1
|
Xin M, Bi F, Wang C, Huang Y, Xu Y, Liang S, Cai T, Xu X, Dong L, Li T, Wang X, Fang Y, Xu Z, Wang M, Song X, Zheng Y, Sun W, Li L. The circadian rhythm: A new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system. J Adv Res 2025; 69:495-514. [PMID: 38631431 PMCID: PMC11954810 DOI: 10.1016/j.jare.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.
Collapse
Affiliation(s)
- Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China
| | - Fangjie Bi
- Heart Center, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuhong Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yujia Xu
- Department of Echocardiography, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueke Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053 China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| |
Collapse
|
2
|
Wang Z, Wang S, Bi Y, Boiti A, Zhang S, Vallone D, Lan X, Foulkes NS, Zhao H. Light-regulated microRNAs shape dynamic gene expression in the zebrafish circadian clock. PLoS Genet 2025; 21:e1011545. [PMID: 39777894 PMCID: PMC11750094 DOI: 10.1371/journal.pgen.1011545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/21/2025] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways. Our previous work has revealed that light-induced gene transcription is a key step in the entrainment of the circadian clock as well as enabling the more general adaptation of zebrafish cells to sunlight exposure. However, considerable evidence points to post-transcriptional regulatory mechanisms, notably microRNAs (miRNAs), playing an essential role in shaping dynamic changes in mRNA levels. Therefore, does light directly impact the function of miRNAs? Are there light-regulated miRNAs and if so, which classes of mRNA do they target? To address these questions, we performed a complete sequencing analysis of light-induced changes in the zebrafish transcriptome, encompassing small non-coding RNAs as well as mRNAs. Importantly, we identified sets of light-regulated miRNAs, with many regulatory targets representing light-inducible mRNAs including circadian clock genes and genes involved in redox homeostasis. We subsequently focused on the light-responsive miR-204-3-3p and miR-430a-3p which are predicted to regulate the expression of cryptochrome genes (cry1a and cry1b). Luciferase reporter assays validated the target binding of miR-204-3-3p and miR-430a-3p to the 3'UTRs of cry1a and cry1b, respectively. Furthermore, treatment with mimics and inhibitors of these two miRNAs significantly affected the dynamic expression of their target genes but also other core clock components (clock1a, bmal1b, per1b, per2, per3), as well as the rhythmic locomotor activity of zebrafish larvae. Thus, our identification of light-responsive miRNAs reveals new intricacy in the multi-level regulation of the circadian clockwork by light.
Collapse
Affiliation(s)
- Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Shuang Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Yi Bi
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Alessandra Boiti
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Daniela Vallone
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Nicholas S. Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Stepanyan A, Brojakowska A, Zakharyan R, Hakobyan S, Davitavyan S, Sirunyan T, Khachatryan G, Khlgatian MK, Bisserier M, Zhang S, Sahoo S, Hadri L, Rai A, Garikipati VNS, Arakelyan A, Goukassian DA. Evaluating sex-specific responses to western diet across the lifespan: impact on cardiac function and transcriptomic signatures in C57BL/6J mice at 530 and 640/750 days of age. Cardiovasc Diabetol 2024; 23:454. [PMID: 39732652 PMCID: PMC11682651 DOI: 10.1186/s12933-024-02565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses. METHODS Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days. RESULTS In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life. In male mice, ECHO revealed the development of an HFrEF-like phenotype later in life without detectable structural alterations. The transcriptomic profile revealed a sex-associated dichotomy in LV structure and function. Specifically, at 530-day, WD-fed male mice exhibited differentially expressed genes (DEGs), which were overrepresented in pathways associated with endocrine function, signal transduction, and cardiomyopathies. At 750 days, WD-fed male mice exhibited dysregulation of several genes involved in various lipid, glucagon, and glutathione metabolic pathways. At 530 days, WD-fed female mice exhibited the most distinctive set of DEGs with an abundance of genes related to circadian rhythms. At 640 days, altered DEGs in WD-fed female mice were associated with cardiac energy metabolism and remodeling. CONCLUSIONS Our study demonstrated distinct sex-specific and age-associated differences in cardiac structure, function, and transcriptome signature between WD-fed male and female mice.
Collapse
Affiliation(s)
- Ani Stepanyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia.
| | - Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Roksana Zakharyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Siras Hakobyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Suren Davitavyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Tamara Sirunyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Gisane Khachatryan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Mary K Khlgatian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Malik Bisserier
- Department of Cell Biology and Anatomy and Physiology, New York Medical College, Valhalla, NY, USA
| | - Shihong Zhang
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Lahouaria Hadri
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amit Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Arsen Arakelyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - David A Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA.
| |
Collapse
|
4
|
McManus D, Patton AP, Smyllie NJ, Chin JW, Hastings MH. PERfect Day: reversible and dose-dependent control of circadian time-keeping in the mouse suprachiasmatic nucleus by translational switching of PERIOD2 protein expression. Eur J Neurosci 2024; 60:5537-5552. [PMID: 39300693 PMCID: PMC7617102 DOI: 10.1111/ejn.16537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
The biological clock of the suprachiasmatic nucleus (SCN) orchestrates circadian (approximately daily) rhythms of behaviour and physiology that underpin health. SCN cell-autonomous time-keeping revolves around a transcriptional/translational feedback loop (TTFL) within which PERIOD (PER1,2) and CRYPTOCHROME (CRY1,2) proteins heterodimerise and suppress trans-activation of their encoding genes (Per1,2; Cry1,2). To explore its contribution to SCN time-keeping, we used adeno-associated virus-mediated translational switching to express PER2 (tsPER2) in organotypic SCN slices carrying bioluminescent TTFL circadian reporters. Translational switching requires provision of the non-canonical amino acid, alkyne lysine (AlkK), for protein expression. Correspondingly, AlkK, but not vehicle, induced constitutive expression of tsPER2 in SCN neurons and reversibly and dose-dependently suppressed pPer1-driven transcription in PER-deficient (Per1,2-null) SCN, illustrating the potency of PER2 in negative regulation within the TTFL. Constitutive expression of tsPER2, however, failed to initiate circadian oscillations in arrhythmic PER-deficient SCN. In rhythmic, PER-competent SCN, AlkK dose-dependently reduced the amplitude of PER2-reported oscillations as inhibition by tsPER2 progressively damped the TTFL. tsPER2 also dose-dependently lengthened the period of the SCN TTFL and neuronal calcium rhythms. Following wash-out of AlkK to remove tsPER2, the SCN regained TTFL amplitude and period. Furthermore, SCN retained their pre-washout phase: the removal of tsPER2 did not phase-shift the TTFL. Given that constitutive tsCRY1 can regulate TTFL amplitude and period, but also reset TTFL phase and initiate rhythms in CRY-deficient SCN, these results reveal overlapping and distinct properties of PER2 and CRY1 within the SCN, and emphasise the utility of translational switching to explore the functions of circadian proteins.
Collapse
Affiliation(s)
- David McManus
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Andrew P Patton
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Nicola J Smyllie
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael H Hastings
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
5
|
Karaboué A, Innominato PF, Wreglesworth NI, Duchemann B, Adam R, Lévi FA. Why does circadian timing of administration matter for immune checkpoint inhibitors' efficacy? Br J Cancer 2024; 131:783-796. [PMID: 38834742 PMCID: PMC11369086 DOI: 10.1038/s41416-024-02704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Tolerability and antitumour efficacy of chemotherapy and radiation therapy can vary largely according to their time of administration along the 24-h time scale, due to the moderation of their molecular and cellular mechanisms by circadian rhythms. Recent clinical data have highlighted a striking role of dosing time for cancer immunotherapy, thus calling for a critical evaluation. METHODS Here, we review the clinical data and we analyse the mechanisms through which circadian rhythms can influence outcomes on ICI therapies. We examine how circadian rhythm disorders can affect tumour immune microenvironment, as a main mechanism linking the circadian clock to the 24-h cycles in ICIs antitumour efficacy. RESULTS Real-life data from 18 retrospective studies have revealed that early time-of-day (ToD) infusion of immune checkpoint inhibitors (ICIs) could enhance progression-free and/or overall survival up to fourfold compared to late ToD dosing. The studies involved a total of 3250 patients with metastatic melanoma, lung, kidney, bladder, oesophageal, stomach or liver cancer from 9 countries. Such large and consistent differences in ToD effects on outcomes could only result from a previously ignored robust chronobiological mechanism. The circadian timing system coordinates cellular, tissue and whole-body physiology along the 24-h timescale. Circadian rhythms are generated at the cellular level by a molecular clock system that involves 15 specific clock genes. The disruption of circadian rhythms can trigger or accelerate carcinogenesis, and contribute to cancer treatment failure, possibly through tumour immune evasion resulting from immunosuppressive tumour microenvironment. CONCLUSIONS AND PERSPECTIVE Such emerging understanding of circadian rhythms regulation of antitumour immunity now calls for randomised clinical trials of ICIs timing to establish recommendations for personalised chrono-immunotherapies with current and forthcoming drugs.
Collapse
Affiliation(s)
- Abdoulaye Karaboué
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France
- Medical Oncology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93770, Montfermeil, France
| | - Pasquale F Innominato
- North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, LL57 2PW, UK
- Cancer Chronotherapy Team, Division of Biomedical Sciences, Medical School, Warwick University, Coventry, CV4 7AL, UK
| | - Nicholas I Wreglesworth
- North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, LL57 2PW, UK
- School of Medical Sciences, Bangor University, Bangor, LL57 2PW, UK
| | - Boris Duchemann
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France
- Thoracic and Medical Oncology Unit, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93000, Bobigny, France
| | - René Adam
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France
- Hepato-Biliary Center, Paul Brousse Hospital, Assistance Publique-Hopitaux de Paris, 94800, Villejuif, France
| | - Francis A Lévi
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France.
- Gastro-intestinal and Medical Oncology Service, Paul Brousse Hospital, 94800, Villejuif, France.
- Department of Statistics, University of Warwick, Coventry, UK.
| |
Collapse
|
6
|
Touitou Y, Cermakian N, Touitou C. The environment and the internal clocks: The study of their relationships from prehistoric to modern times. Chronobiol Int 2024; 41:859-887. [PMID: 38757600 DOI: 10.1080/07420528.2024.2353857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
The origin of biological rhythms goes back to the very beginning of life. They are observed in the animal and plant world at all levels of organization, from cells to ecosystems. As early as the 18th century, plant scientists were the first to explain the relationship between flowering cycles and environmental cycles, emphasizing the importance of daily light-dark cycles and the seasons. Our temporal structure is controlled by external and internal rhythmic signals. Light is the main synchronizer of the circadian system, as daily exposure to light entrains our clock over 24 hours, the endogenous period of the circadian system being close to, but not exactly, 24 hours. In 1960, a seminal scientific meeting, the Cold Spring Harbor Symposium on Biological Rhythms, brought together all the biological rhythms scientists of the time, a number of whom are considered the founders of modern chronobiology. All aspects of biological rhythms were addressed, from the properties of circadian rhythms to their practical and ecological aspects. Birth of chronobiology dates from this period, with the definition of its vocabulary and specificities in metabolism, photoperiodism, animal physiology, etc. At around the same time, and right up to the present day, research has focused on melatonin, the circadian neurohormone of the pineal gland, with data on its pattern, metabolism, control by light and clinical applications. However, light has a double face, as it has positive effects as a circadian clock entraining agent, but also deleterious effects, as it can lead to chronodisruption when exposed chronically at night, which can increase the risk of cancer and other diseases. Finally, research over the past few decades has unraveled the anatomical location of circadian clocks and their cellular and molecular mechanisms. This recent research has in turn allowed us to explain how circadian rhythms control physiology and health.
Collapse
Affiliation(s)
- Yvan Touitou
- Unité de Chronobiologie, Fondation A. de Rothschild, Paris, France
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
7
|
Huang Y, Zhang Y, Braun R. A minimal model of peripheral clocks reveals differential circadian re-entrainment in aging. CHAOS (WOODBURY, N.Y.) 2023; 33:093104. [PMID: 37669108 PMCID: PMC10482494 DOI: 10.1063/5.0157524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/27/2023] [Indexed: 09/07/2023]
Abstract
The mammalian circadian system comprises a network of endogenous oscillators, spanning from the central clock in the brain to peripheral clocks in other organs. These clocks are tightly coordinated to orchestrate rhythmic physiological and behavioral functions. Dysregulation of these rhythms is a hallmark of aging, yet it remains unclear how age-related changes lead to more easily disrupted circadian rhythms. Using a two-population model of coupled oscillators that integrates the central clock and the peripheral clocks, we derive simple mean-field equations that can capture many aspects of the rich behavior found in the mammalian circadian system. We focus on three age-associated effects that have been posited to contribute to circadian misalignment: attenuated input from the sympathetic pathway, reduced responsiveness to light, and a decline in the expression of neurotransmitters. We find that the first two factors can significantly impede re-entrainment of the clocks following perturbation, while a weaker coupling within the central clock does not affect the recovery rate. Moreover, using our minimal model, we demonstrate the potential of using the feed-fast cycle as an effective intervention to accelerate circadian re-entrainment. These results highlight the importance of peripheral clocks in regulating the circadian rhythm and provide fresh insights into the complex interplay between aging and the resilience of the circadian system.
Collapse
Affiliation(s)
- Yitong Huang
- Author to whom correspondence should be addressed:
| | - Yuanzhao Zhang
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
| | | |
Collapse
|
8
|
Halawani D, Wang Y, Ramakrishnan A, Estill M, He X, Shen L, Friedel RH, Zou H. Circadian clock regulator Bmal1 gates axon regeneration via Tet3 epigenetics in mouse sensory neurons. Nat Commun 2023; 14:5165. [PMID: 37620297 PMCID: PMC10449865 DOI: 10.1038/s41467-023-40816-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Axon regeneration of dorsal root ganglia (DRG) neurons after peripheral axotomy involves reconfiguration of gene regulatory circuits to establish regenerative gene programs. However, the underlying mechanisms remain unclear. Here, through an unbiased survey, we show that the binding motif of Bmal1, a central transcription factor of the circadian clock, is enriched in differentially hydroxymethylated regions (DhMRs) of mouse DRG after peripheral lesion. By applying conditional deletion of Bmal1 in neurons, in vitro and in vivo neurite outgrowth assays, as well as transcriptomic profiling, we demonstrate that Bmal1 inhibits axon regeneration, in part through a functional link with the epigenetic factor Tet3. Mechanistically, we reveal that Bmal1 acts as a gatekeeper of neuroepigenetic responses to axonal injury by limiting Tet3 expression and restricting 5hmC modifications. Bmal1-regulated genes not only concern axon growth, but also stress responses and energy homeostasis. Furthermore, we uncover an epigenetic rhythm of diurnal oscillation of Tet3 and 5hmC levels in DRG neurons, corresponding to time-of-day effect on axon growth potential. Collectively, our studies demonstrate that targeting Bmal1 enhances axon regeneration.
Collapse
Affiliation(s)
- Dalia Halawani
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiqun Wang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Department of Orthopedics, Xi'an International Medical Center Hospital, Xi'an, China
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Putilov AA, Budkevich EV, Budkevich RO. A Review of Evidence for the Involvement of the Circadian Clock Genes into Malignant Transformation of Thyroid Tissue. Clocks Sleep 2023; 5:384-398. [PMID: 37489438 PMCID: PMC10366820 DOI: 10.3390/clockssleep5030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
(1) Background: In 2013, the results of a pioneer study on abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes in cancerous thyroid nodules was published. In the following years, new findings suggesting the involvement of circadian clockwork dysfunction into malignant transformation of thyroid tissue were gradually accumulating. This systematic review provides an update on existing evidence regarding the association of these genes with thyroid tumorigenesis. (2) Methods: Two bibliographic databases (Scopus and PubMed) were searched for articles from inception to 20 March 2023. The reference lists of previously published (nonsystematic) reviews were also hand-searched for additional relevant studies. (3) Results: Nine studies published between 2013 and 2022 were selected. In total, 9 of 12 tested genes were found to be either up- or downregulated. The list of such genes includes all families of core circadian clock genes that are the key components of three transcriptional-translational feedback loops of the circadian clock mechanism (BMAL1, CLOCK, NPAS2, RORα, REV-ERBα, PERs, CRYs, and DECs). (4) Conclusions: Examination of abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes in thyroid tissue can help to reduce the rate of inadequate differential preoperative diagnosis for thyroid carcinoma.
Collapse
Affiliation(s)
- Arcady A Putilov
- Laboratory of Nanobiotechnology and Biophysics, North-Caucasus Federal University, 355029 Stavropol, Russia
- Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117865 Moscow, Russia
| | - Elena V Budkevich
- Laboratory of Nanobiotechnology and Biophysics, North-Caucasus Federal University, 355029 Stavropol, Russia
| | - Roman O Budkevich
- Laboratory of Nanobiotechnology and Biophysics, North-Caucasus Federal University, 355029 Stavropol, Russia
| |
Collapse
|
10
|
Graniczkowska KB, Paulose JK, Cassone VM. Circadian regulation of metabolic, cell division, and cation transport promoters in the gastrointestinal bacterium Klebsiella aerogenes. Front Microbiol 2023; 14:1181756. [PMID: 37485537 PMCID: PMC10356819 DOI: 10.3389/fmicb.2023.1181756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction All eukaryotes and at least some prokaryotes express the capacity to anticipate and adapt to daily changes of light and temperature in their environments. These circadian programs are fundamental features of many forms of life. Cyanobacteria were the first prokaryotes to have demonstrated circadian gene expression. Recently, a circadian rhythm was also discovered in an unrelated bacterium, Klebsiella aerogenes, a human gut commensal and nosocomial pathogen. Methods Here we characterize new clock-controlled genes with spatial differences in expression using a bacterial luciferase reporter. These include dephospho-coenzyme A kinase (coaE), manganese transporter, H-dependent (mntH) and a gene identified as filamenting temperature-sensitive mutant Z (ftsZ). Results and Discussion The data show that all three reporter constructs exhibited circadian variation, although only PmntH::luxCDABE reporter strains were synchronized by melatonin. Additionally, we show that K. aerogenes divides rhythmically in vitro and that these bacteria may alternate between exponential and stationary cells. Together, these findings provide a deeper understanding of K. aerogenes.
Collapse
Affiliation(s)
| | - Jiffin K. Paulose
- Division of Human Genetics, Cincinnati Children’s Hospital, Cincinnati, OH, United States
| | - Vincent M. Cassone
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
11
|
Paula ABR, Resende LT, Jardim IABA, Portes AMO, Isoldi MC. The role of environmental signals in the expression of rhythmic cardiac proteins and their influence on cardiac pathologies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:205-223. [PMID: 37709377 DOI: 10.1016/bs.apcsb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
We know that numerous proteins expressed in the heart are influenced by environmental signals (such as light and diet), which cause either an increase or decrease in their expression. Cardiovascular health is sensitive to diet composition (macronutrient content), as well as the percentage of energy, frequency and regularity of meal intake during the 24-hour cycle, and the fasting period. Furthermore, light is an important synchronizer of the circadian clock and, in turn, of several physiological processes, among them cardiovascular physiology. In this chapter, we address the effects of these environmental cues and the known mechanisms that lead to this variation in protein expression in the heart, as well as cardiac function.
Collapse
Affiliation(s)
- Ana Beatriz Rezende Paula
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Bauxita, Ouro Preto, Brazil.
| | - Letícia Teresinha Resende
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Bauxita, Ouro Preto, Brazil
| | - Isabela Alcântara Barretto Araújo Jardim
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Bauxita, Ouro Preto, Brazil
| | - Alexandre Martins Oliveira Portes
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Bauxita, Ouro Preto, Brazil
| | - Mauro César Isoldi
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Bauxita, Ouro Preto, Brazil
| |
Collapse
|
12
|
Hu X, Nie Z, Ou Y, Lin L, Qian Z, Vaughn MG, McMillin SE, Zhou Y, Wu Y, Dong G, Dong H. Long-term exposure to ambient air pollution, circadian syndrome and cardiovascular disease: A nationwide study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161696. [PMID: 36682545 DOI: 10.1016/j.scitotenv.2023.161696] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVES Epidemiological evidence suggests associations between ambient air pollution and cardiovascular disease (CVD), while circadian rhythm dysregulation, presented by circadian syndrome (CircS), is emerging as a new proxy to cardiovascular disorder that could provide a bridge between them. The present study aims to clarify the effect of high levels ambient air pollution exposure on CircS and CVD in China. METHODS From the China Health and Retirement Longitudinal Study, we recruited 9116 Chinese participants in 2011 and followed them to 2015. A spatiotemporal model was applied to estimate exposure to particles with diameters ≤2.5 μm (PM2.5). The variable CircS was defined based on 7 components, including the 5 components used to define metabolic syndrome as well as other two components, lack of sleep and depression. The associations between PM2.5 exposure and prevalent CircS as well as incident CVD were modeled via logistic regression analysis displaying odds ratios (ORs) and 95 % CIs (confidence intervals). A mediation analysis was undertaken to identify the potential mediating role of CircS between PM2.5 exposure and CVD. RESULTS The mean age (standard deviation) was 59 (9) and 48.22 % were male. The OR (95 % CI) between the highest (Q4) and the lowest (Q1) quartile of PM2.5 exposure for CircS was 1.13 (1.01-1.28) in 2011 and 1.44 (1.22-1.72) in 2015. The cumulative effect of the components of CircS became more obvious with the increase of the PM2.5 quartile exposure. For the Q4 versus Q1 of PM2.5 increment, the multivariate-adjusted OR (95 % CI) was 1.66 (1.20-2.29) for CVD incidence. CircS partially mediated the association between PM2.5 exposure and CVD. CONCLUSIONS Exposure to PM2.5 is a risk factor for CircS and CVD, and the effect of PM2.5 on CVD may be explained by CircS. Improving air quality would have high value in preventing CircS as well as CVD in public health.
Collapse
Affiliation(s)
- Xiangming Hu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100000, China
| | - Zhiqiang Nie
- Department of Cardiology, Hypertension Research Laboratory, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yanqiu Ou
- Department of Cardiology, Hypertension Research Laboratory, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Lizi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengmin Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Michael G Vaughn
- School of Social Work, Saint Louis University, Saint Louis, MO 63103, USA
| | | | - Yingling Zhou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yongjian Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100000, China.
| | - Guanghui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Haojian Dong
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
13
|
Sun S, Wang H. Clocking Epilepsies: A Chronomodulated Strategy-Based Therapy for Rhythmic Seizures. Int J Mol Sci 2023; 24:4223. [PMID: 36835631 PMCID: PMC9962262 DOI: 10.3390/ijms24044223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by hypersynchronous recurrent neuronal activities and seizures, as well as loss of muscular control and sometimes awareness. Clinically, seizures have been reported to display daily variations. Conversely, circadian misalignment and circadian clock gene variants contribute to epileptic pathogenesis. Elucidation of the genetic bases of epilepsy is of great importance because the genetic variability of the patients affects the efficacies of antiepileptic drugs (AEDs). For this narrative review, we compiled 661 epilepsy-related genes from the PHGKB and OMIM databases and classified them into 3 groups: driver genes, passenger genes, and undetermined genes. We discuss the potential roles of some epilepsy driver genes based on GO and KEGG analyses, the circadian rhythmicity of human and animal epilepsies, and the mutual effects between epilepsy and sleep. We review the advantages and challenges of rodents and zebrafish as animal models for epileptic studies. Finally, we posit chronomodulated strategy-based chronotherapy for rhythmic epilepsies, integrating several lines of investigation for unraveling circadian mechanisms underpinning epileptogenesis, chronopharmacokinetic and chronopharmacodynamic examinations of AEDs, as well as mathematical/computational modeling to help develop time-of-day-specific AED dosing schedules for rhythmic epilepsy patients.
Collapse
Affiliation(s)
- Sha Sun
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Li W, Wang Z, Cao J, Dong Y, Chen Y. Perfecting the Life Clock: The Journey from PTO to TTFL. Int J Mol Sci 2023; 24:ijms24032402. [PMID: 36768725 PMCID: PMC9916482 DOI: 10.3390/ijms24032402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The ubiquity of biological rhythms in life implies that it results from selection in the evolutionary process. The origin of the biological clock has two possible hypotheses: the selective pressure hypothesis of the oxidative stress cycle and the light evasion hypothesis. Moreover, the biological clock gives life higher adaptability. Two biological clock mechanisms have been discovered: the negative feedback loop of transcription-translation (TTFL) and the post-translational oscillation mechanism (PTO). The TTFL mechanism is the most classic and relatively conservative circadian clock oscillation mechanism, commonly found in eukaryotes. We have introduced the TTFL mechanism of the classical model organisms. However, the biological clock of prokaryotes is based on the PTO mechanism. The Peroxiredoxin (PRX or PRDX) protein-based PTO mechanism circadian clock widely existing in eukaryotic and prokaryotic life is considered a more conservative oscillation mechanism. The coexistence of the PTO and TTFL mechanisms in eukaryotes prompted us to explain the relationship between the two. Finally, we speculated that there might be a driving force for the evolution of the biological clock. The biological clock may have an evolutionary trend from the PTO mechanism to the TTFL mechanism, resulting from the evolution of organisms adapting to the environment.
Collapse
Affiliation(s)
- Weitian Li
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
- Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62733778
| |
Collapse
|
15
|
Putilov A. Prospects of Testing Diurnal Profiles of Expressions of TSH-R and Circadian Clock Genes in Thyrocytes for Identification of Preoperative Biomarkers for Thyroid Carcinoma. Int J Mol Sci 2022; 23:12208. [PMID: 36293065 PMCID: PMC9603503 DOI: 10.3390/ijms232012208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Thyroid Nodules (TN) are frequent but mostly benign, and postoperative rate of benign TN attains the values from 70% to 90%. Therefore, there is an urgent need for identification of reliable preoperative diagnosis markers for patients with indeterminate thyroid cytology. In this study, an earlier unexplored design of research on preoperative biomarkers for thyroid malignancies was proposed. Evaluation of reported results of studies addressing the links of thyroid cancer to the circadian clockwork dysfunctions and abnormal activities of Thyroid-Stimulating Hormone (TSH) and its receptor (TSH-R) suggested diagnostic significance of such links. However, there is still a gap in studies of interrelationships between diurnal profiles of expression of circadian clock genes and TSH-R in indeterminate thyroid tissue exposed to different concentrations of TSH. These interrelationships might be investigated in future in vitro experiments on benign and malignant thyrocytes cultivated under normal and challenged TSH levels. Their design requires simultaneous measurement of diurnal profiles of expression of both circadian clock genes and TSH-R. Experimental results might help to bridge previous studies of preoperative biomarkers for thyroid carcinoma exploring diagnostic value of diurnal profiles of serum TSH levels, expression of TSH-R, and expression of circadian clock genes.
Collapse
Affiliation(s)
- Arcady Putilov
- Research Group for Math-Modeling of Biomedical Systems, Research Institute for Molecular Biology and Biophysics of the Federal Research Centre for Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; ; Tel.: +49-30-53674643 or +49-30-61290031
- Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117865 Moscow, Russia
- Laboratory of Nanobiotechnology and Biophysics, North-Caucasus Federal University, 355029 Stavropol, Russia
| |
Collapse
|
16
|
OUP accepted manuscript. Brain 2022; 145:3225-3235. [DOI: 10.1093/brain/awac147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 11/14/2022] Open
|
17
|
Zhang Y, Zhang W, Liu C. Integration of peripheral circadian clock and energy metabolism in metabolic tissues. J Mol Cell Biol 2021; 12:481-485. [PMID: 31863090 PMCID: PMC7493026 DOI: 10.1093/jmcb/mjz112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yanchen Zhang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
18
|
Fan X, Chen Z, Li W, Qin H, Huang S, Lu Z, Li Y, Liu M. Exploring the effects of large-area dorsal skin irradiation on locomotor activity and plasm melatonin level in C3H/He mice. Chronobiol Int 2021; 38:1776-1785. [PMID: 34348552 DOI: 10.1080/07420528.2021.1962904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
As the largest organ exposed to the outside of mammals, skin has direct photosensitivity. Recent studies have even shown that cutaneous irradiation played a role in local circadian systems. However, whether it can further affect the central clock system is controversial. Here, plasm melatonin rhythm of melatonin-proficient C3H/He mice was assessed, and on this basis, a well-designed segmented lighting method was used to investigate the effects of dorsal skin irradiation on locomotor activity and plasm melatonin content in male C3H/He mice. In brief, mice were separately exposed to cutaneous irradiation, intraocular irradiation or darkness for 60 min at specific moments. The results showed that neither blue nor red cutaneous exposure had obvious effect on central rhythm oscillation while intraocular irradiation could significantly change the central clock of mice, and the effect of blue light was more forceful than red light. It suggests that intraocular nonvisual channels still play a dominant role in rhythmic regulation, which has not been challenged by the discovery of local light entrainment in exposed peripheral tissues.
Collapse
Affiliation(s)
- Xuewei Fan
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, Shanghai, China.,Zhongshan Fudan Joint Innovation Center, Zhongshan Industrial Technology Research Institute, Zhongshan, China
| | - Zeqing Chen
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, Shanghai, China.,Zhongshan Fudan Joint Innovation Center, Zhongshan Industrial Technology Research Institute, Zhongshan, China
| | - Wenqi Li
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, Shanghai, China.,Zhongshan Fudan Joint Innovation Center, Zhongshan Industrial Technology Research Institute, Zhongshan, China
| | - Haokuan Qin
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, Shanghai, China.,Zhongshan Fudan Joint Innovation Center, Zhongshan Industrial Technology Research Institute, Zhongshan, China
| | - Shijie Huang
- Zhongshan Fudan Joint Innovation Center, Zhongshan Industrial Technology Research Institute, Zhongshan, China.,Institute for Electric Light Sources, Fudan University, Shanghai, China
| | - Zhicheng Lu
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, Shanghai, China.,Zhongshan Fudan Joint Innovation Center, Zhongshan Industrial Technology Research Institute, Zhongshan, China
| | - Yinghua Li
- Central Laboratory, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Muqing Liu
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, Shanghai, China.,Zhongshan Fudan Joint Innovation Center, Zhongshan Industrial Technology Research Institute, Zhongshan, China.,Institute for Electric Light Sources, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Burchett JB, Knudsen-Clark AM, Altman BJ. MYC Ran Up the Clock: The Complex Interplay between MYC and the Molecular Circadian Clock in Cancer. Int J Mol Sci 2021; 22:7761. [PMID: 34299381 PMCID: PMC8305799 DOI: 10.3390/ijms22147761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
The MYC oncoprotein and its family members N-MYC and L-MYC are known to drive a wide variety of human cancers. Emerging evidence suggests that MYC has a bi-directional relationship with the molecular clock in cancer. The molecular clock is responsible for circadian (~24 h) rhythms in most eukaryotic cells and organisms, as a mechanism to adapt to light/dark cycles. Disruption of human circadian rhythms, such as through shift work, may serve as a risk factor for cancer, but connections with oncogenic drivers such as MYC were previously not well understood. In this review, we examine recent evidence that MYC in cancer cells can disrupt the molecular clock; and conversely, that molecular clock disruption in cancer can deregulate and elevate MYC. Since MYC and the molecular clock control many of the same processes, we then consider competition between MYC and the molecular clock in several select aspects of tumor biology, including chromatin state, global transcriptional profile, metabolic rewiring, and immune infiltrate in the tumor. Finally, we discuss how the molecular clock can be monitored or diagnosed in human tumors, and how MYC inhibition could potentially restore molecular clock function. Further study of the relationship between the molecular clock and MYC in cancer may reveal previously unsuspected vulnerabilities which could lead to new treatment strategies.
Collapse
Affiliation(s)
- Jamison B. Burchett
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Amelia M. Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
20
|
de Assis LVM, Oster H. The circadian clock and metabolic homeostasis: entangled networks. Cell Mol Life Sci 2021; 78:4563-4587. [PMID: 33683376 PMCID: PMC8195959 DOI: 10.1007/s00018-021-03800-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock exerts an important role in systemic homeostasis as it acts a keeper of time for the organism. The synchrony between the daily challenges imposed by the environment needs to be aligned with biological processes and with the internal circadian clock. In this review, it is provided an in-depth view of the molecular functioning of the circadian molecular clock, how this system is organized, and how central and peripheral clocks communicate with each other. In this sense, we provide an overview of the neuro-hormonal factors controlled by the central clock and how they affect peripheral tissues. We also evaluate signals released by peripheral organs and their effects in the central clock and other brain areas. Additionally, we evaluate a possible communication between peripheral tissues as a novel layer of circadian organization by reviewing recent studies in the literature. In the last section, we analyze how the circadian clock can modulate intracellular and tissue-dependent processes of metabolic organs. Taken altogether, the goal of this review is to provide a systemic and integrative view of the molecular clock function and organization with an emphasis in metabolic tissues.
Collapse
Affiliation(s)
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism, University of Lübeck, Institute of Neurobiology, Marie Curie Street, 23562, Lübeck, Germany.
| |
Collapse
|
21
|
Yi JS, Díaz NM, D'Souza S, Buhr ED. The molecular clockwork of mammalian cells. Semin Cell Dev Biol 2021; 126:87-96. [PMID: 33810978 DOI: 10.1016/j.semcdb.2021.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022]
Abstract
Most organisms contain self-sustained circadian clocks. These clocks can be synchronized by environmental stimuli, but can also oscillate indefinitely in isolation. In mammals this is true at the molecular level for the majority of cell types that have been examined. A core set of "clock genes" form a transcriptional/translational feedback loop (TTFL) which repeats with a period of approximately 24 h. The exact mechanism of the TTFL differs slightly in various cell types, but all involve similar family members of the core cohort of clock genes. The clock has many outputs which are unique for different tissues. Cells in diverse tissues will convert the timing signals provided by the TTFL into uniquely orchestrated transcriptional oscillations of many clock-controlled genes and cellular processes.
Collapse
Affiliation(s)
- Jonathan S Yi
- University of Washington, Dept. of Ophthalmology, 750 Republican St., Seattle, WA 98109, USA
| | - Nicolás M Díaz
- University of Washington, Dept. of Ophthalmology, 750 Republican St., Seattle, WA 98109, USA
| | - Shane D'Souza
- Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Ethan D Buhr
- University of Washington, Dept. of Ophthalmology, 750 Republican St., Seattle, WA 98109, USA.
| |
Collapse
|
22
|
Circadian Rhythm: Potential Therapeutic Target for Atherosclerosis and Thrombosis. Int J Mol Sci 2021; 22:ijms22020676. [PMID: 33445491 PMCID: PMC7827891 DOI: 10.3390/ijms22020676] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Every organism has an intrinsic biological rhythm that orchestrates biological processes in adjusting to daily environmental changes. Circadian rhythms are maintained by networks of molecular clocks throughout the core and peripheral tissues, including immune cells, blood vessels, and perivascular adipose tissues. Recent findings have suggested strong correlations between the circadian clock and cardiovascular diseases. Desynchronization between the circadian rhythm and body metabolism contributes to the development of cardiovascular diseases including arteriosclerosis and thrombosis. Circadian rhythms are involved in controlling inflammatory processes and metabolisms, which can influence the pathology of arteriosclerosis and thrombosis. Circadian clock genes are critical in maintaining the robust relationship between diurnal variation and the cardiovascular system. The circadian machinery in the vascular system may be a novel therapeutic target for the prevention and treatment of cardiovascular diseases. The research on circadian rhythms in cardiovascular diseases is still progressing. In this review, we briefly summarize recent studies on circadian rhythms and cardiovascular homeostasis, focusing on the circadian control of inflammatory processes and metabolisms. Based on the recent findings, we discuss the potential target molecules for future therapeutic strategies against cardiovascular diseases by targeting the circadian clock.
Collapse
|
23
|
Rojas M, Chávez-Castillo M, Pírela D, Ortega Á, Salazar J, Cano C, Chacín M, Riaño M, Batista MJ, Díaz EA, Rojas-Quintero J, Bermúdez V. Chronobiology and Chronotherapy in Depression: Current Knowledge and Chronotherapeutic Promises. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2021. [DOI: 10.2174/2666082216999201124152432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Depression is a heavily prevalent mental disorder. Symptoms of depression
extend beyond mood, cognition, and behavior to include a spectrum of somatic manifestations in all
organic systems. Changes in sleep and neuroendocrine rhythms are especially prominent, and disruptions
of circadian rhythms have been closely related to the neurobiology of depression. With the
advent of increased research in chronobiology, various pathophysiologic mechanisms have been
proposed, including anomalies of sleep architecture, the effects of clock gene polymorphisms in
monoamine metabolism, and the deleterious impact of social zeitgebers. The identification of these
chronodisruptions has propelled the emergence of several chronotherapeutic strategies, both pharmacological
and non-pharmacological, with varying degrees of clinical evidence.
Methods:
The fundamental objective of this review is to integrate current knowledge about the role
of chronobiology and depression and to summarize the interventions developed to resynchronize
biorhythms both within an individual and with geophysical time.
Results:
We have found that among the non-pharmacological alternatives, triple chronotherapywhich
encompasses bright light therapy, sleep deprivation therapy, and consecutive sleep phase
advance therapy-has garnered the most considerable scientific interest. On the other hand,
agomelatine appears to be the most promising pharmacological option, given its unique melatonergic
pharmacodynamics.
Conclusions:
Research in chronotherapy as a treatment for depression is currently booming. Novel
interventions could play a significant role in adopting new options for the treatment of depression,
with Tripe Cronotherapy standing out as the most promising treatment.
Collapse
Affiliation(s)
- Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Daniela Pírela
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Riaño
- Universidad Simon Bolívar, Facultad de Ciencias Juridicas y Sociales, Cucuta, Colombia
| | - María Judith Batista
- Universidad Simon Bolívar, Facultad de Ciencias Juridicas y Sociales, Cucuta, Colombia
| | - Edgar Alexis Díaz
- Universidad Simon Bolívar, Facultad de Ciencias Juridicas y Sociales, Cucuta, Colombia
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Valmore Bermúdez
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
24
|
Chirico N, Van Laake LW, Sluijter JPG, van Mil A, Dierickx P. Cardiac circadian rhythms in time and space: The future is in 4D. Curr Opin Pharmacol 2020; 57:49-59. [PMID: 33338891 DOI: 10.1016/j.coph.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/25/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
The circadian clock synchronizes the body into 24-h cycles, thereby anticipating variations in tissue-specific diurnal tasks, such as response to increased cardiac metabolic demand during the active period of the day. As a result, blood pressure, heart rate, cardiac output, and occurrence of fatal cardiovascular events fluctuate in a diurnal manner. The heart contains different cell types that make up and reside in an environment of biochemical, mechanical, and topographical signaling. Cardiac architecture is essential for proper heart development as well as for maintenance of cell homeostasis and tissue repair. In this review, we describe the possibilities of studying circadian rhythmicity in the heart by using advanced in vitro systems that mimic the native cardiac 3D microenvironment which can be tuned in time and space. Harnessing the knowledge that originates from those in vitro models could significantly improve innovative cardiac modeling and regenerative strategies.
Collapse
Affiliation(s)
- Nino Chirico
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Linda W Van Laake
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alain van Mil
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pieterjan Dierickx
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA.
| |
Collapse
|
25
|
de Assis LVM, Mendes D, Silva MM, Kinker GS, Pereira-Lima I, Moraes MN, Menck CFM, Castrucci AMDL. Melanopsin mediates UVA-dependent modulation of proliferation, pigmentation, apoptosis, and molecular clock in normal and malignant melanocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118789. [PMID: 32645331 DOI: 10.1016/j.bbamcr.2020.118789] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022]
Abstract
Cutaneous melanocytes and melanoma cells express several opsins, of which melanopsin (OPN4) detects temperature and UVA radiation. To evaluate the interaction between OPN4 and UVA radiation, normal and malignant Opn4WT and Opn4KO melanocytes were exposed to three daily low doses (total 13.2 kJ/m2) of UVA radiation. UVA radiation led to a reduction of proliferation in both Opn4WT cell lines; however, only in melanoma cells this effect was associated with increased cell death by apoptosis. Daily UVA stimuli induced persistent pigment darkening (PPD) in both Opn4WT cell lines. Upon Opn4 knockout, all UVA-induced effects were lost in three independent clones of Opn4KO melanocytes and melanoma cells. Per1 bioluminescence was reduced after 1st and 2nd UVA radiations in Opn4WT cells. In Opn4KO melanocytes and melanoma cells, an acute increase of Per1 expression was seen immediately after each stimulus. We also found that OPN4 expression is downregulated in human melanoma compared to normal skin, and it decreases with disease progression. Interestingly, metastatic melanomas with low expression of OPN4 present increased expression of BMAL1 and longer overall survival. Collectively, our findings reinforce the functionality of the photosensitive system of melanocytes that may subsidize advancements in the understanding of skin related diseases, including cancer.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Davi Mendes
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Matheus Molina Silva
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Gabriela Sarti Kinker
- Laboratory of Neuroimmunoendocrinology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Isabella Pereira-Lima
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathália Moraes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Frederico Martins Menck
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
26
|
Circadian VIPergic Neurons of the Suprachiasmatic Nuclei Sculpt the Sleep-Wake Cycle. Neuron 2020; 108:486-499.e5. [PMID: 32916091 PMCID: PMC7803671 DOI: 10.1016/j.neuron.2020.08.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/07/2019] [Accepted: 07/31/2020] [Indexed: 01/08/2023]
Abstract
Although the mammalian rest-activity cycle is controlled by a "master clock" in the suprachiasmatic nucleus (SCN) of the hypothalamus, it is unclear how firing of individual SCN neurons gates individual features of daily activity. Here, we demonstrate that a specific transcriptomically identified population of mouse VIP+ SCN neurons is active at the "wrong" time of day-nighttime-when most SCN neurons are silent. Using chemogenetic and optogenetic strategies, we show that these neurons and their cellular clocks are necessary and sufficient to gate and time nighttime sleep but have no effect upon daytime sleep. We propose that mouse nighttime sleep, analogous to the human siesta, is a "hard-wired" property gated by specific neurons of the master clock to favor subsequent alertness prior to dawn (a circadian "wake maintenance zone"). Thus, the SCN is not simply a 24-h metronome: specific populations sculpt critical features of the sleep-wake cycle.
Collapse
|
27
|
Kubo M. Diurnal Rhythmicity Programs of Microbiota and Transcriptional Oscillation of Circadian Regulator, NFIL3. Front Immunol 2020; 11:552188. [PMID: 33013924 PMCID: PMC7511535 DOI: 10.3389/fimmu.2020.552188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Circadian rhythms are a very exquisite mechanism to influence on transcriptional levels and physiological activities of various molecules that affect cell metabolic pathways. Long-term alteration of circadian rhythms increases the risk of cardiovascular diseases, hypertension, hypertriglyceridemia, and metabolic syndrome. A drastic change in dietary patterns can affect synchronizing the circadian clock within the metabolic system. Therefore, the interaction between the host and the bacterial community colonizing the mammalian gastrointestinal tract has a great impact on the circadian clock in diurnal programs. Here, we propose that the microbiota regulates body composition through the transcriptional oscillation of circadian regulators. The transcriptional regulator, NFIL3 (also called E4BP4) is a good example. Compositional change of the commensal bacteria influences the rhythmic expression of NFIL3 in the epithelium, which subsequently controls obesity and insulin resistance. Therefore, control of circadian regulators would be a promising therapeutic target for metabolic diseases.
Collapse
Affiliation(s)
- Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan.,Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
| |
Collapse
|
28
|
Iversen M, Mulugeta T, Gellein Blikeng B, West AC, Jørgensen EH, Rød Sandven S, Hazlerigg D. RNA profiling identifies novel, photoperiod-history dependent markers associated with enhanced saltwater performance in juvenile Atlantic salmon. PLoS One 2020; 15:e0227496. [PMID: 32267864 PMCID: PMC7141700 DOI: 10.1371/journal.pone.0227496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Atlantic salmon migrate to sea following completion of a developmental process known as smolting, which establishes a seawater (SW) tolerant phenotype. Smolting is stimulated by exposure to long photoperiod or continuous light (LL) following a period of exposure to short photoperiod (SP), and this leads to major changes in gill ion exchange and osmoregulatory function. Here, we performed an RNAseq experiment to discover novel genes involved in photoperiod-dependent remodeling of the gill. This revealed a novel cohort of genes whose expression rises dramatically in fish transferred to LL following SP exposure, but not in control fish maintained continuously on LL or on SP. A follow-up experiment revealed that the SP-history dependence of LL induction of gene expression varies considerably between genes. Some genes were inducible by LL exposure after only 2 weeks exposure to SP, while others required 8 weeks prior SP exposure for maximum responsiveness to LL. Since subsequent SW growth performance is also markedly improved following 8 weeks SP exposure, these photoperiodic history-dependent genes may be useful predictive markers for full smolt development.
Collapse
Affiliation(s)
- Marianne Iversen
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø, Norway
| | - Teshome Mulugeta
- Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Børge Gellein Blikeng
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø, Norway
| | | | - Even Hjalmar Jørgensen
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø, Norway
| | - Simen Rød Sandven
- Centre for Integrative Genetics, Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - David Hazlerigg
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
29
|
Szechtman H, Harvey BH, Woody EZ, Hoffman KL. The Psychopharmacology of Obsessive-Compulsive Disorder: A Preclinical Roadmap. Pharmacol Rev 2020; 72:80-151. [PMID: 31826934 DOI: 10.1124/pr.119.017772] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review evaluates current knowledge about obsessive-compulsive disorder (OCD), with the goal of providing a roadmap for future directions in research on the psychopharmacology of the disorder. It first addresses issues in the description and diagnosis of OCD, including the structure, measurement, and appropriate description of the disorder and issues of differential diagnosis. Current pharmacotherapies for OCD are then reviewed, including monotherapy with serotonin reuptake inhibitors and augmentation with antipsychotic medication and with psychologic treatment. Neuromodulatory therapies for OCD are also described, including psychosurgery, deep brain stimulation, and noninvasive brain stimulation. Psychotherapies for OCD are then reviewed, focusing on behavior therapy, including exposure and response prevention and cognitive therapy, and the efficacy of these interventions is discussed, touching on issues such as the timing of sessions, the adjunctive role of pharmacotherapy, and the underlying mechanisms. Next, current research on the neurobiology of OCD is examined, including work probing the role of various neurotransmitters and other endogenous processes and etiology as clues to the neurobiological fault that may underlie OCD. A new perspective on preclinical research is advanced, using the Research Domain Criteria to propose an adaptationist viewpoint that regards OCD as the dysfunction of a normal motivational system. A systems-design approach introduces the security motivation system (SMS) theory of OCD as a framework for research. Finally, a new perspective on psychopharmacological research for OCD is advanced, exploring three approaches: boosting infrastructure facilities of the brain, facilitating psychotherapeutic relearning, and targeting specific pathways of the SMS network to fix deficient SMS shut-down processes. SIGNIFICANCE STATEMENT: A significant proportion of patients with obsessive-compulsive disorder (OCD) do not achieve remission with current treatments, indicating the need for innovations in psychopharmacology for the disorder. OCD may be conceptualized as the dysfunction of a normal, special motivation system that evolved to manage the prospect of potential danger. This perspective, together with a wide-ranging review of the literature, suggests novel directions for psychopharmacological research, including boosting support systems of the brain, facilitating relearning that occurs in psychotherapy, and targeting specific pathways in the brain that provide deficient stopping processes in OCD.
Collapse
Affiliation(s)
- Henry Szechtman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Brian H Harvey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Erik Z Woody
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Kurt Leroy Hoffman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| |
Collapse
|
30
|
Noya SB, Colameo D, Brüning F, Spinnler A, Mircsof D, Opitz L, Mann M, Tyagarajan SK, Robles MS, Brown SA. The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 2019; 366:366/6462/eaav2642. [DOI: 10.1126/science.aav2642] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Neurons have adapted mechanisms to traffic RNA and protein into distant dendritic and axonal arbors. Taking a biochemical approach, we reveal that forebrain synaptic transcript accumulation shows overwhelmingly daily rhythms, with two-thirds of synaptic transcripts showing time-of-day–dependent abundance independent of oscillations in the soma. These transcripts formed two sharp temporal and functional clusters, with transcripts preceding dawn related to metabolism and translation and those anticipating dusk related to synaptic transmission. Characterization of the synaptic proteome around the clock demonstrates the functional relevance of temporal gating for synaptic processes and energy homeostasis. Unexpectedly, sleep deprivation completely abolished proteome but not transcript oscillations. Altogether, the emerging picture is one of a circadian anticipation of messenger RNA needs in the synapse followed by translation as demanded by sleep-wake cycles.
Collapse
Affiliation(s)
- Sara B. Noya
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - David Colameo
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Franziska Brüning
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andrea Spinnler
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Dennis Mircsof
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, University of Zurich–Eidgenosissche Technische Hochschule, Zurich, Switzerland
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Shiva K. Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Maria S. Robles
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany
| | - Steven A. Brown
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
31
|
de Assis LVM, Moraes MN, Castrucci AMDL. The molecular clock in the skin, its functionality, and how it is disrupted in cutaneous melanoma: a new pharmacological target? Cell Mol Life Sci 2019; 76:3801-3826. [PMID: 31222374 PMCID: PMC11105295 DOI: 10.1007/s00018-019-03183-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/13/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The skin is the interface between the organism and the external environment, acting as its first barrier. Thus, this organ is constantly challenged by physical stimuli such as UV and infrared radiation, visible light, and temperature as well as chemicals and pathogens. To counteract the deleterious effects of the above-mentioned stimuli, the skin has complex defense mechanisms such as: immune and neuroendocrine systems; shedding of epidermal squamous layers and apoptosis of damaged cells; DNA repair; and pigmentary system. Here we have reviewed the current knowledge regarding which stimuli affect the molecular clock of the skin, the consequences to skin-related biological processes and, based on such knowledge, we suggest some therapeutic targets. We also explored the recent advances regarding the molecular clock disruption in melanoma, its impact on the carcinogenic process, and its therapeutic value in melanoma treatment.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil
- School of Health Science, University Anhembi Morumbi, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, R. do Matão, Trav. 14, No. 101, São Paulo, 05508-090, Brazil.
| |
Collapse
|
32
|
Loss of Diurnal Oscillatory Rhythms in Gut Microbiota Correlates with Changes in Circulating Metabolites in Type 2 Diabetic db/db Mice. Nutrients 2019; 11:nu11102310. [PMID: 31569518 PMCID: PMC6835667 DOI: 10.3390/nu11102310] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Our hypothesis is that diabetes leads to loss of diurnal oscillatory rhythms in gut microbiota altering circulating metabolites. We performed an observational study where we compared diurnal changes of the gut microbiota with temporal changes of plasma metabolites. Metadata analysis from bacterial DNA from fecal pellets collected from 10-month old control (db/m) and type 2 diabetic (db/db) mice every 4 h for a 24-h period was used for prediction analysis. Blood plasma was collected at a day and night time points and was used for untargeted global metabolomic analysis. Feeding and activity behaviors were recorded. Our results show that while diabetic mice exhibited feeding and activity behavior similar to control mice, they exhibited a loss of diurnal oscillations in bacteria of the genus Akkermansia, Bifidobacterium, Allobaculum, Oscillospira and a phase shift in the oscillations of g.Prevotella, proteobacteria, and actinobacteria. Analysis of the circulating metabolites showed alterations in the diurnal pattern of metabolic pathways where bacteria have been implicated, such as the histidine, betaine, and methionine/cysteine pathway, mitochondrial function and the urea cycle. Functional analysis of the differential microbes revealed that during the day, when mice are asleep, the microbes of diabetic mice were enriched in processing carbon and pyruvate metabolic pathways instead of xenobiotic degradation as was observed for control mice. Altogether, our study suggests that diabetes led to loss of rhythmic oscillations of many gut microbiota with possible implications for temporal regulation of host metabolic pathways.
Collapse
|
33
|
Paulose JK, Cassone CV, Graniczkowska KB, Cassone VM. Entrainment of the Circadian Clock of the Enteric Bacterium Klebsiella aerogenes by Temperature Cycles. iScience 2019; 19:1202-1213. [PMID: 31551197 PMCID: PMC6831877 DOI: 10.1016/j.isci.2019.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 01/20/2023] Open
Abstract
The gastrointestinal bacterium Klebsiella (née Enterobacter) aerogenes expresses an endogenously generated, temperature-compensated circadian rhythm in swarming motility. We hypothesized that this rhythm may be synchronized/entrained in vivo by body temperature (TB). To determine entrainment, cultures expressing bioluminescence were exposed to temperature cycles of 1°C (35°C-36°C) or 3°C (34°C-37°C) in amplitude at periods (T-cycles) of T = 22, T = 24, or T = 28 h. Bacteria entrained to all T-cycles at both amplitudes and with stable phase relationships. A high-amplitude phase response curve (PRC) in response to 1-h pulses of 3°C temperature spike (34°C-37°C) at different circadian phases was constructed, revealing a Type-0 phase resetting paradigm. Furthermore, real-time bioluminescence imaging revealed a spatiotemporal pattern to the circadian rhythm. These data are consistent with the hypothesis that the K. aerogenes circadian clock entrains to its host via detection of and phase shifting to the daily pattern of TB.
Collapse
Affiliation(s)
- Jiffin K Paulose
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Charles V Cassone
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | | | - Vincent M Cassone
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
34
|
Copertaro A, Bracci M. Working against the biological clock: a review for the Occupational Physician. INDUSTRIAL HEALTH 2019; 57:557-569. [PMID: 30799323 PMCID: PMC6783289 DOI: 10.2486/indhealth.2018-0173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/27/2018] [Indexed: 05/28/2023]
Abstract
The master clock of the biological rhythm, located in the suprachiasmatic nucleus of the anterior hypothalamus, synchronizes the molecular biological clock found in every cell of most peripheral tissues. The human circadian rhythm is largely based on the light-dark cycle. In night shift workers, alteration of the cycle and inversion of the sleep-wake rhythm can result in disruption of the biological clock and induce adverse health effects. This paper offers an overview of the main physiological mechanisms that regulate the circadian rhythm and of the health risks that are associated with its perturbation in shift and night workers. The Occupational Physician should screen shift and night workers for clinical symptoms related to the perturbation of the biological clock and consider preventive strategies to reduce the associated health risks.
Collapse
Affiliation(s)
| | - Massimo Bracci
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Italy
| |
Collapse
|
35
|
Abstract
The human stress response has evolved to maintain homeostasis under conditions of real or perceived stress. This objective is achieved through autoregulatory neural and hormonal systems in close association with central and peripheral clocks. The hypothalamic-pituitary-adrenal axis is a key regulatory pathway in the maintenance of these homeostatic processes. The end product of this pathway - cortisol - is secreted in a pulsatile pattern, with changes in pulse amplitude creating a circadian pattern. During acute stress, cortisol levels rise and pulsatility is maintained. Although the initial rise in cortisol follows a large surge in adrenocorticotropic hormone levels, if long-term inflammatory stress occurs, adrenocorticotropic hormone levels return to near basal levels while cortisol levels remain raised as a result of increased adrenal sensitivity. In chronic stress, hypothalamic activation of the pituitary changes from corticotropin-releasing hormone-dominant to arginine vasopressin-dominant, and cortisol levels remain raised due at least in part to decreased cortisol metabolism. Acute elevations in cortisol levels are beneficial to promoting survival of the fittest as part of the fight-or-flight response. However, chronic exposure to stress results in reversal of the beneficial effects, with long-term cortisol exposure becoming maladaptive, which can lead to a broad range of problems including the metabolic syndrome, obesity, cancer, mental health disorders, cardiovascular disease and increased susceptibility to infections. Neuroimmunoendocrine modulation in disease states and glucocorticoid-based therapeutics are also discussed.
Collapse
Affiliation(s)
- Georgina Russell
- Translational Health Sciences, Dorothy Hodgkin Building, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Stafford Lightman
- Translational Health Sciences, Dorothy Hodgkin Building, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
36
|
Lin Y, Zhou Z, Yang Z, Gao L, Wang S, Yu P, Wu B. Circadian Cyp3a11 metabolism contributes to chronotoxicity of hypaconitine in mice. Chem Biol Interact 2019; 308:288-293. [PMID: 31150629 DOI: 10.1016/j.cbi.2019.05.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023]
Abstract
Hypaconitine is an active and highly toxic constituent derived from Aconitum species. Here we aimed to determine the chronotoxicity of hypaconitine in mice, and to investigate a potential role of metabolism in hypaconitine chronotoxicity. Cardiac toxicity was assessed by measuring CK (creatine kinase) and LDH (lactate dehydrogenase) levels after hypaconitine administration to wild-type and Bmal1-/- (a clock disrupted model) mice at different times of day. The mRNA and protein levels of Cyp3a11 in mouse livers were determined by qPCR and western blotting, respectively. In vitro metabolism was assessed using liver microsomes. Pharmacokinetic study of hypaconitine was performed with wild-type mice. We observed injection time-dependent toxicity (i.e., a more severe toxicity during the light phase than the dark phase) for hypaconitine in mice. The chronotoxicity was attributed to a difference in systemic exposure of hypaconitine caused by time of day-dependent metabolism. Furthermore, circadian metabolism of hypaconitine was accounted for by the diurnal expression of Cyp3a11, a major enzyme for hypaconitine detoxification in the liver. Moreover, Bmal1 ablation in mice abolished the daily rhythm of Cyp3a11 expression and abrogated the time-dependency of hypaconitine toxicity. In conclusion, circadian Cyp3a11 metabolism contributed to chronotoxicity of hypaconitine in mice. This metabolism-based chronotoxicity would facilitate the formulation of best timing for drug administration.
Collapse
Affiliation(s)
- Yanke Lin
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Ziyue Zhou
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Zemin Yang
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Lu Gao
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Shuai Wang
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Pei Yu
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China.
| | - Baojian Wu
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China.
| |
Collapse
|
37
|
NOCTURNIN Gene Diurnal Variation in Healthy Volunteers and Expression Levels in Shift Workers. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7582734. [PMID: 31467910 PMCID: PMC6699378 DOI: 10.1155/2019/7582734] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/08/2019] [Accepted: 07/14/2019] [Indexed: 02/06/2023]
Abstract
Objective The NOCTURNIN gene links nutrient absorption and metabolism to the circadian clock. Shift workers are at a heightened risk of overweight and of developing obesity and metabolic syndrome. This study investigates the diurnal variation of NOCTURNIN in healthy volunteers and its expression levels in rotational shift and daytime workers. Methods NOCTURNIN expression levels were evaluated in peripheral blood lymphocytes from 15 healthy volunteers at 4-hour intervals for 24 h. Metabolic parameters and NOCTURNIN expression were measured in workers engaged in shift and daytime work. Results In the group of volunteers NOCTURNIN expression showed diurnal variation, with a peak at 8:00 AM. NOCTURNIN expression was higher in shift workers than in daytime workers. Multivariate analysis confirmed the role of shift work as an independent factor affecting NOCTURNIN expression. Notably, its level correlated directly with body mass index and inversely with total energy expenditure. Conclusions Measuring NOCTURNIN expression levels in human peripheral blood lymphocytes can improve investigations on the relationship between changes in circadian rhythm and metabolic disorders. Shift workers show higher NOCTURNIN levels than daytime workers.
Collapse
|
38
|
Zhao J, Warman GR, Cheeseman JF. The functional changes of the circadian system organization in aging. Ageing Res Rev 2019; 52:64-71. [PMID: 31048031 DOI: 10.1016/j.arr.2019.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/14/2019] [Accepted: 04/24/2019] [Indexed: 01/12/2023]
Abstract
The circadian clock drives periodic oscillations at different levels of an organism from genes to behavior. This timing system is highly conserved across species from insects to mammals and human beings. The question of how the circadian clock is involved in the aging process continues to attract more attention. We aim to characterize the detrimental impact of aging on the circadian clock organization. We review studies on different components of the circadian clock at the central and periperal levels, and their changes in aged rodents and humans, and the fruit fly Drosophila. Intracellular signaling, cellular activity and intercellular coupling in the central pacemaker have been found to decline with advancing age. Evidence of degradation of the molecular clockwork reflected by clock gene expression in both central and peripheral oscillators due to aging is inadequate. The findings on age-associated molecular and functional changes of peripheral clocks are mixed. We conclude that aging can affect the circadian clock organization at various levels, and the impairment of the central network may be a fundamental mechanism of circadian disruption seen in aged species.
Collapse
|
39
|
Kumar V, Sharma A. Common features of circadian timekeeping in diverse organisms. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
González MMC. Dim Light at Night and Constant Darkness: Two Frequently Used Lighting Conditions That Jeopardize the Health and Well-being of Laboratory Rodents. Front Neurol 2018; 9:609. [PMID: 30116218 PMCID: PMC6084421 DOI: 10.3389/fneur.2018.00609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
The influence of light on mammalian physiology and behavior is due to the entrainment of circadian rhythms complemented with a direct modulation of light that would be unlikely an outcome of circadian system. In mammals, physiological and behavioral circadian rhythms are regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus. This central control allows organisms to predict and anticipate environmental change, as well as to coordinate different rhythmic modalities within an individual. In adult mammals, direct retinal projections to the SCN are responsible for resetting and synchronizing physiological and behavioral rhythms to the light-dark (LD) cycle. Apart from its circadian effects, light also has direct effects on certain biological functions in such a way that the participation of the SCN would not be fundamental for this network. The objective of this review is to increase awareness, within the scientific community and commercial providers, of the fact that laboratory rodents can experience a number of adverse health and welfare outcomes attributed to commonly-used lighting conditions in animal facilities during routine husbandry and scientific procedures, widely considered as “environmentally friendly.” There is increasing evidence that exposure to dim light at night, as well as chronic constant darkness, challenges mammalian physiology and behavior resulting in disrupted circadian rhythms, neural death, a depressive-behavioral phenotype, cognitive impairment, and the deregulation of metabolic, physiological, and synaptic plasticity in both the short and long terms. The normal development and good health of laboratory rodents requires cyclical light entrainment, adapted to the solar cycle of day and night, with null light at night and safe illuminating qualities during the day. We therefore recommend increased awareness of the limited information available with regards to lighting conditions, and therefore that lighting protocols must be taken into consideration when designing experiments and duly highlighted in scientific papers. This practice will help to ensure the welfare of laboratory animals and increase the likelihood of producing reliable and reproducible results.
Collapse
Affiliation(s)
- Mónica M C González
- Sección Cronobiología y Sueño, Instituto Ferrero de Neurología y Sueño, Buenos Aires, Argentina
| |
Collapse
|
41
|
de Assis LVM, Kinker GS, Moraes MN, Markus RP, Fernandes PA, Castrucci AMDL. Expression of the Circadian Clock Gene BMAL1 Positively Correlates With Antitumor Immunity and Patient Survival in Metastatic Melanoma. Front Oncol 2018; 8:185. [PMID: 29946530 PMCID: PMC6005821 DOI: 10.3389/fonc.2018.00185] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
Introduction Melanoma is the most lethal type of skin cancer, with increasing incidence and mortality rates worldwide. Multiple studies have demonstrated a link between cancer development/progression and circadian disruption; however, the complex role of tumor-autonomous molecular clocks remains poorly understood. With that in mind, we investigated the pathophysiological relevance of clock genes expression in metastatic melanoma. Methods We analyzed gene expression, somatic mutation, and clinical data from 340 metastatic melanomas from The Cancer Genome Atlas, as well as gene expression data from 234 normal skin samples from genotype-tissue expression. Findings were confirmed in independent datasets. Results In melanomas, the expression of most clock genes was remarkably reduced and displayed a disrupted pattern of co-expression compared to the normal skins, indicating a dysfunctional circadian clock. Importantly, we demonstrate that the expression of the clock gene aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) positively correlates with patient overall survival and with the expression of T-cell activity and exhaustion markers in the tumor bulk. Accordingly, high BMAL1 expression in pretreatment samples was significantly associated with clinical benefit from immune checkpoint inhibitors. The robust intratumoral T-cell infiltration/activation observed in patients with high BMAL1 expression was associated with a decreased expression of key DNA-repair enzymes, and with an increased mutational/neoantigen load. Conclusion Overall, our data corroborate previous reports regarding the impact of BMAL1 expression on the cellular DNA-repair capacity and indicate that alterations in the tumor-autonomous molecular clock could influence the cellular composition of the surrounding microenvironment. Moreover, we revealed the potential of BMAL1 as a clinically relevant prognostic factor and biomarker for T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Sarti Kinker
- Laboratory of Neuroimmunemodulation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathália Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Regina P Markus
- Laboratory of Neuroimmunemodulation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Pedro Augusto Fernandes
- Laboratory of Neuroimmunemodulation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.,Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
42
|
Bothwell MY, Gillette MU. Circadian redox rhythms in the regulation of neuronal excitability. Free Radic Biol Med 2018; 119:45-55. [PMID: 29398284 PMCID: PMC5910288 DOI: 10.1016/j.freeradbiomed.2018.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
Oxidation-reduction reactions are essential to life as the core mechanisms of energy transfer. A large body of evidence in recent years presents an extensive and complex network of interactions between the circadian and cellular redox systems. Recent advances show that cellular redox state undergoes a ~24-h (circadian) oscillation in most tissues and is conserved across the domains of life. In nucleated cells, the metabolic oscillation is dependent upon the circadian transcription-translation machinery and, vice versa, redox-active proteins and cofactors feed back into the molecular oscillator. In the suprachiasmatic nucleus (SCN), a hypothalamic region of the brain specialized for circadian timekeeping, redox oscillation was found to modulate neuronal membrane excitability. The SCN redox environment is relatively reduced in daytime when neuronal activity is highest and relatively oxidized in nighttime when activity is at its lowest. There is evidence that the redox environment directly modulates SCN K+ channels, tightly coupling metabolic rhythms to neuronal activity. Application of reducing or oxidizing agents produces rapid changes in membrane excitability in a time-of-day-dependent manner. We propose that this reciprocal interaction may not be unique to the SCN. In this review, we consider the evidence for circadian redox oscillation and its interdependencies with established circadian timekeeping mechanisms. Furthermore, we will investigate the effects of redox on ion-channel gating dynamics and membrane excitability. The susceptibility of many different ion channels to modulation by changes in the redox environment suggests that circadian redox rhythms may play a role in the regulation of all excitable cells.
Collapse
Affiliation(s)
- Mia Y Bothwell
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martha U Gillette
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
43
|
de Assis LVM, Moraes MN, Castrucci AMDL. Heat shock antagonizes UVA-induced responses in murine melanocytes and melanoma cells: an unexpected interaction. Photochem Photobiol Sci 2018; 16:633-648. [PMID: 28203671 DOI: 10.1039/c6pp00330c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The skin is under the influence of oscillatory factors such as light and temperature. This organ possesses a local system that controls several aspects in a time-dependent manner; moreover, the skin has a well-known set of opsins whose function is still unknown. We demonstrate that heat shock reduces Opn2 expression in normal Melan-a melanocytes, while the opposite effect is found in malignant B16-F10 cells. In both cell lines, UVA radiation increases the expression of Opn4 and melanin content. Clock genes and Xpa, a DNA repair gene, of malignant melanocytes are more responsive to UVA radiation when compared to normal cells. Most UVA-induced effects are antagonized by heat shock, a phenomenon shown for the first time. Based on our data, the heat produced during UV experiments should be carefully monitored since temperature represents, according to our results, an important confounding factor, and therefore it should, when possible, be dissociated from UV radiation. The responses displayed by murine melanoma cells, if proven to also take place in human melanoma, may represent an important step in cancer development and progression.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|
44
|
de Assis LVM, Moraes MN, Magalhães-Marques KK, Kinker GS, da Silveira Cruz-Machado S, Castrucci AMDL. Non-Metastatic Cutaneous Melanoma Induces Chronodisruption in Central and Peripheral Circadian Clocks. Int J Mol Sci 2018; 19:E1065. [PMID: 29614021 PMCID: PMC5979525 DOI: 10.3390/ijms19041065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
The biological clock has received increasing interest due to its key role in regulating body homeostasis in a time-dependent manner. Cancer development and progression has been linked to a disrupted molecular clock; however, in melanoma, the role of the biological clock is largely unknown. We investigated the effects of the tumor on its micro- (TME) and macro-environments (TMaE) in a non-metastatic melanoma model. C57BL/6J mice were inoculated with murine B16-F10 melanoma cells and 2 weeks later the animals were euthanized every 6 h during 24 h. The presence of a localized tumor significantly impaired the biological clock of tumor-adjacent skin and affected the oscillatory expression of genes involved in light- and thermo-reception, proliferation, melanogenesis, and DNA repair. The expression of tumor molecular clock was significantly reduced compared to healthy skin but still displayed an oscillatory profile. We were able to cluster the affected genes using a human database and distinguish between primary melanoma and healthy skin. The molecular clocks of lungs and liver (common sites of metastasis), and the suprachiasmatic nucleus (SCN) were significantly affected by tumor presence, leading to chronodisruption in each organ. Taken altogether, the presence of non-metastatic melanoma significantly impairs the organism's biological clocks. We suggest that the clock alterations found in TME and TMaE could impact development, progression, and metastasis of melanoma; thus, making the molecular clock an interesting pharmacological target.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Maria Nathália Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Keila Karoline Magalhães-Marques
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Gabriela Sarti Kinker
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Sanseray da Silveira Cruz-Machado
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-900, Brazil.
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
45
|
Wu T, Yang L, Jiang J, Ni Y, Zhu J, Zheng X, Wang Q, Lu X, Fu Z. Chronic glucocorticoid treatment induced circadian clock disorder leads to lipid metabolism and gut microbiota alterations in rats. Life Sci 2017; 192:173-182. [PMID: 29196049 DOI: 10.1016/j.lfs.2017.11.049] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
Abstract
AIM Glucocorticoids (GCs), steroid hormones synthetized by the adrenal gland, are regulated by circadian cycles, and dysregulation of GC signaling can lead to the development of metabolic syndrome. The effects and potential mechanism of GCs in physiology were investigated in the present study. MAIN METHODS Male Wistar rats were orally administered dexamethasone sodium phosphate (DEX, 0.01 and 0.05mg/kg body weight per day) for 7weeks. KEY FINDING DEX treatment attenuated body weight gain and reduced food intake, whereas it induced the accumulation of fat. Administration of DEX induced dysregulation of the expression of lipogenic genes in both fat and liver. Moreover, the mRNA levels of genes related to mitochondrial biogenesis and function were significantly downregulated in the liver and fat of DEX-treated rats. Furthermore, DEX treatment caused a significant reduction in the richness and diversity of the microbiota in the colon, as assessed using high-throughput sequencing of the 16s rRNA gene V3-V4 region, an increase in inflammatory cell infiltration, and a decrease in mucus secretion in the colon. Additionally, DEX administration induced phase shift or loss of circadian rhythmicity of clock-related genes in peripheral tissues. These results were associated with higher serum corticosterone levels and upregulation of GC receptor (GR) expression in peripheral tissues. SIGNIFICANCE Our findings indicate that long-term administration of GC caused lipid accumulation, changes in the structure of the intestinal flora, and reduced colonic mucus secretion in vivo. The mechanism of these physiological changes may involve a circadian rhythm disorder and dysregulation of GR expression.
Collapse
Affiliation(s)
- Tao Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Luna Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Jianguo Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Jiawei Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Xiaojun Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Qi Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Xin Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China.
| |
Collapse
|
46
|
Moraes MN, de Assis LVM, Magalhães-Marques KK, Poletini MO, de Lima LHRG, Castrucci AMDL. Melanopsin, a Canonical Light Receptor, Mediates Thermal Activation of Clock Genes. Sci Rep 2017; 7:13977. [PMID: 29070825 PMCID: PMC5656685 DOI: 10.1038/s41598-017-13939-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/03/2017] [Indexed: 01/09/2023] Open
Abstract
Melanopsin (OPN4) is a photo-pigment found in a small subset of intrinsically photosensitive ganglion cells (ipRGCs) of the mammalian retina. These cells play a role in synchronizing the central circadian pacemaker to the astronomical day by conveying information about ambient light to the hypothalamic suprachiasmatic nucleus, the site of the master clock. We evaluated the effect of a heat stimulus (39.5 °C) on clock gene (Per1 and Bmal1) expression in cultured murine Melan-a melanocytes synchronized by medium changes, and in B16-F10 melanoma cells, in the presence of the selective OPN4 antagonist AA92593, or after OPN4 knockdown by small interfering RNA (siRNA). In addition, we evaluated the effects of heat shock on the localization of melanopsin by immunocytochemistry. In both cell lines melanopsin was found in a region capping the nucleus and heat shock did not affect its location. The heat-induced increase of Per1 expression was inhibited when melanopsin was pharmacologically blocked by AA92593 as well as when its protein expression was suppressed by siRNA in both Melan-a and B16-F10 cells. These data strongly suggest that melanopsin is required for thermo-reception, acting as a thermo-opsin that ultimately feeds the local circadian clock in mouse melanocytes and melanoma cells.
Collapse
Affiliation(s)
- Maria Nathália Moraes
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Maristela Oliveira Poletini
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | | | - Ana Maria de Lauro Castrucci
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil. .,Department of Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
47
|
Cold-sensing TRPM8 channel participates in circadian control of the brown adipose tissue. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2415-2427. [PMID: 28943398 DOI: 10.1016/j.bbamcr.2017.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/11/2023]
Abstract
Transient receptor potential (TRP) channels are known to regulate energy metabolism, and TRPM8 has become an interesting player in this context. Here we demonstrate the role of the cold sensor TRPM8 in the regulation of clock gene and clock controlled genes in brown adipose tissue (BAT). We investigated TrpM8 temporal profile in the eyes, suprachiasmatic nucleus and BAT; only BAT showed temporal variation of TrpM8 transcripts. Eyes from mice lacking TRPM8 lost the temporal profile of Per1 in LD cycle. This alteration in the ocular circadian physiology may explain the delay in the onset of locomotor activity in response to light pulse, as compared to wild type animals (WT). Brown adipocytes from TrpM8 KO mice exhibited a larger multilocularity in comparison to WT or TrpV1 KO mice. In addition, Ucp1 and UCP1 expression was significantly reduced in TrpM8 KO mice in comparison to WT mice. Regarding circadian components, the expression of Per1, Per2, Bmal1, Pparα, and Pparβ oscillated in WT mice kept in LD, whereas in the absence of TRPM8 the expression of clock genes was reduced in amplitude and lack temporal oscillation. Thus, our results reveal new roles for TRPM8 channel: it participates in the regulation of clock and clock-controlled genes in the eyes and BAT, and in BAT thermogenesis. Since disruption of the clock machinery has been associated with many metabolic disorders, the pharmacological modulation of TRPM8 channel may become a promising therapeutic target to counterbalance weight gain, through increased thermogenesis, energy expenditure, and clock gene activation.
Collapse
|
48
|
Gaspar L, Howald C, Popadin K, Maier B, Mauvoisin D, Moriggi E, Gutierrez-Arcelus M, Falconnet E, Borel C, Kunz D, Kramer A, Gachon F, Dermitzakis ET, Antonarakis SE, Brown SA. The genomic landscape of human cellular circadian variation points to a novel role for the signalosome. eLife 2017; 6:e24994. [PMID: 28869038 PMCID: PMC5601996 DOI: 10.7554/elife.24994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 09/01/2017] [Indexed: 11/18/2022] Open
Abstract
The importance of natural gene expression variation for human behavior is undisputed, but its impact on circadian physiology remains mostly unexplored. Using umbilical cord fibroblasts, we have determined by genome-wide association how common genetic variation impacts upon cellular circadian function. Gene set enrichment points to differences in protein catabolism as one major source of clock variation in humans. The two most significant alleles regulated expression of COPS7B, a subunit of the COP9 signalosome. We further show that the signalosome complex is imported into the nucleus in timed fashion to stabilize the essential circadian protein BMAL1, a novel mechanism to oppose its proteasome-mediated degradation. Thus, circadian clock properties depend in part upon a genetically-encoded competition between stabilizing and destabilizing forces, and genetic alterations in these mechanisms provide one explanation for human chronotype.
Collapse
Affiliation(s)
- Ludmila Gaspar
- Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland
| | - Cedric Howald
- Department of Genetic Medicine and DevelopmentUniversity of GenevaGenevaSwitzerland
- Institute of Genetics and Genomics in GenevaUniversity of GenevaGenevaSwitzerland
| | - Konstantin Popadin
- Department of Genetic Medicine and DevelopmentUniversity of GenevaGenevaSwitzerland
| | - Bert Maier
- Charité–UniversitätsmedizinLaboratory of ChronobiologyBerlinGermany
| | - Daniel Mauvoisin
- Department of Pharmacology and ToxicologyUniversity of LausanneLausanneSwitzerland
| | - Ermanno Moriggi
- Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland
| | - Maria Gutierrez-Arcelus
- Department of Genetic Medicine and DevelopmentUniversity of GenevaGenevaSwitzerland
- Institute of Genetics and Genomics in GenevaUniversity of GenevaGenevaSwitzerland
| | - Emilie Falconnet
- Department of Genetic Medicine and DevelopmentUniversity of GenevaGenevaSwitzerland
- Institute of Genetics and Genomics in GenevaUniversity of GenevaGenevaSwitzerland
| | - Christelle Borel
- Department of Genetic Medicine and DevelopmentUniversity of GenevaGenevaSwitzerland
- Institute of Genetics and Genomics in GenevaUniversity of GenevaGenevaSwitzerland
| | - Dieter Kunz
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Working Group Sleep Research & Clinical ChronobiologyBerlinGermany
| | - Achim Kramer
- Charité–UniversitätsmedizinLaboratory of ChronobiologyBerlinGermany
| | - Frederic Gachon
- Department of Pharmacology and ToxicologyUniversity of LausanneLausanneSwitzerland
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and DevelopmentUniversity of GenevaGenevaSwitzerland
- Institute of Genetics and Genomics in GenevaUniversity of GenevaGenevaSwitzerland
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and DevelopmentUniversity of GenevaGenevaSwitzerland
- Institute of Genetics and Genomics in GenevaUniversity of GenevaGenevaSwitzerland
| | - Steven A Brown
- Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
49
|
Zubidat AE, Haim A. Artificial light-at-night - a novel lifestyle risk factor for metabolic disorder and cancer morbidity. J Basic Clin Physiol Pharmacol 2017; 28:295-313. [PMID: 28682785 DOI: 10.1515/jbcpp-2016-0116] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
Both obesity and breast cancer are already recognized worldwide as the most common syndromes in our modern society. Currently, there is accumulating evidence from epidemiological and experimental studies suggesting that these syndromes are closely associated with circadian disruption. It has been suggested that melatonin (MLT) and the circadian clock genes both play an important role in the development of these syndromes. However, we still poorly understand the molecular mechanism underlying the association between circadian disruption and the modern health syndromes. One promising candidate is epigenetic modifications of various genes, including clock genes, circadian-related genes, oncogenes, and metabolic genes. DNA methylation is the most prominent epigenetic signaling tool for gene expression regulation induced by environmental exposures, such as artificial light-at-night (ALAN). In this review, we first provide an overview on the molecular feedback loops that generate the circadian regulation and how circadian disruption by ALAN can impose adverse impacts on public health, particularly metabolic disorders and breast cancer development. We then focus on the relation between ALAN-induced circadian disruption and both global DNA methylation and specific loci methylation in relation to obesity and breast cancer morbidities. DNA hypo-methylation and DNA hyper-methylation, are suggested as the most studied epigenetic tools for the activation and silencing of genes that regulate metabolic and monostatic responses. Finally, we discuss the potential clinical and therapeutic roles of MLT suppression and DNA methylation patterns as novel biomarkers for the early detection of metabolic disorders and breast cancer development.
Collapse
|
50
|
Jerônimo R, Moraes MN, de Assis LVM, Ramos BC, Rocha T, Castrucci AMDL. Thermal stress in Danio rerio: a link between temperature, light, thermo-TRP channels, and clock genes. J Therm Biol 2017; 68:128-138. [PMID: 28689714 DOI: 10.1016/j.jtherbio.2017.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 12/16/2022]
Abstract
It is believed that the biological systems perceiving temperature and light daily cycles were subjected to the simultaneous selective pressures, which resulted in their co-evolutionary association. We investigated the influence of 1h 33°C heat shock on the expression of clock and heat shock protein genes, as well as the role of the thermo-TRP channel, TRPV1, in ZEM-2S cells of the teleost Danio rerio, in constant dark (DD) or light-dark cycles (LD). After heat shock, we observed an acute increase of hsp90 aa1 levels in both DD and LD conditions. Interestingly, the expression of hsp90 aa1 was two-fold lower in LD than in DD, what suggests an antagonistic effect of white light on heat shock action. Regarding clock genes, no effect was found in cells subjected to the heat shock in DD. When cells were kept in LD, the expression of per1, per2, cry1a, and cry1b increased in response to heat shock, indicating that heat shock only affects clock core of LD-synchronized ZEM-2S cells. We then evaluated whether TRPV1 played a role in heat-mediated hsp90 aa1 and per2 responses: hsp90 aa1 increase was unaffected whereas per2 increase was partially blocked by TRPV1 inhibitor, demonstrating the channel participation in clock gene regulation by heat shock. Taken together, our results open a novel investigative perspective regarding the relationship between temperature and clock genes, placing a new player in the regulation of this phenomenon: the TRPV1 channel.
Collapse
Affiliation(s)
- Rodrigo Jerônimo
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathália Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Bruno César Ramos
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Thainá Rocha
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|