.4 years (5-15 years). Of the 67 studied eyes, the mean spherical equivalent (SE) was -2.60 ± 1.58 diopters (D) (-6.75--0.5 D). Under the treatment of 0.25% atropine, myopia increased by 0.53 ± 0.10D per year (P < 0.0001), and AL elongated by 0.245 ± 0.042 mm per year (P < 0.0001). No significant change was noted in the IOP and optic nerve parameters including peripapillary RNFLT, areas of optic disc, cup and rim, or cup/disc ratio over the follow-up period during atropine treatment (P > 0.05). CONCLUSIONS 0.25% Atropine treatment for myopia control did not significantly affect the IOP, optic nerve parameters, and RNFLT in children over a mean of 15.2 ± 2.4 months treatment and follow-up. 0.25% Atropine is a relatively safe option for myopia control.
Collapse
Affiliation(s)
- Li-Wei Chan
- a Department of Ophthalmology , Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation , Taipei , Taiwan
| | - Yi-Ting Hsieh
- a Department of Ophthalmology , Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation , Taipei , Taiwan
| | - Wei-Cherng Hsu
- a Department of Ophthalmology , Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation , Taipei , Taiwan
| | - Han-Chih Cheng
- a Department of Ophthalmology , Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation , Taipei , Taiwan
| | - Elizabeth P Shen
- a Department of Ophthalmology , Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation , Taipei , Taiwan
| |
Collapse
|
16
|
The effect of topical administration of cyclopentolate on ocular biometry: An analysis for mouse and human models. Sci Rep 2017; 7:9952. [PMID: 28855546 PMCID: PMC5577254 DOI: 10.1038/s41598-017-09924-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/01/2017] [Indexed: 11/14/2022] Open
Abstract
Mydriasis with muscarinic antagonists have been used routinely prior to retinal examination and sometimes prior to refractive measurements of the mouse eye. However, biometric changes during topical administration of muscarinic antagonists have not been fully investigated in mice and humans. We found that the mouse eyes treated with cyclopentolate developed a hyperopia with a reduction in both the vitreous chamber depth and axial length. In humans, prior to the cyclopentolate treatment, a 6D accommodative stimulus produced a myopic shift with a reduced anterior chamber depth, choroidal thickness and anterior lens radius of curvature and an increase in lens thickness. After the cyclopentolate treatment, human eyes developed a hyperopic shift with an increased anterior chamber depth and anterior lens radius of curvature and a reduced lens thickness. Therefore, the biometric changes associated with this hyperopic shift were mainly located in the posterior segment of the eye in mice. However, it is the anterior segment of the eye that plays a main role in the hyperopic shift in human subjects. These results further indicate that mouse eyes do not have accommodation which needs to be taken into account when they are used for the study of human refractive errors.
Collapse
|
17
|
Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, Knop E, Markoulli M, Ogawa Y, Perez V, Uchino Y, Yokoi N, Zoukhri D, Sullivan DA. TFOS DEWS II pathophysiology report. Ocul Surf 2017; 15:438-510. [PMID: 28736340 DOI: 10.1016/j.jtos.2017.05.011] [Citation(s) in RCA: 1119] [Impact Index Per Article: 139.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022]
Abstract
The TFOS DEWS II Pathophysiology Subcommittee reviewed the mechanisms involved in the initiation and perpetuation of dry eye disease. Its central mechanism is evaporative water loss leading to hyperosmolar tissue damage. Research in human disease and in animal models has shown that this, either directly or by inducing inflammation, causes a loss of both epithelial and goblet cells. The consequent decrease in surface wettability leads to early tear film breakup and amplifies hyperosmolarity via a Vicious Circle. Pain in dry eye is caused by tear hyperosmolarity, loss of lubrication, inflammatory mediators and neurosensory factors, while visual symptoms arise from tear and ocular surface irregularity. Increased friction targets damage to the lids and ocular surface, resulting in characteristic punctate epithelial keratitis, superior limbic keratoconjunctivitis, filamentary keratitis, lid parallel conjunctival folds, and lid wiper epitheliopathy. Hybrid dry eye disease, with features of both aqueous deficiency and increased evaporation, is common and efforts should be made to determine the relative contribution of each form to the total picture. To this end, practical methods are needed to measure tear evaporation in the clinic, and similarly, methods are needed to measure osmolarity at the tissue level across the ocular surface, to better determine the severity of dry eye. Areas for future research include the role of genetic mechanisms in non-Sjögren syndrome dry eye, the targeting of the terminal duct in meibomian gland disease and the influence of gaze dynamics and the closed eye state on tear stability and ocular surface inflammation.
Collapse
Affiliation(s)
- Anthony J Bron
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Vision and Eye Research Unit, Anglia Ruskin University, Cambridge, UK.
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stefano Bonini
- Department of Ophthalmology, University Campus Biomedico, Rome, Italy
| | - Eric E Gabison
- Department of Ophthalmology, Fondation Ophtalmologique Rothschild & Hôpital Bichat Claude Bernard, Paris, France
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Erich Knop
- Departments of Cell and Neurobiology and Ocular Surface Center Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Victor Perez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Yuichi Uchino
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Driss Zoukhri
- Tufts University School of Dental Medicine, Boston, MA, USA
| | - David A Sullivan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Abstract
Glaucoma is characterized by a slow and progressive degeneration of the optic nerve, including retinal ganglion cell (RGC) axons in the optic nerve head (ONH), leading to visual impairment. Despite its high prevalence, the biological basis of glaucoma pathogenesis still is not yet fully understood, and the factors contributing to its progression are currently not well characterized. Intraocular pressure (IOP) is the only modifiable risk factor, and reduction of IOP is the standard treatment for glaucoma. However, lowering IOP itself is not always effective for preserving visual function in patients with primary open-angle glaucoma. The second messenger cyclic adenosine 3′,5′-monophosphate (cAMP) regulates numerous biological processes in the central nervous system including the retina and the optic nerve. Although recent studies revealed that cAMP generated by adenylyl cyclases (ACs) is important in regulating aqueous humor dynamics in ocular tissues, such as the ciliary body and trabecular meshwork, as well as cell death and growth in the retina and optic nerve, the functional role and significance of cAMP in glaucoma remain to be elucidated. In this review, we will discuss the functional role of cAMP in aqueous humor dynamics and IOP regulation, and review the current medications, which are related to the cAMP signaling pathway, for glaucoma treatment. Also, we will further focus on cAMP signaling in RGC growth and regeneration by soluble AC as well as ONH astrocytes by transmembrane ACs to understand its potential role in the pathogenesis of glaucoma neurodegeneration
Collapse
Affiliation(s)
- Myoung Sup Shim
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92037, USA
| | - Keun-Young Kim
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San Diego, La Jolla 92093, CA 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Soukup O, Winder M, Killi UK, Wsol V, Jun D, Kuca K, Tobin G. Acetylcholinesterase Inhibitors and Drugs Acting on Muscarinic Receptors- Potential Crosstalk of Cholinergic Mechanisms During Pharmacological Treatment. Curr Neuropharmacol 2017; 15:637-653. [PMID: 27281175 PMCID: PMC5543679 DOI: 10.2174/1570159x14666160607212615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/28/2016] [Accepted: 05/31/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Pharmaceuticals with targets in the cholinergic transmission have been used for decades and are still fundamental treatments in many diseases and conditions today. Both the transmission and the effects of the somatomotoric and the parasympathetic nervous systems may be targeted by such treatments. Irrespective of the knowledge that the effects of neuronal signalling in the nervous systems may include a number of different receptor subtypes of both the nicotinic and the muscarinic receptors, this complexity is generally overlooked when assessing the mechanisms of action of pharmaceuticals. METHODS We have search of bibliographic databases for peer-reviewed research literature focused on the cholinergic system. Also, we have taken advantage of our expertise in this field to deduce the conclusions of this study. RESULTS Presently, the life cycle of acetylcholine, muscarinic receptors and their effects are reviewed in the major organ systems of the body. Neuronal and non-neuronal sources of acetylcholine are elucidated. Examples of pharmaceuticals, in particular cholinesterase inhibitors, affecting these systems are discussed. The review focuses on salivary glands, the respiratory tract and the lower urinary tract, since the complexity of the interplay of different muscarinic receptor subtypes is of significance for physiological, pharmacological and toxicological effects in these organs. CONCLUSION Most pharmaceuticals targeting muscarinic receptors are employed at such large doses that no selectivity can be expected. However, some differences in the adverse effect profile of muscarinic antagonists may still be explained by the variation of expression of muscarinic receptor subtypes in different organs. However, a complex pattern of interactions between muscarinic receptor subtypes occurs and needs to be considered when searching for selective pharmaceuticals. In the development of new entities for the treatment of for instance pesticide intoxication, the muscarinic receptor selectivity needs to be considered. Reactivators generally have a muscarinic M2 receptor acting profile. Such a blockade may engrave the situation since it may enlarge the effect of the muscarinic M3 receptor effect. This may explain why respiratory arrest is the major cause for deaths by esterase blocking.
Collapse
Affiliation(s)
- Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Michael Winder
- Institute of Neuroscience and Physiology, Department of Pharmacology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Uday Kumar Killi
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Vladimir Wsol
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Czech Republic
| | - Gunnar Tobin
- Institute of Neuroscience and Physiology, Department of Pharmacology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| |
Collapse
|
20
|
Goldberg LA, Rucker FJ. Opposing effects of atropine and timolol on the color and luminance emmetropization mechanisms in chicks. Vision Res 2016; 122:1-11. [PMID: 26971621 PMCID: PMC4861675 DOI: 10.1016/j.visres.2016.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 11/29/2022]
Abstract
This study analyzed the luminance and color emmetropization response in chicks treated with the nonselective parasympathetic antagonist atropine and the sympathetic β-receptor blocker timolol. Chicks were binocularly exposed (8h/day) for 4days to one of three illumination conditions: 2Hz sinusoidal luminance flicker, 2Hz sinusoidal blue/yellow color flicker, or steady light (mean 680lux). Atropine experiments involved monocular daily injections of either 20μl of atropine (18nmol) or 20μl of phosphate-buffered saline. Timolol experiments involved monocular daily applications of 2 drops of 0.5% timolol or 2 drops of distilled H2O. Changes in the experimental eye were compared with those in the fellow eye after correction for the effects of saline/water treatments. Atropine caused a reduction in axial length with both luminance flicker (-0.078±0.021mm) and color flicker (-0.054±0.017mm), and a reduction in vitreous chamber depth with luminance flicker (-0.095±0.023mm), evoking a hyperopic shift in refraction (3.40±1.77D). Timolol produced an increase in axial length with luminance flicker (0.045±0.030mm) and a myopic shift in refraction (-4.07±0.92D), while color flicker caused a significant decrease in axial length (-0.046±0.017mm) that was associated with choroidal thinning (-0.046±0.015mm). The opposing effects on growth and refraction seen with atropine and timolol suggest a balancing mechanism between the parasympathetic and β-receptor mediated sympathetic system through stimulation of the retina with luminance and color contrast.
Collapse
Affiliation(s)
- Laura A Goldberg
- New England College of Optometry, 424 Beacon Street, Boston, MA 02115, United States.
| | - Frances J Rucker
- New England College of Optometry, 424 Beacon Street, Boston, MA 02115, United States
| |
Collapse
|
21
|
Makarenkova HP, Dartt DA. Myoepithelial Cells: Their Origin and Function in Lacrimal Gland Morphogenesis, Homeostasis, and Repair. CURRENT MOLECULAR BIOLOGY REPORTS 2015; 1:115-123. [PMID: 26688786 PMCID: PMC4683023 DOI: 10.1007/s40610-015-0020-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lacrimal gland (LG) is an exocrine tubuloacinar gland that secretes the aqueous layer of the tear film. LG epithelium is composed of ductal, acinar, and myoepithelial cells (MECs) bordering the basal lamina and separating the epithelial layer from the extracellular matrix. Mature MECs have contractile ability and morphologically resemble smooth muscle cells; however, they exhibit features typical for epithelial cells, such as the presence of specific cytokeratin filaments. Increasing evidence supports the assertion that myoepithelial cells (MECs) play key roles in the lacrimal gland development, homeostasis, and stabilizing the normal structure and polarity of LG secretory acini. MECs take part in the formation of extracellular matrix gland and participate in signal exchange between epithelium and stroma. MECs have a high level of plasticity and are able to differentiate into several cell lineages. Here, we provide a review on some of the MEC characteristics and their role in LG morphogenesis, maintenance, and repair.
Collapse
Affiliation(s)
- Helen P. Makarenkova
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Danielmeier C, Allen EA, Jocham G, Onur OA, Eichele T, Ullsperger M. Acetylcholine mediates behavioral and neural post-error control. Curr Biol 2015; 25:1461-8. [PMID: 25959965 DOI: 10.1016/j.cub.2015.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/24/2015] [Accepted: 04/13/2015] [Indexed: 11/19/2022]
Abstract
Humans often commit errors when they are distracted by irrelevant information and no longer focus on what is relevant to the task at hand. Adjustments following errors are essential for optimizing goal achievement. The posterior medial frontal cortex (pMFC), a key area for monitoring errors, has been shown to trigger such post-error adjustments by modulating activity in visual cortical areas. However, the mechanisms by which pMFC controls sensory cortices are unknown. We provide evidence for a mechanism based on pMFC-induced recruitment of cholinergic projections to task-relevant sensory areas. Using fMRI in healthy volunteers, we found that error-related pMFC activity predicted subsequent adjustments in task-relevant visual brain areas. In particular, following an error, activity increased in those visual cortical areas involved in processing task-relevant stimulus features, whereas activity decreased in areas representing irrelevant, distracting features. Following treatment with the muscarinic acetylcholine receptor antagonist biperiden, activity in visual areas was no longer under control of error-related pMFC activity. This was paralleled by abolished post-error behavioral adjustments under biperiden. Our results reveal a prominent role of acetylcholine in cognitive control that has not been recognized thus far. Regaining optimal performance after errors critically depends on top-down control of perception driven by the pMFC and mediated by acetylcholine. This may explain the lack of adaptivity in conditions with reduced availability of cortical acetylcholine, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Claudia Danielmeier
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Montessorilaan 3, 6525 HR Nijmegen, the Netherlands; Max Planck Institute for Neurological Research, Gleueler Strasse 50, 50931 Cologne, Germany; Department of Neuropsychology, Otto-von-Guericke-Universität, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Elena A Allen
- Department of Biological and Medical Psychology, University of Bergen, Jonas Liesvei 91, 5009 Bergen, Norway; The Mind Research Network, 1101 Yale Boulevard NE, Albuquerque, NM 87106, USA
| | - Gerhard Jocham
- Center for Behavioral Brain Sciences, Otto-von-Guericke-Universität, Universitätsplatz 2, 39106 Magdeburg, Germany; Faculty of Economics and Management, Otto-von-Guericke-Universität, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Oezguer A Onur
- Department of Neurology, University Hospital Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; Institut für Neurowissenschaften und Medizin, Research Center Jülich, Leo-Brandt-Strasse, 52425 Jülich, Germany
| | - Tom Eichele
- Department of Biological and Medical Psychology, University of Bergen, Jonas Liesvei 91, 5009 Bergen, Norway; The Mind Research Network, 1101 Yale Boulevard NE, Albuquerque, NM 87106, USA
| | - Markus Ullsperger
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Montessorilaan 3, 6525 HR Nijmegen, the Netherlands; Max Planck Institute for Neurological Research, Gleueler Strasse 50, 50931 Cologne, Germany; Department of Neuropsychology, Otto-von-Guericke-Universität, Universitätsplatz 2, 39106 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-Universität, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
23
|
Effect of the M1 Muscarinic Acetylcholine Receptor on Retinal Neuron Number Studied with Gene-Targeted Mice. J Mol Neurosci 2015; 56:472-9. [PMID: 25720339 DOI: 10.1007/s12031-015-0524-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/11/2015] [Indexed: 01/04/2023]
Abstract
Pharmacological activation of the M1 muscarinic receptor subtype was suggested to promote the survival of retinal neurons. We examined the hypothesis that the M1 receptor is crucial for retinal neuron survival in vivo by using mice devoid of the M1 receptor gene. Muscarinic receptor gene expression was determined in the retina using real-time PCR. The amount of neurons in the retinal ganglion cell layer and of axons in the optic nerve was determined in retinal wholemounts stained with cresyl blue and in optic nerve cross-sections stained with toluidine blue, respectively. mRNA of all five muscarinic receptor subtypes (M1-M5) was detected in the retina from wild-type mice. Remarkably, M2 and M3 receptor mRNA were most abundant. In retinas from M1 receptor-deficient mice, M4 receptor mRNA expression was increased compared to that of wild-type mice, while no marked changes in the mRNA expression levels of the other muscarinic receptor subtypes were observed. The amount of cells in the retinal ganglion cell layer and the amount of axons in the optic nerve did not differ between M1 receptor-deficient and wild-type mice. The present findings suggest that the M1 receptor is not essential for the survival of retinal neurons in vivo.
Collapse
|
24
|
Abstract
The autonomic nervous system influences numerous ocular functions. It does this by way of parasympathetic innervation from postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia, and by way of sympathetic innervation from postganglionic fibers that originate from neurons in the superior cervical ganglion. Ciliary ganglion neurons project to the ciliary body and the sphincter pupillae muscle of the iris to control ocular accommodation and pupil constriction, respectively. Superior cervical ganglion neurons project to the dilator pupillae muscle of the iris to control pupil dilation. Ocular blood flow is controlled both via direct autonomic influences on the vasculature of the optic nerve, choroid, ciliary body, and iris, as well as via indirect influences on retinal blood flow. In mammals, this vasculature is innervated by vasodilatory fibers from the pterygopalatine ganglion, and by vasoconstrictive fibers from the superior cervical ganglion. Intraocular pressure is regulated primarily through the balance of aqueous humor formation and outflow. Autonomic regulation of ciliary body blood vessels and the ciliary epithelium is an important determinant of aqueous humor formation; autonomic regulation of the trabecular meshwork and episcleral blood vessels is an important determinant of aqueous humor outflow. These tissues are all innervated by fibers from the pterygopalatine and superior cervical ganglia. In addition to these classical autonomic pathways, trigeminal sensory fibers exert local, intrinsic influences on many of these regions of the eye, as well as on some neurons within the ciliary and pterygopalatine ganglia.
Collapse
Affiliation(s)
- David H McDougal
- Neurobiology of Metabolic Dysfunction Laboratory, Pennington Biomedical Research Center, USA Department of Ophthalmology, University of Alabama at Birmingham, USA
| | | |
Collapse
|
25
|
Barathi VA, Chaurasia SS, Poidinger M, Koh SK, Tian D, Ho C, Iuvone PM, Beuerman RW, Zhou L. Involvement of GABA transporters in atropine-treated myopic retina as revealed by iTRAQ quantitative proteomics. J Proteome Res 2014; 13:4647-58. [PMID: 25211393 PMCID: PMC4227558 DOI: 10.1021/pr500558y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Atropine,
a muscarinic antagonist, is known to inhibit myopia progression
in several animal models and humans. However, the mode of action is
not established yet. In this study, we compared quantitative iTRAQ
proteomic analysis in the retinas collected from control and lens-induced
myopic (LIM) mouse eyes treated with atropine. The myopic group received
a (−15D) spectacle lens over the right eye on postnatal day
10 with or without atropine eye drops starting on postnatal day 24.
Axial length was measured by optical low coherence interferometry
(OLCI), AC-Master, and refraction was measured by automated infrared
photorefractor at postnatal 24, 38, and 52 days. Retinal tissue samples
were pooled from six eyes for each group. The experiments were repeated
twice, and technical replicates were also performed for liquid chromatography–tandem
mass spectrometry (LC–MS/MS) analysis. MetaCore was used to
perform protein profiling for pathway analysis. We identified a total
of 3882 unique proteins with <1% FDR by analyzing the samples in
replicates for two independent experiments. This is the largest number
of mouse retina proteome reported to date. Thirty proteins were found
to be up-regulated (ratio for myopia/control > global mean ratio
+
1 standard deviation), and 28 proteins were down-regulated (ratio
for myopia/control < global mean ratio - 1 standard deviation)
in myopic eyes as compared with control retinas. Pathway analysis
using MetaCore revealed regulation of γ-aminobutyric acid (GABA)
levels in the myopic eyes. Detailed analysis of the quantitative proteomics
data showed that the levels of GABA transporter 1 (GAT-1) were elevated
in myopic retina and significantly reduced after atropine treatment.
These results were further validated with immunohistochemistry and
Western blot analysis. In conclusion, this study provides a comprehensive
quantitative proteomic analysis of atropine-treated mouse retina and
suggests the involvement of GABAergic signaling in the antimyopic
effects of atropine in mouse eyes. The GABAergic transmission in the
neural retina plays a pivotal role in the maintenance of axial eye
growth in mammals.
Collapse
Affiliation(s)
- Veluchamy A Barathi
- Singapore Eye Research Institute , 11 Third Hospital Avenue, Singapore 168751, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chia A, Chua WH, Wen L, Fong A, Goon YY, Tan D. Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01%, 0.1% and 0.5%. Am J Ophthalmol 2014; 157:451-457.e1. [PMID: 24315293 DOI: 10.1016/j.ajo.2013.09.020] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 11/26/2022]
Abstract
PURPOSE To study the change in spherical equivalent and other ocular parameters 1 year after stopping the administration of atropine. DESIGN Prospective randomized double-masked clinical trial. METHODS We assigned 400 myopic children, 6 to 12 years of age, to receive atropine 0.5%, 0.1% or 0.01% for 24 months, after which medication was stopped. Parents and children gave informed consent to participate in the research. Children were reviewed at 26, 32 and 36 months, and changes in cycloplegic spherical equivalent (SE), axial length (AL), visual acuity, pupil size, and accommodation were assessed. RESULTS Of the children, 356 (89%) entered into the washout phase. At entry, there was no significant difference in age, gender, SE, or AL among the children in the various atropine groups. Over the following 12 months, myopic progression was greater in the 0.5% eyes (-0.87 ± 0.52 D), compared to the 0.1% (-0.68 ± 0.45 D) and 0.01% eyes (-0.28 ± 0.33 D, P < 0.001). AL growth was also greater in the 0.5% (0.35 ± 0.20 mm) and 0.1% (0.33 ± 0.18 mm) eyes, compared to the 0.01% eyes (0.19 ± 0.13 mm, P < 0.001). Pupil size and near visual acuity returned to pre-atropine levels in all groups, but accommodation at 36 months was less in the 0.5% eyes (13.24 ± 2.72 D) compared to the 0.1% (14.45 ± 2.61 D) and 0.01% eyes (14.04 ± 2.90 D, P < 0.001). The overall increase in SE over the entire 36 months in the 0.5%, 0.1% and 0.01% groups was -1.15 ± 0.81 D, -1.04 ± 0.83 D and -0.72 ± 0.72 D, respectively (P < 0.001). CONCLUSION There was a myopic rebound after atropine was stopped, and it was greater in eyes that had received 0.5% and 0.1% atropine. The 0.01% atropine effect, however, was more modulated and sustained.
Collapse
|
27
|
Monaco A, Cattaneo R, Mesin L, Fiorucci E, Pietropaoli D. Evaluation of autonomic nervous system in sleep apnea patients using pupillometry under occlusal stress: a pilot study. Cranio 2014; 32:139-47. [DOI: 10.1179/0886963413z.00000000022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Monaco A, Cattaneo R, Mesin L, Ciarrocchi I, Sgolastra F, Pietropaoli D. Dysregulation of the autonomous nervous system in patients with temporomandibular disorder: a pupillometric study. PLoS One 2012; 7:e45424. [PMID: 23028999 PMCID: PMC3445536 DOI: 10.1371/journal.pone.0045424] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/16/2012] [Indexed: 11/18/2022] Open
Abstract
The role of the autonomic nervous system (ANS) was recently investigated in Temporomandibular disorders (TMD). Several authors argue that in subjects with TMD there is a dysregulation of ANS. Recent literature support that Pupillometry is a simple non-invasive tool to study ANS. The aim of this study was to investigate the relationship between TMD and ANS activity using pupillometry recording in Infrared light at rest Mandible Position (RP); Infrared light at Forced Habitual Occlusion (FHO); Yellow-green light at RP; Yellow-green light at FHO. Forty female subjects were enrolled: 20 case patients showed TMD based on the Research Diagnostic Criteria for TMD, and 20 control patients, aged matched, had no signs or symptoms of TMD. Statistical analysis was performed on average pupil size. Ratio between pupil size in FHO and RP (FHO/RP ratio) and yellow-green and infrared (light/darkness ratio) lighting were carried out. Within group differences of pupil size and of “ratio” were analyzed using a paired t test, while differences of pupil size between groups were tested using an unpaired t test. Statistical comparisons between groups showed no significant differences of absolute values of pupil dimension in RP and FHO, both in yellow-green and in infrared lighting. In addition, there were no significant differences within groups comparing RP and FHO in yellow-green light. In within group comparison of pupil size, differences between RP and FHO were significant in infrared conditions. Control subjects increased, whereas TMD patients decreased pupil size at FHO in infrared lightening. FHO/RP ratio in darkness and light/darkness ratio in RP were significantly different between groups. Taken together, these data suggest that TMD subjects have an impairment of the sympathetic-adrenergic component of the ANS to be activated under stress. The present study provides preliminary pupillometric data confirming that adrenergic function is dysregulated in patients with TMD.
Collapse
Affiliation(s)
- Annalisa Monaco
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Ruggero Cattaneo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Luca Mesin
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - Irma Ciarrocchi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Fabrizio Sgolastra
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Davide Pietropaoli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- * E-mail:
| |
Collapse
|