1
|
Ekins M, Erpenbeck D, Debitus C, Petek S, Mai T, Wrheide G, Hooper JNA. Revision of the genus Fascaplysinopsis, the type species Fascaplysinopsis reticulata (Hentschel, 1912) (Porifera, Dictyoceratida, Thorectidae) and descriptions of two new genera and seven new species. Zootaxa 2023; 5346:201-241. [PMID: 38221341 DOI: 10.11646/zootaxa.5346.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Indexed: 01/16/2024]
Abstract
The present study examines the taxonomy of sponge specimens with unique chemistry collectively known as Fascaplysinopsis reticulata (Hentschel, 1912). Examination of Hentschels original species upon which the genus Fascaplysinopsis Bergquist, 1980 was based in conjunction with a comparison with recent Indo-west Pacific collections, using morphological and molecular analyses (ITS and 28S rDNA), revealed extensive variation. Fascaplysinopsis reticulata was found to be a species complex comprising the genus Fascaplysinopsis, as well as two new genera: Skolosachlys gen. nov. and Rubrafasciculus gen. nov. The new species of Fascaplysinopsis described are F. palauensis sp. nov., F. klobos sp. nov. and F. ronquinni sp. nov. The new species of Skolosachlys gen. nov. described herein are: S. enlutea sp. nov. and S. nidus sp. nov. The new species described of Rubrafasciculus gen. nov. includes: R. cerasus sp. nov. and R. fijiensis sp. nov..
Collapse
Affiliation(s)
- Merrick Ekins
- Queensland Museum; PO Box 3300; South Brisbane 4101; Brisbane; Queensland; Australia; Griffith Institute for Drug Discovery; Griffith University; Brisbane 4111; Queensland; Australia; School of Biological Sciences; University of Queensland; St Lucia; Queensland; 4072 Australia.
| | - Dirk Erpenbeck
- Dept. of Earth and Environmental Sciences Ludwig-Maximilians-Universitt Mnchen; Richard-Wagner-Strae 10; 80333 Munich; Germany; GeoBio-Center; Ludwig-Maximilians-Universitt Mnchen; Richard-Wagner-Strae 10; 80333 Munich; Germany.
| | - Ccile Debitus
- IRD; University of Brest; CNRS; Ifremer; LEMAR; F-29280 Plouzan; France; IRD; Univ de la Polynsie franaise; Ifremer; ILM; EIO; F-98713 Papeete; French Polynesia.
| | - Sylvain Petek
- IRD; Univ de la Polynsie franaise; Ifremer; ILM; EIO; F-98713 Papeete; French Polynesia; Institut Louis MalardPapeete ; BP 3098713 Papeete; Tahiti; French Polynesia.
| | - Tepoerau Mai
- Dept. of Earth and Environmental Sciences Ludwig-Maximilians-Universitt Mnchen; Richard-Wagner-Strae 10; 80333 Munich; Germany; GeoBio-Center; Ludwig-Maximilians-Universitt Mnchen; Richard-Wagner-Strae 10; 80333 Munich; Germany; SNSBBayerische Staatssammlung fr Palontologie und Geologie; Richard-Wagner-Str. 10; 80333 Mnchen; Germany.
| | - Gert Wrheide
- Queensland Museum; PO Box 3300; South Brisbane 4101; Brisbane; Queensland; Australia.
| | | |
Collapse
|
2
|
Pozzolini M, Scarfì S, Gallus L, Ferrando S, Cerrano C, Giovine M. Silica-induced fibrosis: an ancient response from the early metazoans. J Exp Biol 2017; 220:4007-4015. [PMID: 29093191 DOI: 10.1242/jeb.166405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022]
Abstract
Exposure to crystalline silica particles causes silicosis, an occupational disease leading to an overproduction of collagen in the lung. The first step of this pathology is characterized by the release of inflammatory mediators. Tumour necrosis factor (TNF) is a pro-inflammatory cytokine directly involved in silica-induced pulmonary fibrosis. The marine demosponge Chondrosia reniformis is able to incorporate silica grains and partially dissolve the crystalline forms apparently without toxic effects. In the present work, C. reniformis tissue explants were treated with fine quartz dust and the expression level of fibrogenic genes was assayed by qPCR, demonstrating an overexpression of a fibrillar and a non-fibrillar collagen and of prolyl-4-hydroxylase enzyme. The deposition of new collagen could also be documented in quartz-treated sponge explants. Furthermore, TNF pro-inflammatory cytokine overexpression and involvement in silica-induced sponge collagen biosynthesis was demonstrated in quartz-treated explants as compared with controls by means of specific TNF inhibitors affecting the fibrogenic gene response. As no documentable detrimental effect was observed in treated explants, we conclude that the C. reniformis unique quartz engulfment and erosion is physiological and beneficial to the animal, leading to new collagen synthesis and strengthening of the body stiffness. Thus, we put forward the hypothesis that an ancient physiological behaviour from the lowest of the Metazoa, persisting through evolution via the same molecular mediators such as TNF, may have become the cause of disease in the specialized tissues of higher animals such as mammals.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, 16132 Genoa, Italy
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, 16132 Genoa, Italy
| | - Lorenzo Gallus
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, 16132 Genoa, Italy
| | - Sara Ferrando
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, 16132 Genoa, Italy
| | - Carlo Cerrano
- Department of Life and Environmental Sciences (DiSVA), Polytechnic University of Marche, 60131 Ancona, Italy
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, 16132 Genoa, Italy
| |
Collapse
|
3
|
Biggerstaff A, Smith DJ, Jompa J, Bell JJ. Metabolic responses of a phototrophic sponge to sedimentation supports transitions to sponge-dominated reefs. Sci Rep 2017; 7:2725. [PMID: 28578387 PMCID: PMC5457416 DOI: 10.1038/s41598-017-03018-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/21/2017] [Indexed: 12/26/2022] Open
Abstract
Declines in coral abundance have been linked to increased sedimentation at many locations across the world and at some of these locations there have been subsequent increases in sponge abundance. These shifts appear counterintuitive as sponges are suspension feeders and many rely on photosymbionts for carbon. At a sedimented reef in Indonesia (Wakatobi) corals have declined and the photoautotrophic sponge Lamellodysidea herbacea is now abundant. We hypothesise that this is partly due to L. herbacea's ability to clear its tissues of high levels of settled-sediment and compensate for associated metabolic demands by altering its respiration rate. Negligible detrimental effects to sponge tissue were observed after treatments up to five times the sedimentation rate of the highly sedimented reef. Rapid sediment clearance occurred that was potentially aided by mucus production. Finally, high sediment exposure caused an immediate reduction in respiration rate, likely due to reduced pumping to prevent clogging, whereas sustained high sedimentation caused an increase in respiration rate, potentially due to the energetic cost of mucus production. Our study provides evidence that some sponges can tolerate environments that appear unsuitable to many corals and with increased sedimentation this acclimation may support further transitions to sponge dominated reefs in the future.
Collapse
Affiliation(s)
- Andrew Biggerstaff
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand.
| | - David J Smith
- Coral reef Research Unit, School of Biological Sciences, University of Essex, Essex, CO4 CSQ, United Kingdom
| | - Jamaluddin Jompa
- Research and Development Centre on Marine, Coastal and Small Islands, Hasanuddin University, Km. 10, Makassar, Indonesia
| | - James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| |
Collapse
|
4
|
Pozzolini M, Ferrando S, Gallus L, Gambardella C, Ghignone S, Giovine M. Aquaporin in Chondrosia reniformis Nardo, 1847 and Its Possible Role in the Interaction Between Cells and Engulfed Siliceous Particles. THE BIOLOGICAL BULLETIN 2016; 230:220-232. [PMID: 27365417 DOI: 10.1086/bblv230n3p220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The sponge Chondrosia reniformis selectively engulfs siliceous particles that, when in crystalline form, become quickly dissolved in its ectosome. The molecular mechanism, identity, and physiological significance of the cells involved in this process are not completely understood. In the present study, we applied light and electronic microscopic techniques to show how the quartz particles in C. reniformis are enveloped through collagen fibers and host cells near the surface of these organisms. As various aquaporins from bacteria, animals, and plants bidirectionally conduct metalloids-including silicon ions--through the cell membrane, the presence and potential involvement of aquaporins in quartz dissolution in C. reniformis have been investigated. An aquaporin-like transcript (CrAQP) was isolated according to the transcriptome sequencing results in C. reniformis The full-length CrAQP cDNA is 907 nucleotides long, with a 795-base pair (bp), open reading frame encoding a protein of 265 amino acids, a 29-bp, 5'-non-coding region, and a 83-bp, 3'-untranslated region. The Bayesian phylogenetic inference suggests that CrAqp is closely related to the Aqp8L grade, which is also implicated in H2O2 transport. Quantification of CrAQP mRNA through qPCR indicated that the transcript level was higher in the ectosome than in the choanosome. Immunofluorescence of a mammalian AQP8 in C. reniformis showed positivity in some cells near the quartz particles, a finding that may support the initial hypothesis of the potential involvement of CrAQP in quartz erosion. However, the features of the primary structure of this protein offer a new viewpoint about the functional role of these molecules in this process: that CrAQP may be involved in the permeation of H2O2 released during silica erosion.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Corso Europa 26, 16132, Genoa, Italy;
| | - Sara Ferrando
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Lorenzo Gallus
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Chiara Gambardella
- Institute of Marine Sciences (ISMAR) - CNR, Via De Marini 6, I-16149, Genoa, Italy; and
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection (IPSP, Turin Unit) - CNR, V. le P. A. Mattioli 25, I-10125, Turin, Italy
| | - Marco Giovine
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| |
Collapse
|
5
|
Pozzolini M, Scarfì S, Mussino F, Ferrando S, Gallus L, Giovine M. Molecular Cloning, Characterization, and Expression Analysis of a Prolyl 4-Hydroxylase from the Marine Sponge Chondrosia reniformis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:393-407. [PMID: 25912371 DOI: 10.1007/s10126-015-9630-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Prolyl 4-hydroxylase (P4H) catalyzes the hydroxylation of proline residues in collagen. P4H has two functional subunits, α and β. Here, we report the cDNA cloning, characterization, and expression analysis of the α and β subunits of the P4H derived from the marine sponge Chondrosia reniformis. The amino acid sequence of the α subunit is 533 residues long with an M r of 59.14 kDa, while the β subunit counts 526 residues with an M r of 58.75 kDa. Phylogenetic analyses showed that αP4H and βP4H are more related to the mammalian sequences than to known invertebrate P4Hs. Western blot analysis of sponge lysate protein cross-linking revealed a band of 240 kDa corresponding to an α2β2 tetramer structure. This result suggests that P4H from marine sponges shares the same quaternary structure with vertebrate homologous enzymes. Gene expression analyses showed that αP4H transcript is higher in the choanosome than in the ectosome, while the study of factors affecting its expression in sponge fragmorphs revealed that soluble silicates had no effect on the αP4H levels, whereas ascorbic acid strongly upregulated the αP4H mRNA. Finally, treatment with two different tumor necrosis factor (TNF)-alpha inhibitors determined a significant downregulation of αP4H gene expression in fragmorphs demonstrating, for the first time in Porifera, a positive involvement of TNF in sponge matrix biosynthesis. The molecular characterization of P4H genes involved in collagen hydroxylation, including the mechanisms that regulate their expression, is a key step for future recombinant sponge collagen production and may be pivotal to understand pathological mechanisms related to extracellular matrix deposition in higher organisms.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Territory Environment and Life Sciences, University of Genova, Via Pastore 3, 16132, Genova, Italy,
| | | | | | | | | | | |
Collapse
|
6
|
Henstock JR, Canham LT, Anderson SI. Silicon: the evolution of its use in biomaterials. Acta Biomater 2015; 11:17-26. [PMID: 25246311 DOI: 10.1016/j.actbio.2014.09.025] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/26/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022]
Abstract
In the 1970s, several studies revealed the requirement for silicon in bone development, while bioactive silicate glasses simultaneously pioneered the current era of bioactive materials. Considerable research has subsequently focused on the chemistry and biological function of silicon in bone, demonstrating that the element has at least two separate effects in the extracellular matrix: (i) interacting with glycosaminoglycans and proteoglycans during their synthesis, and (ii) forming ionic substitutions in the crystal lattice structure of hydroxyapatite. In addition, the dissolution products of bioactive glass (predominantly silicic acids) have significant effects on the molecular biology of osteoblasts in vitro, regulating the expression of several genes including key osteoblastic markers, cell cycle regulators and extracellular matrix proteins. Researchers have sought to capitalize on these effects and have generated a diverse array of biomaterials, which include bioactive glasses, silicon-substituted hydroxyapatites and pure, porosified silicon, but all these materials share similarities in the mechanisms that result in their bioactivity. This review discusses the current data obtained from original research in biochemistry and biomaterials science supporting the role of silicon in bone, comparing both the biological function of the element and analysing the evolution of silicon-containing biomaterials.
Collapse
Affiliation(s)
- J R Henstock
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent ST4 7QB, UK.
| | - L T Canham
- pSiMedica Ltd, Malvern Hills Science Park, Malvern, Worcestershire WR14 3SZ, UK
| | - S I Anderson
- University of Nottingham School of Medicine, Division of Medical Science and Graduate Entry Medicine, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK
| |
Collapse
|