1
|
Wang Y, Gao L. Cholesterol: A friend to viruses. Int Rev Immunol 2024; 43:248-262. [PMID: 38372266 DOI: 10.1080/08830185.2024.2314577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Cholesterol is a key life-sustaining molecule which regulates membrane fluidity and serves as a signaling mediator. Cholesterol homeostasis is closely related to various pathological conditions including tumor, obesity, atherosclerosis, Alzheimer's disease and viral infection. Viral infection disrupts host cholesterol homeostasis, facilitating their own survival. Meanwhile, the host cells strive to reduce cholesterol accessibility to limit viral infection. This review focuses on the regulation of cholesterol metabolism and the role of cholesterol in viral infection, specifically providing an overview of cholesterol as a friend to promote viral entry, replication, assembly, release and immune evasion, which might inspire valuable thinking for pathogenesis and intervention of viral infection.
Collapse
Affiliation(s)
- Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
2
|
Gieseler RK, Schreiter T, Canbay A. The Aging Human Liver: The Weal and Woe of Evolutionary Legacy. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2023; 61:83-94. [PMID: 36623546 DOI: 10.1055/a-1955-5297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aging is characterized by the progressive decline of biological integrity and its compensatory mechanisms as well as immunological dysregulation. This goes along with an increasing risk of frailty and disease. Against this background, we here specifically focus on the aging of the human liver. For the first time, we shed light on the intertwining evolutionary underpinnings of the liver's declining regenerative capacity, the phenomenon of inflammaging, and the biotransformation capacity in the process of aging. In addition, we discuss how aging influences the risk for developing nonalcoholic fatty liver disease, hepatocellular carcinoma, and/or autoimmune hepatitis, and we describe chronic diseases as accelerators of biological aging.
Collapse
Affiliation(s)
- Robert K Gieseler
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Thomas Schreiter
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Ali Canbay
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| |
Collapse
|
3
|
Dwivedi M, Dwivedi A, Mukherjee D. An Insight into Hepatitis C Virus: In Search of Promising Drug Targets. Curr Drug Targets 2023; 24:1127-1138. [PMID: 37907492 DOI: 10.2174/0113894501265769231020031857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
Hepatitis C Virus (HCV) is a global health concern, chronically infecting over 70 million people worldwide. HCV is a bloodborne pathogen that primarily affects the liver, and chronic HCV infection can lead to cirrhosis, liver cancer, and liver failure over time. There is an urgent need for more effective approaches to prevent and treat HCV. This review summarizes current knowledge on the virology, transmission, diagnosis, and management of HCV infection. It also provides an in-depth analysis of HCV proteins as promising targets for antiviral drug and vaccine development. Specific HCV proteins discussed as potential drug targets include the NS5B polymerase, NS3/4A protease, entry receptors like CD81, and core proteins. The implications of HCV proteins as diagnostic and prognostic biomarkers are also explored. Current direct-acting antiviral therapies are effective but have cost, genotype specificity, and resistance limitations. This review aims to synthesize essential information on HCV biology and pathogenesis to inform future research on improved preventive, diagnostic, and therapeutic strategies against this global infectious disease threat.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow- 226028, India
| | - Aditya Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow- 226028, India
| | | |
Collapse
|
4
|
High dose of bile acid enables the cellular entry and replication of hepatitis C virus in vitro. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Zhang M, Li L, Wu L, Zhang J. Isarubrolone C Promotes Autophagic Degradation of Virus Proteins via Activating ATG10S in HepG2 Cells. JOURNAL OF NATURAL PRODUCTS 2022; 85:1018-1028. [PMID: 35201775 DOI: 10.1021/acs.jnatprod.1c01161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isarubrolone C is a bioactive polycyclic tropoloalkaloid from Streptomyces. Our previous study showed that isarubrolone C could trigger autophagy. Here, we report isarubrolone C potential in broad-spectrum antiviral effect and its antiviral mechanism in vitro. Our results show that isarubrolone C activated autophagy and reduced levels of viral proteins in the cells harboring HCV-CORE/NS5B, HBx, ZIKV-NS5, and HIV-RT, respectively. The role of isarubrolone C in suppression of the viral proteins was via an autophagic degradation pathway rather than a proteasome pathway. Co-immunoprecipitation assays revealed that isarubrolone C promoted both autophagy flux opening and the viral proteins being enwrapped in autolysosomes. PCR assays showed that isarubrolone C elevated the transcription levels of ATG10/ATG10S and IL28A. Further, ATG10S high expression could efficiently enhance IL28A expression and the ability of isarubrolone C to degrade the viral proteins by promoting the colocalization of viral proteins with autolysosomes. Additionally, knockdown of endogenous IL28A caused both losses of the isarubrolone C antiviral effect and autolysosome formation. These results indicate that the role of isarubrolone C antiviruses is achieved by triggering the autophagic mechanism, which is mediated by endogenous ATG10S and IL28A activation. This is the first report about isarubrolone C potential of in vitro broad-spectrum antiviruses.
Collapse
Affiliation(s)
- Miaoqing Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Linli Li
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Linzhuan Wu
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jingpu Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
6
|
Agnetti J, Desterke C, Gassama-Diagne A. Impact of HCV Infection on Hepatocyte Polarity and Plasticity. Pathogens 2022; 11:pathogens11030337. [PMID: 35335661 PMCID: PMC8955246 DOI: 10.3390/pathogens11030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
The hepatitis C virus (HCV) is an oncogenic virus that alters the cell polarization machinery in order to enter the hepatocyte and replicate. While these alterations are relatively well defined, their consequences in the evolution of the disease remain poorly documented. Since 2012, HCV infection can be effectively cured with the advent of direct acting antivirals (DAA). Nevertheless, patients cured of their HCV infection still have a high risk of developing hepatocellular carcinoma (HCC). Importantly, it has been shown that some of the deregulations induced by HCV are maintained despite a sustained virologic response (SVR), including the down-regulation of some hepatocyte functions such as bile acid metabolism, exemplifying cell dedifferentiation, and the up-regulation of the epithelial–mesenchymal transition (EMT). EMT is a process by which epithelial cells lose their differentiation and their specific polarity to acquire mesenchymal cell properties, including migration and extracellular matrix remodeling capabilities. Of note, epithelial cell polarity acts as a gatekeeper against EMT. Thus, it remains important to elucidate the mechanisms by which HCV alters polarity and promotes EMT that could participate in viral-induced hepatic carcinogenesis. In this review, we define the main steps involved in the polarization process of epithelial cells and recall the essential cellular actors involved. We also highlight the particularities of hepatocyte polarity, responsible for their unique morphology. We then focus on the alterations by HCV of epithelial cell polarity and the consequences of the transformation of hepatocytes involved in the carcinogenesis process.
Collapse
Affiliation(s)
- Jean Agnetti
- INSERM, UMR-S 1193, Université Paris-Sud, F-94800 Villejuif, France;
| | | | - Ama Gassama-Diagne
- INSERM, UMR-S 1193, Université Paris-Sud, F-94800 Villejuif, France;
- Correspondence:
| |
Collapse
|
7
|
Zaki MYW, Fathi AM, Samir S, Eldafashi N, William KY, Nazmy MH, Fathy M, Gill US, Shetty S. Innate and Adaptive Immunopathogeneses in Viral Hepatitis; Crucial Determinants of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:1255. [PMID: 35267563 PMCID: PMC8909759 DOI: 10.3390/cancers14051255] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
Viral hepatitis B (HBV) and hepatitis C (HCV) infections remain the most common risk factors for the development of hepatocellular carcinoma (HCC), and their heterogeneous distribution influences the global prevalence of this common type of liver cancer. Typical hepatitis infection elicits various immune responses within the liver microenvironment, and viral persistence induces chronic liver inflammation and carcinogenesis. HBV is directly mutagenic but can also cause low-grade liver inflammation characterized by episodes of intermittent high-grade liver inflammation, liver fibrosis, and cirrhosis, which can progress to decompensated liver disease and HCC. Equally, the absence of key innate and adaptive immune responses in chronic HCV infection dampens viral eradication and induces an exhausted and immunosuppressive liver niche that favors HCC development and progression. The objectives of this review are to (i) discuss the epidemiological pattern of HBV and HCV infections, (ii) understand the host immune response to acute and chronic viral hepatitis, and (iii) explore the link between this diseased immune environment and the development and progression of HCC in preclinical models and HCC patients.
Collapse
Affiliation(s)
- Marco Y. W. Zaki
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Ahmed M. Fathi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Samara Samir
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Nardeen Eldafashi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Kerolis Y. William
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo 12613, Egypt;
| | - Maiiada Hassan Nazmy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Upkar S. Gill
- Barts Liver Centre, Centre for Immunobiology, Barts & The London School of Medicine & Dentistry, QMUL, London E1 2AT, UK;
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
8
|
Fader Kaiser CM, Romano PS, Vanrell MC, Pocognoni CA, Jacob J, Caruso B, Delgui LR. Biogenesis and Breakdown of Lipid Droplets in Pathological Conditions. Front Cell Dev Biol 2022; 9:826248. [PMID: 35198567 PMCID: PMC8860030 DOI: 10.3389/fcell.2021.826248] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LD) have long been considered as mere fat drops; however, LD have lately been revealed to be ubiquitous, dynamic and to be present in diverse organelles in which they have a wide range of key functions. Although incompletely understood, the biogenesis of eukaryotic LD initiates with the synthesis of neutral lipids (NL) by enzymes located in the endoplasmic reticulum (ER). The accumulation of NL leads to their segregation into nanometric nuclei which then grow into lenses between the ER leaflets as they are further filled with NL. The lipid composition and interfacial tensions of both ER and the lenses modulate their shape which, together with specific ER proteins, determine the proneness of LD to bud from the ER toward the cytoplasm. The most important function of LD is the buffering of energy. But far beyond this, LD are actively integrated into physiological processes, such as lipid metabolism, control of protein homeostasis, sequestration of toxic lipid metabolic intermediates, protection from stress, and proliferation of tumours. Besides, LD may serve as platforms for pathogen replication and defense. To accomplish these functions, from biogenesis to breakdown, eukaryotic LD have developed mechanisms to travel within the cytoplasm and to establish contact with other organelles. When nutrient deprivation occurs, LD undergo breakdown (lipolysis), which begins with the LD-associated members of the perilipins family PLIN2 and PLIN3 chaperone-mediated autophagy degradation (CMA), a specific type of autophagy that selectively degrades a subset of cytosolic proteins in lysosomes. Indeed, PLINs CMA degradation is a prerequisite for further true lipolysis, which occurs via cytosolic lipases or by lysosome luminal lipases when autophagosomes engulf portions of LD and target them to lysosomes. LD play a crucial role in several pathophysiological processes. Increased accumulation of LD in non-adipose cells is commonly observed in numerous infectious diseases caused by intracellular pathogens including viral, bacterial, and parasite infections, and is gradually recognized as a prominent characteristic in a variety of cancers. This review discusses current evidence related to the modulation of LD biogenesis and breakdown caused by intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Claudio M Fader Kaiser
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Patricia S Romano
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - M Cristina Vanrell
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Cristian A Pocognoni
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Julieta Jacob
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Benjamín Caruso
- Instituto de Investigaciones Biologicas y Tecnologicas, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Laura R Delgui
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| |
Collapse
|
9
|
Bernier C, Goetz C, Jubinville E, Jean J. The New Face of Berries: A Review of Their Antiviral Proprieties. Foods 2021; 11:102. [PMID: 35010229 PMCID: PMC8750760 DOI: 10.3390/foods11010102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/28/2022] Open
Abstract
Due to rising consumer preference for natural remedies, the search for natural antiviral agents has accelerated considerably in recent years. Among the natural sources of compounds with potential antiviral proprieties, berries are interesting candidates, due to their association with health-promoting properties, including antioxidant, antimutagenic, anticancer, antimicrobial, anti-inflammatory, and neuroprotective properties. The past two decades have witnessed a flurry of new findings. Studies suggest promising antiviral proprieties against enveloped and non-enveloped viruses, particularly of cranberries, blueberries, blackcurrants, black raspberries, and pomegranates. The aim of this review is to assemble these findings, to list the implied mechanisms of action, and thereby point out promising subjects for research in this field, in the hope that compounds obtainable from natural sources such as berries may be used someday to treat, or even prevent, viral infections.
Collapse
Affiliation(s)
| | | | | | - Julie Jean
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada; (C.B.); (C.G.); (E.J.)
| |
Collapse
|
10
|
Düzgüneş N, Fernandez-Fuentes N, Konopka K. Inhibition of Viral Membrane Fusion by Peptides and Approaches to Peptide Design. Pathogens 2021; 10:1599. [PMID: 34959554 PMCID: PMC8709411 DOI: 10.3390/pathogens10121599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Fusion of lipid-enveloped viruses with the cellular plasma membrane or the endosome membrane is mediated by viral envelope proteins that undergo large conformational changes following binding to receptors. The HIV-1 fusion protein gp41 undergoes a transition into a "six-helix bundle" after binding of the surface protein gp120 to the CD4 receptor and a co-receptor. Synthetic peptides that mimic part of this structure interfere with the formation of the helix structure and inhibit membrane fusion. This approach also works with the S spike protein of SARS-CoV-2. Here we review the peptide inhibitors of membrane fusion involved in infection by influenza virus, HIV-1, MERS and SARS coronaviruses, hepatitis viruses, paramyxoviruses, flaviviruses, herpesviruses and filoviruses. We also describe recent computational methods used for the identification of peptide sequences that can interact strongly with protein interfaces, with special emphasis on SARS-CoV-2, using the PePI-Covid19 database.
Collapse
Affiliation(s)
- Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EE, UK;
| | - Krystyna Konopka
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| |
Collapse
|
11
|
Liang S, Wu YS, Li DY, Tang JX, Liu HF. Autophagy in Viral Infection and Pathogenesis. Front Cell Dev Biol 2021; 9:766142. [PMID: 34722550 PMCID: PMC8554085 DOI: 10.3389/fcell.2021.766142] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
As an evolutionarily conserved cellular process, autophagy plays an essential role in the cellular metabolism of eukaryotes as well as in viral infection and pathogenesis. Under physiological conditions, autophagy is able to meet cellular energy needs and maintain cellular homeostasis through degrading long-lived cellular proteins and recycling damaged organelles. Upon viral infection, host autophagy could degrade invading viruses and initial innate immune response and facilitate viral antigen presentation, all of which contribute to preventing viral infection and pathogenesis. However, viruses have evolved a variety of strategies during a long evolutionary process, by which they can hijack and subvert host autophagy for their own benefits. In this review, we highlight the function of host autophagy in the key regulatory steps during viral infections and pathogenesis and discuss how the viruses hijack the host autophagy for their life cycle and pathogenesis. Further understanding the function of host autophagy in viral infection and pathogenesis contributes to the development of more specific therapeutic strategies to fight various infectious diseases, such as the coronavirus disease 2019 epidemic.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yun-Shan Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dong-Yi Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Shunde Women and Children's Hospital, Guangdong Medical University (Foshan Shunde Maternal and Child Healthcare Hospital), Foshan, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
12
|
Anti-Hepatocellular Carcinoma Biomolecules: Molecular Targets Insights. Int J Mol Sci 2021; 22:ijms221910774. [PMID: 34639131 PMCID: PMC8509806 DOI: 10.3390/ijms221910774] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
This report explores the available curative molecules directed against hepatocellular carcinoma (HCC). Limited efficiency as well as other drawbacks of existing molecules led to the search for promising potential alternatives. Understanding of the cell signaling mechanisms propelling carcinogenesis and driven by cell proliferation, invasion, and angiogenesis can offer valuable information for the investigation of efficient treatment strategies. The complexity of the mechanisms behind carcinogenesis inspires researchers to explore the ability of various biomolecules to target specific pathways. Natural components occurring mainly in food and medicinal plants, are considered an essential resource for discovering new and promising therapeutic molecules. Novel biomolecules normally have an advantage in terms of biosafety. They are also widely diverse and often possess potent antioxidant, anti-inflammatory, and anti-cancer properties. Based on quantitative structure-activity relationship studies, biomolecules can be used as templates for chemical modifications that improve efficiency, safety, and bioavailability. In this review, we focus on anti-HCC biomolecules that have their molecular targets partially or completely characterized as well as having anti-cancer molecular mechanisms that are fairly described.
Collapse
|
13
|
Li HC, Yang CH, Lo SY. Cellular factors involved in the hepatitis C virus life cycle. World J Gastroenterol 2021; 27:4555-4581. [PMID: 34366623 PMCID: PMC8326260 DOI: 10.3748/wjg.v27.i28.4555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/04/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV), an obligatory intracellular pathogen, highly depends on its host cells to propagate successfully. The HCV life cycle can be simply divided into several stages including viral entry, protein translation, RNA replication, viral assembly and release. Hundreds of cellular factors involved in the HCV life cycle have been identified over more than thirty years of research. Characterization of these cellular factors has provided extensive insight into HCV replication strategies. Some of these cellular factors are targets for anti-HCV therapies. In this review, we summarize the well-characterized and recently identified cellular factors functioning at each stage of the HCV life cycle.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| |
Collapse
|
14
|
Magnasco L, Sepulcri C, Antonello RM, Di Bella S, Labate L, Luzzati R, Giacobbe DR, Bassetti M. The role of PCSK9 in infectious diseases. Curr Med Chem 2021; 29:1000-1015. [PMID: 34269657 DOI: 10.2174/0929867328666210714160343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/01/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In recent years, many aspects of the physiological role of PCSK9 have been elucidated, particularly regarding its role in lipid metabolism, cardiovascular risk, and its role in innate immunity. Increasing evidence is available about the involvement of PCSK9 in the pathogenesis of viral infections, mainly HCV, and the regulation of host response to bacterial infections, primarily sepsis and septic shock. Moreover, the action of PCSK9 has been investigated as a crucial step in the pathogenesis of malaria infection and disease severity. OBJECTIVE This paper aims to review the available published literature on the role of PCSK9 in a wide array of infectious diseases. CONCLUSION Besides the ongoing investigation on PCSK9 inhibition among HIV-infected patients to treat HIV- and ART-related hyperlipidemia, preclinical studies indicate how PCSK9 is involved in reducing the replication of HCV. Interestingly, high plasmatic PCSK9 levels have been described in patients with sepsis. Moreover, a protective role of PCSK9 inhibition has also been proposed against dengue and SARS-CoV-2 viral infections. Finally, a loss of function in the PCSK9-encoding gene has been reported to reduce malaria infection mortality.
Collapse
Affiliation(s)
- Laura Magnasco
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Chiara Sepulcri
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | | | | | - Laura Labate
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| |
Collapse
|
15
|
Venkataraman S, Hefferon K, Makhzoum A, Abouhaidar M. Combating Human Viral Diseases: Will Plant-Based Vaccines Be the Answer? Vaccines (Basel) 2021; 9:vaccines9070761. [PMID: 34358177 PMCID: PMC8310141 DOI: 10.3390/vaccines9070761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular pharming or the technology of application of plants and plant cell culture to manufacture high-value recombinant proteins has progressed a long way over the last three decades. Whether generated in transgenic plants by stable expression or in plant virus-based transient expression systems, biopharmaceuticals have been produced to combat several human viral diseases that have impacted the world in pandemic proportions. Plants have been variously employed in expressing a host of viral antigens as well as monoclonal antibodies. Many of these biopharmaceuticals have shown great promise in animal models and several of them have performed successfully in clinical trials. The current review elaborates the strategies and successes achieved in generating plant-derived vaccines to target several virus-induced health concerns including highly communicable infectious viral diseases. Importantly, plant-made biopharmaceuticals against hepatitis B virus (HBV), hepatitis C virus (HCV), the cancer-causing virus human papillomavirus (HPV), human immunodeficiency virus (HIV), influenza virus, zika virus, and the emerging respiratory virus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been discussed. The use of plant virus-derived nanoparticles (VNPs) and virus-like particles (VLPs) in generating plant-based vaccines are extensively addressed. The review closes with a critical look at the caveats of plant-based molecular pharming and future prospects towards further advancements in this technology. The use of biopharmed viral vaccines in human medicine and as part of emergency response vaccines and therapeutics in humans looks promising for the near future.
Collapse
Affiliation(s)
- Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
- Correspondence:
| | - Kathleen Hefferon
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana;
| | - Mounir Abouhaidar
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| |
Collapse
|
16
|
Saraceni C, Birk J. A Review of Hepatitis B Virus and Hepatitis C Virus Immunopathogenesis. J Clin Transl Hepatol 2021; 9:409-418. [PMID: 34221927 PMCID: PMC8237136 DOI: 10.14218/jcth.2020.00095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/21/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the advances in therapy, hepatitis B virus (HBV) and hepatitis C virus (HCV) still represent a significant global health burden, both as major causes of cirrhosis, hepatocellular carcinoma, and death worldwide. HBV is capable of incorporating its covalently closed circular DNA into the host cell's hepatocyte genome, making it rather difficult to eradicate its chronic stage. Successful viral clearance depends on the complex interactions between the virus and host's innate and adaptive immune response. One encouraging fact on hepatitis B is the development and effective distribution of the HBV vaccine. This has significantly reduced the spread of this virus. HCV is a RNA virus with high mutagenic capacity, thus enabling it to evade the immune system and have a high rate of chronic progression. High levels of HCV heterogeneity and its mutagenic capacity have made it difficult to create an effective vaccine. The recent advent of direct acting antivirals has ushered in a new era in hepatitis C therapy. Sustained virologic response is achieved with DAAs in 85-99% of cases. However, this still leads to a large population of treatment failures, so further advances in therapy are still needed. This article reviews the immunopathogenesis of HBV and HCV, their properties contributing to host immune system avoidance, chronic disease progression, vaccine efficacy and limitations, as well as treatment options and common pitfalls of said therapy.
Collapse
Affiliation(s)
- Corey Saraceni
- Correspondence to: Corey Saraceni, University of Connecticut School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, 263 Farmington Avenue, Farmington, CT 06030-8074, USA. Tel: +1-203-733-7408, Fax: +1-860-679-3159, E-mail:
| | | |
Collapse
|
17
|
LeBlanc EV, Kim Y, Capicciotti CJ, Colpitts CC. Hepatitis C Virus Glycan-Dependent Interactions and the Potential for Novel Preventative Strategies. Pathogens 2021; 10:pathogens10060685. [PMID: 34205894 PMCID: PMC8230238 DOI: 10.3390/pathogens10060685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infections continue to be a major contributor to liver disease worldwide. HCV treatment has become highly effective, yet there are still no vaccines or prophylactic strategies available to prevent infection and allow effective management of the global HCV burden. Glycan-dependent interactions are crucial to many aspects of the highly complex HCV entry process, and also modulate immune evasion. This review provides an overview of the roles of viral and cellular glycans in HCV infection and highlights glycan-focused advances in the development of entry inhibitors and vaccines to effectively prevent HCV infection.
Collapse
Affiliation(s)
- Emmanuelle V. LeBlanc
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
| | - Youjin Kim
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
| | - Chantelle J. Capicciotti
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
- Department of Chemistry, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Surgery, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
- Correspondence:
| |
Collapse
|
18
|
Musarra-Pizzo M, Pennisi R, Ben-Amor I, Mandalari G, Sciortino MT. Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses 2021; 13:v13050828. [PMID: 34064347 PMCID: PMC8147851 DOI: 10.3390/v13050828] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections are responsible for several chronic and acute diseases in both humans and animals. Despite the incredible progress in human medicine, several viral diseases, such as acquired immunodeficiency syndrome, respiratory syndromes, and hepatitis, are still associated with high morbidity and mortality rates in humans. Natural products from plants or other organisms are a rich source of structurally novel chemical compounds including antivirals. Indeed, in traditional medicine, many pathological conditions have been treated using plant-derived medicines. Thus, the identification of novel alternative antiviral agents is of critical importance. In this review, we summarize novel phytochemicals with antiviral activity against human viruses and their potential application in treating or preventing viral disease.
Collapse
Affiliation(s)
- Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Shenzhen International Institute for Biomedical Research, 1301 Guanguang Rd. 3F Building 1-B, Silver Star Hi-Tech Park Longhua District, Shenzhen 518116, China
| | - Ichrak Ben-Amor
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Unit of Biotechnology and Pathologies, Higher Institute of Biotechnology of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| |
Collapse
|
19
|
Castaneda D, Gonzalez AJ, Alomari M, Tandon K, Zervos XB. From hepatitis A to E: A critical review of viral hepatitis. World J Gastroenterol 2021; 27:1691-1715. [PMID: 33967551 PMCID: PMC8072198 DOI: 10.3748/wjg.v27.i16.1691] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Viral infections affecting the liver have had an important impact on humanity, as they have led to significant morbidity and mortality in patients with acute and chronic infections. Once an unknown etiology, the discovery of the viral agents triggered interest of the scientific community to establish the pathogenesis and diagnostic modalities to identify the affected population. With the rapid scientific and technological advances in the last centuries, controlling and even curing the infections became a possibility, with a large focus on preventive medicine through vaccination. Hence, a comprehensive understanding of hepatitis A, B, C, D and E is required by primary care physicians and gastroenterologists to provide care to these patients. The review article describes the epidemiology, pathogenesis, clinical presentation, diagnostic tools and current medication regimens, with a focus on upcoming treatment options and the role of liver transplantation.
Collapse
Affiliation(s)
- Daniel Castaneda
- Digestive Disease Institute, Cleveland Clinic Florida, Weston, FL 33331, United States
| | | | - Mohammad Alomari
- Digestive Disease Institute, Cleveland Clinic Florida, Weston, FL 33331, United States
| | - Kanwarpreet Tandon
- Digestive Disease Institute, Cleveland Clinic Florida, Weston, FL 33331, United States
| | | |
Collapse
|
20
|
Saha J, Bhattacharjee S, Pal Sarkar M, Saha BK, Basak HK, Adhikary S, Roy V, Mandal P, Chatterjee A, Pal A. A comparative genomics-based study of positive strand RNA viruses emphasizing on SARS-CoV-2 utilizing dinucleotide signature, codon usage and codon context analyses. GENE REPORTS 2021; 23:101055. [PMID: 33615042 PMCID: PMC7887452 DOI: 10.1016/j.genrep.2021.101055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
The novel corona virus disease or COVID-19 caused by a positive strand RNA virus (PRV) called SARS-CoV-2 is plaguing the entire planet as we conduct this study. In this study a multifaceted analysis was carried out employing dinucleotide signature, codon usage and codon context to compare and unravel the genomic as well as genic characteristics of the SARS-CoV-2 isolates and how they compare to other PRVs which represents some of the most pathogenic human viruses. The main emphasis of this study was to comprehend the codon biology of the SARS-CoV-2 in the backdrop of the other PRVs like Poliovirus, Japanese encephalitis virus, Hepatitis C virus, Norovirus, Rubella virus, Semliki Forest virus, Zika virus, Dengue virus, Human rhinoviruses and the Betacoronaviruses since codon usage pattern along with the nucleotide composition prevalent within the viral genome helps to understand the biology and evolution of viruses. Our results suggest discrete genomic dinucleotide signature within the PRVs. Some of the genes from the different SARS-CoV-2 isolates were also found to demonstrate heterogeneity in terms of their dinucleotide signature. The SARS-CoV-2 isolates also demonstrated a codon context trend characteristically dissimilar to the other PRVs. The findings of this study are expected to contribute to the developing global knowledge base in countering COVID-19.
Collapse
Key Words
- CAI, Codon Adaptation Index
- CNS, Central Nervous System
- COVID-19
- CRS, Congenital Rubella Syndrome
- CUB, Codon Usage Bias
- Codon context
- Codon usage bias
- Coronaviruses
- Fop, Frequency of optimal codons
- GC1, Guanine and Cytosine content on the first position of the codon
- GC2, Guanine and Cytosine content on the second position of the codon
- GC3, Guanine and Cytosine content on the third position of the codon
- HCV, Hepatitis C Virus
- MERS, Middle East Respiratory Syndrome
- MFE, Minimum Free Energy
- Nc, Effective Number of Codons
- PCA, Principal Component Analysis
- PRV, Positive strand RNA Virus
- Positive strand RNA virus
- RCDI, Relative Codon De-Optimization Index
- RSCU, Relative Synonymous Codon Usage
- SARS, Severe Acute Respiratory Syndrome
- SARS-CoV-2
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- SCUO, Synonymous Codon Usage Order
- SiD, Similarity Index
Collapse
Affiliation(s)
- Jayanti Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Sukanya Bhattacharjee
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Monalisha Pal Sarkar
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Barnan Kumar Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Hriday Kumar Basak
- Department of Chemistry, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Samarpita Adhikary
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Vivek Roy
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Parimal Mandal
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Abhik Chatterjee
- Department of Chemistry, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Ayon Pal
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| |
Collapse
|
21
|
Guest JD, Wang R, Elkholy KH, Chagas A, Chao KL, Cleveland TE, Kim YC, Keck ZY, Marin A, Yunus AS, Mariuzza RA, Andrianov AK, Toth EA, Foung SKH, Pierce BG, Fuerst TR. Design of a native-like secreted form of the hepatitis C virus E1E2 heterodimer. Proc Natl Acad Sci U S A 2021; 118:e2015149118. [PMID: 33431677 PMCID: PMC7826332 DOI: 10.1073/pnas.2015149118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) is a major worldwide health burden, and a preventive vaccine is needed for global control or eradication of this virus. A substantial hurdle to an effective HCV vaccine is the high variability of the virus, leading to immune escape. The E1E2 glycoprotein complex contains conserved epitopes and elicits neutralizing antibody responses, making it a primary target for HCV vaccine development. However, the E1E2 transmembrane domains that are critical for native assembly make it challenging to produce this complex in a homogenous soluble form that is reflective of its state on the viral envelope. To enable rational design of an E1E2 vaccine, as well as structural characterization efforts, we have designed a soluble, secreted form of E1E2 (sE1E2). As with soluble glycoprotein designs for other viruses, it incorporates a scaffold to enforce assembly in the absence of the transmembrane domains, along with a furin cleavage site to permit native-like heterodimerization. This sE1E2 was found to assemble into a form closer to its expected size than full-length E1E2. Preservation of native structural elements was confirmed by high-affinity binding to a panel of conformationally specific monoclonal antibodies, including two neutralizing antibodies specific to native E1E2 and to its primary receptor, CD81. Finally, sE1E2 was found to elicit robust neutralizing antibodies in vivo. This designed sE1E2 can both provide insights into the determinants of native E1E2 assembly and serve as a platform for production of E1E2 for future structural and vaccine studies, enabling rational optimization of an E1E2-based antigen.
Collapse
Affiliation(s)
- Johnathan D Guest
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Khadija H Elkholy
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo 12622, Egypt
| | - Andrezza Chagas
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Kinlin L Chao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Thomas E Cleveland
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Young Chang Kim
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Abdul S Yunus
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Roy A Mariuzza
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
22
|
Huang M, Zhang W, Chen H, Zeng J. Targeting Polyamine Metabolism for Control of Human Viral Diseases. Infect Drug Resist 2020; 13:4335-4346. [PMID: 33293837 PMCID: PMC7718961 DOI: 10.2147/idr.s262024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
A virus is an infectious particle which generally contains nucleic acid genome (DNA or RNA inside a protein shell), except for human immunodeficiency virus (HIV). Viruses have to reproduce by infecting their host cells. Polyamines are ubiquitous compounds in mammalian cells and play key roles in various cellular processes. The metabolic pathways of polyamines have been well studied. Targeting these metabolic pathways can reduce infections caused by viruses. In the study, we systematically reviewed the association of polyamine metabolic pathways and viruses including coxsackievirus B3 (CVB3), enterovirus 71 (EV71), poliovirus (PV), Zika virus (ZKV), hepatitis C virus (HCV), hepatitis B virus (HBV), dengue virus (DENV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), Ebola virus (EBOV), marburgvirus (MARV), chikungunya virus (CHIKV), sindbis virus (SINV), Semliki Forest virus (SFV), Epstein-Barr virus (EBV), herpes simplex virus 1 (HSV), human cytomegalovirus (HCMV), vesicular stomatitis virus (VSV), Rabies virus (RABV), Rift Valley fever virus (RVFV), La Crosse virus (LACV), human immunodeficiency virus (HIV), Middle East respiratory syndrome virus (MERS-CoV), and coronavirus disease 2019 (SARS-CoV-2). This review revealed that targeting polyamine metabolic pathways may be a potential approach to control human viral infection.
Collapse
Affiliation(s)
- Mingyuan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan523808, People’s Republic of China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan523808, People’s Republic of China
| | - Weijian Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan523808, People’s Republic of China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan523808, People’s Republic of China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan523808, People’s Republic of China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Guangdong Medical University, Dongguan523808, People’s Republic of China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong524023, People’s Republic of China
| |
Collapse
|
23
|
Jones JE, Le Sage V, Lakdawala SS. Viral and host heterogeneity and their effects on the viral life cycle. Nat Rev Microbiol 2020; 19:272-282. [PMID: 33024309 PMCID: PMC7537587 DOI: 10.1038/s41579-020-00449-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
Traditionally, the viral replication cycle is envisioned as a single, well-defined loop with four major steps: attachment and entry into a target cell, replication of the viral genome, maturation of viral proteins and genome packaging into infectious progeny, and egress and dissemination to the next target cell. However, for many viruses, a growing body of evidence points towards extreme heterogeneity in each of these steps. In this Review, we reassess the major steps of the viral replication cycle by highlighting recent advances that show considerable variability during viral infection. First, we discuss heterogeneity in entry receptors, followed by a discussion on error-prone and low-fidelity polymerases and their impact on viral diversity. Next, we cover the implications of heterogeneity in genome packaging and assembly on virion morphology. Last, we explore alternative egress mechanisms, including tunnelling nanotubes and host microvesicles. In summary, we discuss the implications of viral phenotypic, morphological and genetic heterogeneity on pathogenesis and medicine. This Review highlights common themes and unique features that give nuance to the viral replication cycle.
Collapse
Affiliation(s)
- Jennifer E Jones
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Hepatitis C Virus Translation Regulation. Int J Mol Sci 2020; 21:ijms21072328. [PMID: 32230899 PMCID: PMC7178104 DOI: 10.3390/ijms21072328] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Translation of the hepatitis C virus (HCV) RNA genome is regulated by the internal ribosome entry site (IRES), located in the 5’-untranslated region (5′UTR) and part of the core protein coding sequence, and by the 3′UTR. The 5′UTR has some highly conserved structural regions, while others can assume different conformations. The IRES can bind to the ribosomal 40S subunit with high affinity without any other factors. Nevertheless, IRES activity is modulated by additional cis sequences in the viral genome, including the 3′UTR and the cis-acting replication element (CRE). Canonical translation initiation factors (eIFs) are involved in HCV translation initiation, including eIF3, eIF2, eIF1A, eIF5, and eIF5B. Alternatively, under stress conditions and limited eIF2-Met-tRNAiMet availability, alternative initiation factors such as eIF2D, eIF2A, and eIF5B can substitute for eIF2 to allow HCV translation even when cellular mRNA translation is downregulated. In addition, several IRES trans-acting factors (ITAFs) modulate IRES activity by building large networks of RNA-protein and protein–protein interactions, also connecting 5′- and 3′-ends of the viral RNA. Moreover, some ITAFs can act as RNA chaperones that help to position the viral AUG start codon in the ribosomal 40S subunit entry channel. Finally, the liver-specific microRNA-122 (miR-122) stimulates HCV IRES-dependent translation, most likely by stabilizing a certain structure of the IRES that is required for initiation.
Collapse
|
25
|
Hepatitis C Virus Entry: An Intriguingly Complex and Highly Regulated Process. Int J Mol Sci 2020; 21:ijms21062091. [PMID: 32197477 PMCID: PMC7140000 DOI: 10.3390/ijms21062091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis and liver disease worldwide. Its tissue and species tropism are largely defined by the viral entry process that is required for subsequent productive viral infection and establishment of chronic infection. This review provides an overview of the viral and host factors involved in HCV entry into hepatocytes, summarizes our understanding of the molecular mechanisms governing this process and highlights the therapeutic potential of host-targeting entry inhibitors.
Collapse
|
26
|
Hepatitis C Virus Downregulates Core Subunits of Oxidative Phosphorylation, Reminiscent of the Warburg Effect in Cancer Cells. Cells 2019; 8:cells8111410. [PMID: 31717433 PMCID: PMC6912740 DOI: 10.3390/cells8111410] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C Virus (HCV) mainly infects liver hepatocytes and replicates its single-stranded plus strand RNA genome exclusively in the cytoplasm. Viral proteins and RNA interfere with the host cell immune response, allowing the virus to continue replication. Therefore, in about 70% of cases, the viral infection cannot be cleared by the immune system, but a chronic infection is established, often resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Induction of cancer in the host cells can be regarded to provide further advantages for ongoing virus replication. One adaptation in cancer cells is the enhancement of cellular carbohydrate flux in glycolysis with a reduction of the activity of the citric acid cycle and aerobic oxidative phosphorylation. To this end, HCV downregulates the expression of mitochondrial oxidative phosphorylation complex core subunits quite early after infection. This so-called aerobic glycolysis is known as the “Warburg Effect” and serves to provide more anabolic metabolites upstream of the citric acid cycle, such as amino acids, pentoses and NADPH for cancer cell growth. In addition, HCV deregulates signaling pathways like those of TNF-β and MAPK by direct and indirect mechanisms, which can lead to fibrosis and HCC.
Collapse
|
27
|
Huang J, Yin H, Yin P, Jian X, Song S, Luan J, Zhang L. SR-BI Interactome Analysis Reveals a Proviral Role for UGGT1 in Hepatitis C Virus Entry. Front Microbiol 2019; 10:2043. [PMID: 31551978 PMCID: PMC6743029 DOI: 10.3389/fmicb.2019.02043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
Hepatitis C virus (HCV) entry is mediated by multiple co-receptors including scavenger receptor class B, type I (SR-BI). To elucidate the interactome of human SR-BI, we performed immunoprecipitation (IP) experiment coupled with mass spectrometry (MS) analysis. UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1), a key component of calnexin cycle involved in protein glycosylation, was identified as a SR-BI-interacting protein. Silencing UGGT1 or N-glycosylation inhibitor treatment reduced SR-BI protein level. Further study demonstrated that human SR-BI was N-glycosylated at nine asparagines. Moreover, HCV entry and infection were reduced by the absence of UGGT1. Interestingly, silencing SR-BI reduced protein stability of UGGT1 and protein quality control function mediated by UGGT1. Our finding not only identified UGGT1 as a HCV host factor, but also identified a UGGT1-mediated protein folding function for SR-BI.
Collapse
Affiliation(s)
- Jiazhao Huang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Han Yin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peiqi Yin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xia Jian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Siqi Song
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Junwen Luan
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Leiliang Zhang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
28
|
Chigbu DI, Loonawat R, Sehgal M, Patel D, Jain P. Hepatitis C Virus Infection: Host⁻Virus Interaction and Mechanisms of Viral Persistence. Cells 2019; 8:cells8040376. [PMID: 31027278 PMCID: PMC6523734 DOI: 10.3390/cells8040376] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C (HCV) is a major cause of liver disease, in which a third of individuals with chronic HCV infections may develop liver cirrhosis. In a chronic HCV infection, host immune factors along with the actions of HCV proteins that promote viral persistence and dysregulation of the immune system have an impact on immunopathogenesis of HCV-induced hepatitis. The genome of HCV encodes a single polyprotein, which is translated and processed into structural and nonstructural proteins. These HCV proteins are the target of the innate and adaptive immune system of the host. Retinoic acid-inducible gene-I (RIG-I)-like receptors and Toll-like receptors are the main pattern recognition receptors that recognize HCV pathogen-associated molecular patterns. This interaction results in a downstream cascade that generates antiviral cytokines including interferons. The cytolysis of HCV-infected hepatocytes is mediated by perforin and granzyme B secreted by cytotoxic T lymphocyte (CTL) and natural killer (NK) cells, whereas noncytolytic HCV clearance is mediated by interferon gamma (IFN-γ) secreted by CTL and NK cells. A host-HCV interaction determines whether the acute phase of an HCV infection will undergo complete resolution or progress to the development of viral persistence with a consequential progression to chronic HCV infection. Furthermore, these host-HCV interactions could pose a challenge to developing an HCV vaccine. This review will focus on the role of the innate and adaptive immunity in HCV infection, the failure of the immune response to clear an HCV infection, and the factors that promote viral persistence.
Collapse
Affiliation(s)
- DeGaulle I Chigbu
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
- Pennsylvania College of Optometry at Salus University, Elkins Park, PA 19027, USA.
| | - Ronak Loonawat
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| | - Mohit Sehgal
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Dip Patel
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| |
Collapse
|
29
|
Zeisel MB, Dhawan P, Baumert TF. Tight junction proteins in gastrointestinal and liver disease. Gut 2019; 68:547-561. [PMID: 30297438 PMCID: PMC6453741 DOI: 10.1136/gutjnl-2018-316906] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
Over the past two decades a growing body of evidence has demonstrated an important role of tight junction (TJ) proteins in the physiology and disease biology of GI and liver disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where they play important functional roles in signalling, trafficking and regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal cancer and gastric cancer. Among the best characterised roles of TJ proteins in liver disease biology is their function as cell entry receptors for HCV-one of the most common causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mirjam B. Zeisel
- Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE
- VA Nebraska-Western Iowa Health Care System, Omaha, NE
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
30
|
Moustafa RI, Dubuisson J, Lavie M. Function of the HCV E1 envelope glycoprotein in viral entry and assembly. Future Virol 2019. [DOI: 10.2217/fvl-2018-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
HCV envelope glycoproteins, E1 and E2, are multifunctional proteins. Until recently, E2 glycoprotein was thought to be the fusion protein and was the focus of investigations. However, the recently obtained partial structures of E2 and E1 rather support a role for E1 alone or in association with E2 in HCV fusion. Moreover, they suggest that HCV harbors a new fusion mechanism, distinct from that of other members of the Flaviviridae family. In this context, E1 aroused a renewed interest. Recent functional characterizations of E1 revealed a more important role than previously thought in entry and assembly. Thus, E1 is involved in the viral genome encapsidation step and influences the association of the virus with lipoprotein components. Moreover, E1 modulates HCV–receptor interaction and participates in a late entry step potentially fusion. In this review, we outline our current knowledge on E1 functions in HCV assembly and entry.
Collapse
Affiliation(s)
- Rehab I Moustafa
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
- Department of Microbial Biotechnology, Genetic Engineering & Biotechnology Division, National Research Center, Dokki, Cairo, Egypt
| | - Jean Dubuisson
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Muriel Lavie
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| |
Collapse
|
31
|
Lohmann V. Hepatitis C virus cell culture models: an encomium on basic research paving the road to therapy development. Med Microbiol Immunol 2019; 208:3-24. [PMID: 30298360 DOI: 10.1007/s00430-018-0566-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Chronic hepatitis C virus (HCV) infections affect 71 million people worldwide, often resulting in severe liver damage. Since 2014 highly efficient therapies based on directly acting antivirals (DAAs) are available, offering cure rates of almost 100%, if the infection is diagnosed in time. It took more than a decade to discover HCV in 1989 and another decade to establish a cell culture model. This review provides a personal view on the importance of HCV cell culture models, particularly the replicon system, in the process of therapy development, from drug screening to understanding of mode of action and resistance, with a special emphasis on the contributions of Ralf Bartenschlager's group. It summarizes the tremendous efforts of scientists in academia and industry required to achieve efficient DAAs, focusing on the main targets, protease, polymerase and NS5A. It furthermore underpins the importance of strong basic research laying the ground for translational medicine.
Collapse
Affiliation(s)
- Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Centre for Integrative Infectious Disease Research (CIID), University of Heidelberg, INF 344, 1st Floor, 69120, Heidelberg, Germany.
| |
Collapse
|
32
|
Krol E, Wandzik I, Pastuch-Gawolek G, Szewczyk B. Anti-Hepatitis C Virus Activity of Uridine Derivatives of 2-Deoxy Sugars. Molecules 2018; 23:molecules23071547. [PMID: 29954068 PMCID: PMC6099588 DOI: 10.3390/molecules23071547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV), the etiological agent of the most common and dangerous diseases of the liver, is a major health problem worldwide. Despite many attempts, there is still no vaccine available. Although many drugs have been approved for use mostly in combination regimen, their high costs make them out of reach in less developed regions. Previously, we have synthesized a series of compounds belonging to uridine derivatives of 2-deoxy sugars and have proved that some of them possess antiviral activity against influenza A virus associated with N-glycosylation inhibition. Here, we analyze the antiviral properties of these compounds against HCV. Using cell culture-derived HCV (HCVcc), HCV pseudoparticles (HCVpp), and replicon cell lines, we have shown high anti-HCV activity of two compounds. Our results indicated that compounds 2 and 4 significantly reduced HCVcc propagation with IC50 values in low μM range. Further experiments using the HCVpp system confirmed that both compounds significantly impaired the infectivity of produced HCVpp due to the inhibition of the correct maturation of viral glycoproteins. Overall, our results suggest that inhibiting the glycosylation process might be a good target for new therapeutics not only against HCV, but other important viral pathogens which contain envelopes with highly glycosylated proteins.
Collapse
Affiliation(s)
- Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Gabriela Pastuch-Gawolek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
33
|
Crouchet E, Wrensch F, Schuster C, Zeisel MB, Baumert TF. Host-targeting therapies for hepatitis C virus infection: current developments and future applications. Therap Adv Gastroenterol 2018; 11:1756284818759483. [PMID: 29619090 PMCID: PMC5871046 DOI: 10.1177/1756284818759483] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/15/2018] [Indexed: 02/04/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a leading cause of chronic liver diseases and hepatocellular carcinoma (HCC) worldwide. In the past few years, anti-HCV therapies have undergone a revolution with the approval of multiple direct-acting antivirals (DAAs), which enable interferon-free treatments with considerable improvement of sustained virologic response in patients. Today, DAAs have become the standard of care for HCV therapy. However, several limitations remain, which include access to therapy, treatment failure in a subset of patients and persistent risk of HCC development following cure in patients with advanced fibrosis. By targeting conserved host proteins involved in the HCV life cycle, host-targeting agents (HTAs) offer opportunities for pan-genotypic antiviral approaches with a high barrier to drug resistance. Moreover, when applied in combination with DAAs, HTAs could improve the management of difficult-to-treat patients by acting through a complementary mechanism of action. In this review, we summarize the different HTAs evaluated in preclinical and clinical development and discuss their potential role for anti-HCV therapies.
Collapse
Affiliation(s)
- Emilie Crouchet
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Florian Wrensch
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Mirjam B. Zeisel
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
| | | |
Collapse
|
34
|
Niepmann M, Shalamova LA, Gerresheim GK, Rossbach O. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication. Front Microbiol 2018; 9:395. [PMID: 29593672 PMCID: PMC5857606 DOI: 10.3389/fmicb.2018.00395] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES) in the 5' untranslated region (5' UTR), while also downstream elements like the cis-replication element (CRE) in the coding region and the 3' UTR are involved in translation regulation. The cis-elements controlling replication of the viral RNA genome are located mainly in the 5'- and 3'-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNA-RNA interactions (LRIs) are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis-elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122) binds to two target sites at the 5' end of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3' UTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis-elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis-element in question acts on HCV replication when physically present in the plus strand genome or in the minus strand antigenome. Therefore, it may be required to use reduced systems that selectively focus on the analysis of HCV minus strand initiation and/or plus strand initiation.
Collapse
Affiliation(s)
- Michael Niepmann
- Medical Faculty, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Lyudmila A Shalamova
- Medical Faculty, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany.,Faculty of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Gesche K Gerresheim
- Medical Faculty, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany.,Faculty of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Rossbach
- Faculty of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
35
|
Jardim ACG, Shimizu JF, Rahal P, Harris M. Plant-derived antivirals against hepatitis c virus infection. Virol J 2018; 15:34. [PMID: 29439720 PMCID: PMC5812025 DOI: 10.1186/s12985-018-0945-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/02/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a worldwide public health burden and it is estimated that 185 million people are or have previously been infected worldwide. There is no effective vaccine for prevention of HCV infection; however, a number of drugs are available for the treatment of infection. The availability of direct-acting antivirals (DAAs) has dramatically improved therapeutic options for HCV genotype 1. However, the high costs and potential for development of resistance presented by existing treatment demonstrate the need for the development of more efficient new antivirals, or combination of therapies that target different stages of the viral lifecycle. Over the past decades, there has been substantial study of compounds extracted from plants that have activity against a range of microorganisms that cause human diseases. An extensive variety of natural compounds has demonstrated antiviral action worldwide, including anti-HCV activity. In this context, plant-derived compounds can provide an alternative approach to new antivirals. In this review, we aim to summarize the most promising plant-derived compounds described to have antiviral activity against HCV.
Collapse
Affiliation(s)
- Ana Carolina Gomes Jardim
- Laboratory of Virology, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Avenida Amazonas, Bloco 4C – sala 216. Umuarama, Uberlândia, MG CEP: 38405-302 Brazil
- Genomics Study Laboratory, São Paulo State University, São José do Rio Preto, SP Brazil
| | - Jacqueline Farinha Shimizu
- Laboratory of Virology, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Avenida Amazonas, Bloco 4C – sala 216. Umuarama, Uberlândia, MG CEP: 38405-302 Brazil
- Genomics Study Laboratory, São Paulo State University, São José do Rio Preto, SP Brazil
| | - Paula Rahal
- Genomics Study Laboratory, São Paulo State University, São José do Rio Preto, SP Brazil
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT UK
| |
Collapse
|
36
|
N-Myc Downstream-Regulated Gene 1 Restricts Hepatitis C Virus Propagation by Regulating Lipid Droplet Biogenesis and Viral Assembly. J Virol 2018; 92:JVI.01166-17. [PMID: 29118118 DOI: 10.1128/jvi.01166-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
Host cells harbor various intrinsic mechanisms to restrict viral infections as a first line of antiviral defense. Viruses have evolved various countermeasures against these antiviral mechanisms. Here we show that N-Myc downstream-regulated gene 1 (NDRG1) limits productive hepatitis C virus (HCV) infection by inhibiting viral assembly. Interestingly, HCV infection downregulates NDRG1 protein and mRNA expression. The loss of NDRG1 increases the size and number of lipid droplets, which are the sites of HCV assembly. HCV suppresses NDRG1 expression by upregulating MYC, which directly inhibits the transcription of NDRG1 The upregulation of MYC also leads to the reduced expression of the NDRG1-specific kinase serum/glucocorticoid-regulated kinase 1 (SGK1), resulting in a markedly diminished phosphorylation of NDRG1. The knockdown of MYC during HCV infection rescues NDRG1 expression and phosphorylation, suggesting that MYC regulates NDRG1 at both the transcriptional and posttranslational levels. Overall, our results suggest that NDRG1 restricts HCV assembly by limiting lipid droplet formation. HCV counteracts this intrinsic antiviral mechanism by downregulating NDRG1 via a MYC-dependent mechanism.IMPORTANCE Hepatitis C virus (HCV) is an enveloped single-stranded RNA virus that targets hepatocytes in the liver. HCV is a leading cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma, and estimates suggest a global prevalence of 2.35%. Up to 80% of acutely infected individuals will develop chronic infection, and as many as 5% eventually progress to liver cancer. An understanding of the mechanisms behind virus-host interactions and viral carcinogenesis is still lacking. The significance of our research is that it identifies a previously unknown relationship between HCV and a known tumor-associated gene. Furthermore, our data point to a new role for this gene in the liver and in lipid metabolism. Thus, HCV infection serves as a great biological model to advance our knowledge of liver functions and the development of liver cancer.
Collapse
|
37
|
Gopal R, Jackson K, Tzarum N, Kong L, Ettenger A, Guest J, Pfaff JM, Barnes T, Honda A, Giang E, Davidson E, Wilson IA, Doranz BJ, Law M. Probing the antigenicity of hepatitis C virus envelope glycoprotein complex by high-throughput mutagenesis. PLoS Pathog 2017; 13:e1006735. [PMID: 29253863 PMCID: PMC5749897 DOI: 10.1371/journal.ppat.1006735] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/02/2018] [Accepted: 11/04/2017] [Indexed: 12/12/2022] Open
Abstract
The hepatitis C virus (HCV) envelope glycoproteins E1 and E2 form a non-covalently linked heterodimer on the viral surface that mediates viral entry. E1, E2 and the heterodimer complex E1E2 are candidate vaccine antigens, but are technically challenging to study because of difficulties in producing natively folded proteins by standard protein expression and purification methods. To better comprehend the antigenicity of these proteins, a library of alanine scanning mutants comprising the entirety of E1E2 (555 residues) was created for evaluating the role of each residue in the glycoproteins. The mutant library was probed, by a high-throughput flow cytometry-based assay, for binding with the co-receptor CD81, and a panel of 13 human and mouse monoclonal antibodies (mAbs) that target continuous and discontinuous epitopes of E1, E2, and the E1E2 complex. Together with the recently determined crystal structure of E2 core domain (E2c), we found that several residues in the E2 back layer region indirectly impact binding of CD81 and mAbs that target the conserved neutralizing face of E2. These findings highlight an unexpected role for the E2 back layer in interacting with the E2 front layer for its biological function. We also identified regions of E1 and E2 that likely located at or near the interface of the E1E2 complex, and determined that the E2 back layer also plays an important role in E1E2 complex formation. The conformation-dependent reactivity of CD81 and the antibody panel to the E1E2 mutant library provides a global view of the influence of each amino acid (aa) on E1E2 expression and folding. This information is valuable for guiding protein engineering efforts to enhance the antigenic properties and stability of E1E2 for vaccine antigen development and structural studies.
Collapse
Affiliation(s)
- Radhika Gopal
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Kelli Jackson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Leopold Kong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Andrew Ettenger
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Johnathan Guest
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Jennifer M. Pfaff
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Trevor Barnes
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Andrew Honda
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Edgar Davidson
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | | | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
38
|
Verrier ER, Colpitts CC, Bach C, Heydmann L, Zona L, Xiao F, Thumann C, Crouchet E, Gaudin R, Sureau C, Cosset FL, McKeating JA, Pessaux P, Hoshida Y, Schuster C, Zeisel MB, Baumert TF. Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes. Cell Rep 2017; 17:1357-1368. [PMID: 27783949 PMCID: PMC5098118 DOI: 10.1016/j.celrep.2016.09.084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/10/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022] Open
Abstract
Chronic hepatitis B, C, and D virus (HBV, HCV, and HDV) infections are the leading causes of liver disease and cancer worldwide. Recently, the solute carrier and sodium taurocholate co-transporter NTCP has been identified as a receptor for HBV and HDV. Here, we uncover NTCP as a host factor regulating HCV infection. Using gain- and loss-of-function studies, we show that NTCP mediates HCV infection of hepatocytes and is relevant for cell-to-cell transmission. NTCP regulates HCV infection by augmenting the bile-acid-mediated repression of interferon-stimulated genes (ISGs), including IFITM3. In conclusion, our results uncover NTCP as a mediator of innate antiviral immune responses in the liver, and they establish a role for NTCP in the infection process of multiple viruses via distinct mechanisms. Collectively, our findings suggest a role for solute carriers in the regulation of innate antiviral responses, and they have potential implications for virus-host interactions and antiviral therapies. NTCP is involved in hepatocyte infection by multiple viruses via distinct mechanisms NTCP facilitates HCV infection by modulating innate antiviral responses Solute carrier NTCP is a regulator of antiviral immune responses in the liver This function is relevant for infection and therapies for hepatotropic viruses
Collapse
Affiliation(s)
- Eloi R Verrier
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Che C Colpitts
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Charlotte Bach
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Laura Heydmann
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Laetitia Zona
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Fei Xiao
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Christine Thumann
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Emilie Crouchet
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Raphaël Gaudin
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Camille Sureau
- INTS, Laboratoire de Virologie Moléculaire, 75015 Paris, France
| | - François-Loïc Cosset
- CIRI-International Center for Infectiology Research, 69364 Lyon Cedex 07, France; INSERM, U1111, 69007 Lyon, France; Ecole Normale Supérieure, 69007 Lyon, France; Centre National de la Recherche Scientifique (CNRS) UMR 5308, 69007 Lyon, France; LabEx Ecofect, University of Lyon, 69007 Lyon, France
| | - Jane A McKeating
- Centre for Human Virology, University of Birmingham, Birmingham, UK; NIHR Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK
| | - Patrick Pessaux
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; Institut Hospitalo-universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine Schuster
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Mirjam B Zeisel
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France.
| | - Thomas F Baumert
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; Institut Hospitalo-universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France.
| |
Collapse
|
39
|
Nasir IA, Yakubu S, Mustapha JO. Epidemiology and Synergistic Hepatopathology of Malaria and Hepatitis C Virus Coinfection. Virology (Auckl) 2017; 8:1178122X17724411. [PMID: 28814840 PMCID: PMC5546637 DOI: 10.1177/1178122x17724411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
Malaria and hepatitis C virus (HCV) infections are very common causes of human suffering with overlapping global geographic distributions. With the growing incidence of HCV infections in malaria-endemic zones and malaria in areas with exceptionally high HCV prevalence, coinfections and syndemism of both pathogens are likely to occur. However, studies of malaria and HCV coinfections are very rare despite the fact that liver-stage plasmodiasis and hepatitis C develop in hepatocytes which may synergistically interact. The fact that both pathogens share similar entry molecules or receptors in early invasive steps of hepatocytes further makes hepatopathologic investigations of coinfected hosts greatly important. This review sought to emphasize the public health significance of malaria/HCV coinfections and elucidate the mechanisms of pathogens’ entrance and invasion of susceptible host to improve on existing or develop antiplasmodial drugs and hepatitis C therapeutics that can intervene at appropriate stages of pathogens’ life cycles.
Collapse
Affiliation(s)
- Idris Abdullahi Nasir
- Department of Medical Microbiology and Parasitology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,Department of Medical Laboratory Services, University of Abuja Teaching Hospital, Gwagwalada, Nigeria
| | - Sa'adatu Yakubu
- Department of Microbiology, Faculty of Science, University of Abuja, Abuja, Nigeria
| | - Jelili Olaide Mustapha
- Department of Medical Microbiology and Parasitology, Lagos State University Teaching Hospital, Lagos, Nigeria
| |
Collapse
|
40
|
Crouchet E, Baumert TF, Schuster C. Hepatitis C virus-apolipoprotein interactions: molecular mechanisms and clinical impact. Expert Rev Proteomics 2017; 14:593-606. [PMID: 28625086 PMCID: PMC6138823 DOI: 10.1080/14789450.2017.1344102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chronic hepatitis C virus (HCV) infection is a leading cause of cirrhosis, hepatocellular carcinoma and liver failure. Moreover, chronic HCV infection is associated with liver steatosis and metabolic disorders. With 130-150 million people chronically infected in the world, HCV infection represents a major public health problem. One hallmark on the virus is its close link with hepatic lipid and lipoprotein metabolism. Areas covered: HCV is associated with lipoprotein components such as apolipoproteins. These interactions play a key role in the viral life cycle, viral persistence and pathogenesis of liver disease. This review introduces first the role of apolipoproteins in lipoprotein metabolism, then highlights the molecular mechanisms of HCV-lipoprotein interactions and finally discusses their clinical impact. Expert commentary: While the study of virus-host interactions has resulted in a improvement of the understanding of the viral life cycle and the development of highly efficient therapies, major challenges remain: access to therapy is limited and an urgently needed HCV vaccine remains still elusive. Furthermore, the pathogenesis of disease biology is still only partially understood. The investigation of HCV-lipoproteins interactions offers new perspectives for novel therapeutic approaches, contribute to HCV vaccine design and understand virus-induced liver disease and cancer.
Collapse
Affiliation(s)
- Emilie Crouchet
- Inserm, U1110: Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U1110: Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pôle hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- Inserm, U1110: Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
41
|
Koutsoudakis G, Paris de León A, Herrera C, Dorner M, Pérez-Vilaró G, Lyonnais S, Grijalvo S, Eritja R, Meyerhans A, Mirambeau G, Díez J. Oligonucleotide-Lipid Conjugates Forming G-Quadruplex Structures Are Potent and Pangenotypic Hepatitis C Virus Entry Inhibitors In Vitro and Ex Vivo. Antimicrob Agents Chemother 2017; 61:e02354-16. [PMID: 28193659 PMCID: PMC5404530 DOI: 10.1128/aac.02354-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
A hepatitis C virus (HCV) epidemic affecting HIV-infected men who have sex with men (MSM) is expanding worldwide. In spite of the improved cure rates obtained with the new direct-acting antiviral drug (DAA) combinations, the high rate of reinfection within this population calls urgently for novel preventive interventions. In this study, we determined in cell culture and ex vivo experiments with human colorectal tissue that lipoquads, G-quadruplex DNA structures fused to cholesterol, are efficient HCV pangenotypic entry and cell-to-cell transmission inhibitors. Thus, lipoquads may be promising candidates for the development of rectally applied gels to prevent HCV transmission.
Collapse
Affiliation(s)
- George Koutsoudakis
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alexia Paris de León
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carolina Herrera
- Section of Virology, Faculty of Medicine, St. Mary's Campus, Imperial College London, London, United Kingdom
| | - Marcus Dorner
- Section of Virology, Faculty of Medicine, St. Mary's Campus, Imperial College London, London, United Kingdom
| | - Gemma Pérez-Vilaró
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sébastien Lyonnais
- AIDS Research Group, Institut D'Investigacions Biomèdics August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) and Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) and Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Gilles Mirambeau
- AIDS Research Group, Institut D'Investigacions Biomèdics August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculté de Biologie, Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Juana Díez
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
42
|
Anti-hepatitis C virus strategy targeting host entry factor claudin-1. Uirusu 2017; 65:245-254. [PMID: 27760923 DOI: 10.2222/jsv.65.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chronic hepatitis C virus (HCV) infection is a major threat to global public health, because it is significantly correlated with the development of severe liver diseases including cirrhosis and hepatocellular carcinomas. Host molecules as well as viral factors are promising targets for anti-HCV preventive and therapeutic strategies. Multiple host factors such as CD81, SRBI, claudin-1, and occludin are involved in HCV entry into hepatocytes. In this paper, I first introduce our anti-HCV strategy targeting for host tight junction protein claudin-1. And this review also summarizes developments of other entry inhibitors to prevent initiation of HCV infection and spread. Entry inhibitors might be useful in blocking primary infections, such those as after liver transplantation, and in combination therapies with other anti-HCV agents such as direct-acting antivirals.
Collapse
|
43
|
Nieder-Röhrmann A, Dünnes N, Gerresheim GK, Shalamova LA, Herchenröther A, Niepmann M. Cooperative enhancement of translation by two adjacent microRNA-122/Argonaute 2 complexes binding to the 5' untranslated region of hepatitis C virus RNA. J Gen Virol 2017; 98:212-224. [PMID: 28008821 DOI: 10.1099/jgv.0.000697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The liver-specific microRNA-122 (miR-122) binds to two conserved binding sites in the 5' UTR of hepatitis C virus (HCV) RNA. This binding was reported to enhance HCV RNA replication, translation and stability. We have analysed binding of miR-122/Argonaute 2 (Ago2) complexes to these sites using anti-Ago2 co-immunoprecipitation of radioactively labelled HCV RNAs along with ectopic miR-122 in HeLa cells. Our results show that the miR-122 target sites can be addressed separately. When both target sites were addressed simultaneously, we observed a synergistic binding of both miR/Ago2 complexes. Consistently, simultaneous binding of both miR-122/Ago2 complexes results in cooperative translation stimulation. In the binding assays as well as in the translation assays, binding site 1 has a stronger effect than binding site 2. We also analysed the overall RNA stability as well as the 5' end integrity of these HCV RNAs in the presence of miR-122. Surprisingly, using short HCV reporter RNAs, we did not find effects of miR-122 binding on overall RNA stability or 5' end integrity over up to 36 h. In contrast, using full-length HCV genomes that are incapable of replication, we found a positive influence of miR-122 on RNA stability, indicating that features of the full-length HCV genome that do not reside in the 5' and 3' UTRs may render HCV RNA genome stability miR-122 dependent.
Collapse
Affiliation(s)
- Anika Nieder-Röhrmann
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | - Nadia Dünnes
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | - Gesche K Gerresheim
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | - Lyudmila A Shalamova
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | - Andreas Herchenröther
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | - Michael Niepmann
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
44
|
Fauvelle C, Colpitts CC, Keck ZY, Pierce BG, Foung SKH, Baumert TF. Hepatitis C virus vaccine candidates inducing protective neutralizing antibodies. Expert Rev Vaccines 2016; 15:1535-1544. [PMID: 27267297 DOI: 10.1080/14760584.2016.1194759] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION With more than 150 million chronically infected people, hepatitis C virus (HCV) remains a substantial global health burden. Direct-acting antivirals have dramatically improved viral cure. However, limited access to therapy, late stage detection of infection and re-infection following cure illustrate the need for a vaccine for global control of infection. Vaccines with induction of neutralizing antibodies (nAbs) have been shown to protect successfully against infections by multiple viruses and are currently developed for HCV. Areas covered: Here we review the progress towards the development of vaccines aiming to confer protection against chronic HCV infection by inducing broadly nAbs. The understanding or viral immune evasion in infected patients, the development of novel model systems and the recent structural characterization of viral envelope glycoprotein E2 has markedly advanced our understanding of the molecular mechanisms of virus neutralization with the concomitant development of several vaccine candidates. Expert commentary: While HCV vaccine development remains challenged by the high viral diversity and immune evasion, marked progress in HCV research has advanced vaccine design. Several vaccine candidates have shown robust induction of nAbs in animal models and humans. Randomized clinical trials are the next step to assess their clinical efficacy for protection against chronic infection.
Collapse
Affiliation(s)
- Catherine Fauvelle
- a Inserm, U1110 , Institut de Recherche sur les Maladies Virales et Hépatiques , Strasbourg , France.,b Université de Strasbourg , Strasbourg , France
| | - Che C Colpitts
- a Inserm, U1110 , Institut de Recherche sur les Maladies Virales et Hépatiques , Strasbourg , France.,b Université de Strasbourg , Strasbourg , France
| | - Zhen-Yong Keck
- c Department of Pathology , Stanford University School of Medicine , Stanford , CA , USA
| | - Brian G Pierce
- d Institute for Bioscience and Biotechnology Research , University of Maryland , Rockville , MD , USA
| | - Steven K H Foung
- c Department of Pathology , Stanford University School of Medicine , Stanford , CA , USA
| | - Thomas F Baumert
- a Inserm, U1110 , Institut de Recherche sur les Maladies Virales et Hépatiques , Strasbourg , France.,b Université de Strasbourg , Strasbourg , France.,e Institut Hospitalo-Universitaire, Pôle Hépato-digestif , Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| |
Collapse
|
45
|
Felmlee DJ, Coilly A, Chung RT, Samuel D, Baumert TF. New perspectives for preventing hepatitis C virus liver graft infection. THE LANCET. INFECTIOUS DISEASES 2016; 16:735-745. [PMID: 27301929 PMCID: PMC4911897 DOI: 10.1016/s1473-3099(16)00120-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 01/29/2016] [Accepted: 02/15/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease that necessitates liver transplantation. The incidence of virus-induced cirrhosis and hepatocellular carcinoma continues to increase, making liver transplantation increasingly common. Infection of the engrafted liver is universal and accelerates progression to advanced liver disease, with 20-30% of patients having cirrhosis within 5 years of transplantation. Treatments of chronic HCV infection have improved dramatically, albeit with remaining challenges of failure and access, and therapeutic options to prevent graft infection during liver transplantation are emerging. Developments in directed use of new direct-acting antiviral agents (DAAs) to eliminate circulating HCV before or after transplantation in the past 5 years provide renewed hope for prevention and treatment of liver graft infection. Identification of the ideal regimen and use of DAAs reveals new ways to treat this specific population of patients. Complementing DAAs, viral entry inhibitors have been shown to prevent liver graft infection in animal models and delay graft infection in clinical trials, which shows their potential for use concomitant to transplantation. We review the challenges and pathology associated with HCV liver graft infection, highlight current and future strategies of DAA treatment timing, and discuss the potential role of entry inhibitors that might be used synergistically with DAAs to prevent or treat graft infection.
Collapse
Affiliation(s)
- Daniel J Felmlee
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Hepatology Research Group, Peninsula School of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Audrey Coilly
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France; University Paris-Sud, UMR-S 1193, Villejuif, France; Inserm Unit 1193, Villejuif F-94800, France
| | - Raymond T Chung
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Didier Samuel
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France; University Paris-Sud, UMR-S 1193, Villejuif, France; Inserm Unit 1193, Villejuif F-94800, France.
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
46
|
Kolesanova EF, Sobolev BN, Moysa AA, Egorova EA, Archakov AI. [Way to the peptide vaccine against hepatitis C]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:254-64. [PMID: 25978391 DOI: 10.18097/pbmc20156102254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to surpass the problem of genetic variability of hepatitis C virus envelope proteins during vaccine development, we used the so-called "reverse vaccinology"approach--"from genome to vaccine". Database of HCV protein sequences was designed, viral genome analysis was performed, and several highly conserved sites were revealed in HCV envelope proteins in the framework of this approach. These sites demonstrated low antigenic activity in full-size proteins and HCV virions: antibodies against these sites were not found in all hepatitis C patients. However, two sites, which contained a wide set of potential T-helper epitope motifs, were revealed among these highly conserved ones. We constructed and prepared by solid-phase peptide synthesis several artificial peptide constructs composed of two linker-connected highly conserved HCV envelope E2 protein sites; one of these sites contained a set of T-helper epitope motifs. Experiments on laboratory animals demonstrated that the developed peptide constructs manifested immunogenicity compared with one of protein molecules and were able to raise antibodies, which specifically bound HCV envelope proteins. We succeeded in obtaining antibodies reactive with HCV from hepatitis C patient plasma upon the immunization with some constructs. An original preparation of a peptide vaccine against hepatitis C is under development on the basis of these peptide constructs.
Collapse
Affiliation(s)
| | - B N Sobolev
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Moysa
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E A Egorova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
47
|
Gondeau C, Pageaux GP, Larrey D. Hepatitis C virus infection: Are there still specific problems with genotype 3? World J Gastroenterol 2015; 21:12101-13. [PMID: 26576095 PMCID: PMC4641128 DOI: 10.3748/wjg.v21.i42.12101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/07/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is one of the most common causes of chronic liver disease and the main indication for liver transplantation worldwide. As promising specific treatments have been introduced for genotype 1, clinicians and researchers are now focusing on patients infected by non-genotype 1 HCV, particularly genotype 3. Indeed, in the golden era of direct-acting antiviral drugs, genotype 3 infections are no longer considered as easy to treat and are associated with higher risk of developing severe liver injuries, such as cirrhosis and hepatocellular carcinoma. Moreover, HCV genotype 3 accounts for 40% of all HCV infections in Asia and is the most frequent genotype among HCV-positive injecting drug users in several countries. Here, we review recent data on HCV genotype 3 infection/treatment, including clinical aspects and the underlying genotype-specific molecular mechanisms.
Collapse
|
48
|
Host-Targeting Agents to Prevent and Cure Hepatitis C Virus Infection. Viruses 2015; 7:5659-85. [PMID: 26540069 PMCID: PMC4664971 DOI: 10.3390/v7112898] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 09/25/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC) which are leading indications of liver transplantation (LT). To date, there is no vaccine to prevent HCV infection and LT is invariably followed by infection of the liver graft. Within the past years, direct-acting antivirals (DAAs) have had a major impact on the management of chronic hepatitis C, which has become a curable disease in the majority of DAA-treated patients. In contrast to DAAs that target viral proteins, host-targeting agents (HTAs) interfere with cellular factors involved in the viral life cycle. By acting through a complementary mechanism of action and by exhibiting a generally higher barrier to resistance, HTAs offer a prospective option to prevent and treat viral resistance. Indeed, given their complementary mechanism of action, HTAs and DAAs can act in a synergistic manner to reduce viral loads. This review summarizes the different classes of HTAs against HCV infection that are in preclinical or clinical development and highlights their potential to prevent HCV infection, e.g., following LT, and to tailor combination treatments to cure chronic HCV infection.
Collapse
|
49
|
Determinants Involved in Hepatitis C Virus and GB Virus B Primate Host Restriction. J Virol 2015; 89:12131-44. [PMID: 26401036 DOI: 10.1128/jvi.01161-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) only infects humans and chimpanzees, while GB virus B (GBV-B), another hepatotropic hepacivirus, infects small New World primates (tamarins and marmosets). In an effort to develop an immunocompetent small primate model for HCV infection to study HCV pathogenesis and vaccine approaches, we investigated the HCV life cycle step(s) that may be restricted in small primate hepatocytes. First, we found that replication-competent, genome-length chimeric HCV RNAs encoding GBV-B structural proteins in place of equivalent HCV sequences designed to allow entry into simian hepatocytes failed to induce viremia in tamarins following intrahepatic inoculation, nor did they lead to progeny virus in permissive, transfected human Huh7.5 hepatoma cells upon serial passage. This likely reflected the disruption of interactions between distantly related structural and nonstructural proteins that are essential for virion production, whereas such cross talk could be restored in similarly designed HCV intergenotypic recombinants via adaptive mutations in NS3 protease or helicase domains. Next, HCV entry into small primate hepatocytes was examined directly using HCV-pseudotyped retroviral particles (HCV-pp). HCV-pp efficiently infected tamarin hepatic cell lines and primary marmoset hepatocyte cultures through the use of the simian CD81 ortholog as a coreceptor, indicating that HCV entry is not restricted in small New World primate hepatocytes. Furthermore, we observed genomic replication and modest virus secretion following infection of primary marmoset hepatocyte cultures with a highly cell culture-adapted HCV strain. Thus, HCV can successfully complete its life cycle in primary simian hepatocytes, suggesting the possibility of adapting some HCV strains to small primate hosts. IMPORTANCE Hepatitis C virus (HCV) is an important human pathogen that infects over 150 million individuals worldwide and leads to chronic liver disease. The lack of a small animal model for this infection impedes the development of a preventive vaccine and pathogenesis studies. In seeking to establish a small primate model for HCV, we first attempted to generate recombinants between HCV and GB virus B (GBV-B), a hepacivirus that infects small New World primates (tamarins and marmosets). This approach revealed that the genetic distance between these hepaciviruses likely prevented virus morphogenesis. We next showed that HCV pseudoparticles were able to infect tamarin or marmoset hepatocytes efficiently, demonstrating that there was no restriction in HCV entry into these simian cells. Furthermore, we found that a highly cell culture-adapted HCV strain was able to achieve a complete viral cycle in primary marmoset hepatocyte cultures, providing a promising basis for further HCV adaptation to small primate hosts.
Collapse
|
50
|
Virome Analysis of Transfusion Recipients Reveals a Novel Human Virus That Shares Genomic Features with Hepaciviruses and Pegiviruses. mBio 2015; 6:e01466-15. [PMID: 26396247 PMCID: PMC4600124 DOI: 10.1128/mbio.01466-15] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To investigate the transmission of novel infectious agents by blood transfusion, we studied changes in the virome composition of blood transfusion recipients pre- and posttransfusion. Using this approach, we detected and genetically characterized a novel human virus, human hepegivirus 1 (HHpgV-1), that shares features with hepatitis C virus (HCV) and human pegivirus (HPgV; formerly called GB virus C or hepatitis G virus). HCV and HPgV belong to the genera Hepacivirus and Pegivirus of the family Flaviviridae. HHpgV-1 was found in serum samples from two blood transfusion recipients and two hemophilia patients who had received plasma-derived clotting factor concentrates. In the former, the virus was detected only in the posttransfusion samples, indicating blood-borne transmission. Both hemophiliacs were persistently viremic over periods of at least 201 and 1,981 days. The 5′ untranslated region (UTR) of HHpgV-1 contained a type IV internal ribosome entry site (IRES), structurally similar to although highly divergent in sequence from that of HCV and other hepaciviruses. However, phylogenetic analysis of nonstructural genes (NS3 and NS5B) showed that HHpgV-1 forms a branch within the pegivirus clade distinct from HPgV and homologs infecting other mammalian species. In common with some pegivirus variants infecting rodents and bats, the HHpgV-1 genome encodes a short, highly basic protein upstream of E1, potentially possessing a core-like function in packaging RNA during assembly. Identification of this new human virus, HHpgV-1, expands our knowledge of the range of genome configurations of these viruses and may lead to a reevaluation of the original criteria by which the genera Hepacivirus and Pegivirus are defined. More than 30 million blood components are transfused annually in the United States alone. Surveillance for infectious agents in the blood supply is key to ensuring the safety of this critical resource for medicine and public health. Here, we report the identification of a new and highly diverse HCV/GB virus (GBV)-like virus from human serum samples. This new virus, human hepegivirus 1 (HHpgV-1), was found in serum samples from blood transfusion recipients, indicating its potential for transmission via transfusion products. We also found persistent long-term HHpgV-1 viremia in two hemophilia patients. HHpgV-1 is unique because it shares genetic similarity with both highly pathogenic HCV and the apparently nonpathogenic HPgV (GBV-C). Our results add to the list of human viruses and provide data to develop reagents to study virus transmission and disease association and for interrupting virus transmission and new human infections.
Collapse
|