1
|
Ip WH, Tatham MH, Krohne S, Gruhne J, Melling M, Meyer T, Gornott B, Bertzbach LD, Hay RT, Rodriguez E, Dobner T. Adenovirus E1B-55K controls SUMO-dependent degradation of antiviral cellular restriction factors. J Virol 2023; 97:e0079123. [PMID: 37916833 PMCID: PMC10688335 DOI: 10.1128/jvi.00791-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Human adenoviruses (HAdVs) generally cause mild and self-limiting diseases of the upper respiratory and gastrointestinal tracts but pose a serious risk to immunocompromised patients and children. Moreover, they are widely used as vectors for vaccines and vector-based gene therapy approaches. It is therefore vital to thoroughly characterize HAdV gene products and especially HAdV virulence factors. Early region 1B 55 kDa protein (E1B-55K) is a multifunctional HAdV-encoded oncoprotein involved in various viral and cellular pathways that promote viral replication and cell transformation. We analyzed the E1B-55K dependency of SUMOylation, a post-translational protein modification, in infected cells using quantitative proteomics. We found that HAdV increases overall cellular SUMOylation and that this increased SUMOylation can target antiviral cellular pathways that impact HAdV replication. Moreover, we showed that E1B-55K orchestrates the SUMO-dependent degradation of certain cellular antiviral factors. These results once more emphasize the key role of E1B-55K in the regulation of viral and cellular proteins in productive HAdV infections.
Collapse
Affiliation(s)
- Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Michael H. Tatham
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Steewen Krohne
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Julia Gruhne
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Michael Melling
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Tina Meyer
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Britta Gornott
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Ronald T. Hay
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Estefania Rodriguez
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
2
|
Alemán MV, Bertzbach LD, Speiseder T, Ip WH, González RA, Dobner T. Global Transcriptome Analyses of Cellular and Viral mRNAs during HAdV-C5 Infection Highlight New Aspects of Viral mRNA Biogenesis and Cytoplasmic Viral mRNA Accumulations. Viruses 2022; 14:2428. [PMID: 36366526 PMCID: PMC9692883 DOI: 10.3390/v14112428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
It is well established that human adenoviruses such as species C, types 2 and 5 (HAdV-C2 and HAdV-C5), induce a nearly complete shutoff of host-cell protein synthesis in the infected cell, simultaneously directing very efficient production of viral proteins. Such preferential expression of viral over cellular genes is thought to be controlled by selective nucleocytoplasmic export and translation of viral mRNA. While detailed knowledge of the regulatory mechanisms responsible for the translation of viral mRNA is available, the viral or cellular mechanisms of mRNA biogenesis are not completely understood. To identify parameters that control the differential export of viral and cellular mRNAs, we performed global transcriptome analyses (RNAseq) and monitored temporal nucleocytoplasmic partitioning of viral and cellular mRNAs during HAdV-C5 infection of A549 cells. Our analyses confirmed previously reported features of the viral mRNA expression program, as a clear shift in viral early to late mRNA accumulation was observed upon transition from the early to the late phase of viral replication. The progression into the late phase of infection, however, did not result in abrogation of cellular mRNA export; rather, viral late mRNAs outnumbered viral early and most cellular mRNAs by several orders of magnitude during the late phase, revealing that viral late mRNAs are not selectively exported but outcompete cellular mRNA biogenesis.
Collapse
Affiliation(s)
- Margarita Valdés Alemán
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Thomas Speiseder
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Wing Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Ramón A. González
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| |
Collapse
|
3
|
Ixovex-1, a novel oncolytic E1B-mutated adenovirus. Cancer Gene Ther 2022; 29:1628-1635. [PMID: 35596069 PMCID: PMC9663300 DOI: 10.1038/s41417-022-00480-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
There is a great demand for improved oncolytic viruses that selectively replicate within cancer cells while sparing normal cells. Here, we describe a novel oncolytic adenovirus, Ixovex-1, that obtains a cancer-selective replication phenotype by modulating the level of expression of the different, alternatively spliced E1B mRNA isoforms. Ixovex-1 is a recombinant adenovirus that carries a single point mutation in the E1B-93R 3' splice acceptor site that results in overexpression of the E1B-156R splice isoform. In this paper, we studied the characteristics of this novel oncolytic adenovirus by validating its in vitro behaviour in a panel of normal cells and cancer cells. We additionally studied its anti-tumour efficacy in vivo. Ixovex-1 significantly inhibited tumour growth and prolonged survival of mice in an immune-deficient lung carcinoma tumour implantation model. In complementation experiments, overexpression of E1B-156R was shown to increase the oncolytic index of both Ad5wt and ONYX-015. In contrast to prior viruses of similar type, Ixovex-1 includes a functional E3B region for better in vivo efficacy. Throughout this study, the Ixovex-1 virus has been proven to be superior in competency compared to a virus with multiple deletions.
Collapse
|
4
|
Hidalgo P, Ip WH, Dobner T, Gonzalez RA. The biology of the adenovirus E1B 55K protein. FEBS Lett 2019; 593:3504-3517. [PMID: 31769868 DOI: 10.1002/1873-3468.13694] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022]
Abstract
The adenovirus E1B 55K (E1B) protein plays major roles in productive adenoviral infection and cellular transformation. Interest in E1B increased because of the potential of adenoviruses as therapeutic vectors, and the E1B gene is commonly deleted from adenovirus vectors for anticancer therapy. E1B activities are spatiotemporally regulated through SUMOylation and phosphorylation, and through interactions with multiple partners that occur presumably at different intracellular sites and times postinfection. E1B is implicated in the formation of viral replication compartments and regulates viral genome replication and transcription, transcriptional repression, degradation of cellular proteins, and several intranuclear steps of viral late mRNA biogenesis. Here, we review advances in our understanding of E1B during productive adenovirus replication and discuss fundamental aspects that remain unresolved.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ramón A Gonzalez
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
5
|
Tejera B, López RE, Hidalgo P, Cárdenas R, Ballesteros G, Rivillas L, French L, Amero C, Pastor N, Santiago Á, Groitl P, Dobner T, Gonzalez RA. The human adenovirus type 5 E1B 55kDa protein interacts with RNA promoting timely DNA replication and viral late mRNA metabolism. PLoS One 2019; 14:e0214882. [PMID: 30943256 PMCID: PMC6447194 DOI: 10.1371/journal.pone.0214882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/21/2019] [Indexed: 12/25/2022] Open
Abstract
The E1B 55kDa produced by human adenovirus type 5 is a multifunctional protein that participates in the regulation of several steps during the viral replication cycle. Previous studies suggest this protein plays an important role in postranscriptional regulation of viral and cellular gene expression, as it is required for the selective accumulation of maximal levels of viral late mRNA in the cytoplasm of the infected cell; however the molecular mechanisms that are altered or regulated by this protein have not been elucidated. A ribonucleoprotein motif that could implicate the direct interaction of the protein with RNA was initially predicted and tested in vitro, but the interaction with RNA could not be detected in infected cells, suggesting the interaction may be weak or transient. Here it was determined that the E1B 55kDa interacts with RNA in the context of the viral infection in non-transformed human cells, and its contribution to the adenovirus replication cycle was evaluated. Using recombinant adenoviruses with amino acid substitutions or a deletion in the ribonucleoprotein motif the interaction of E1B 55kDa with RNA was found to correlate with timely and efficient viral DNA replication and viral late mRNA accumulation and splicing.
Collapse
Affiliation(s)
- Berto Tejera
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Raúl E. López
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Reinier Cárdenas
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Grisel Ballesteros
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Lina Rivillas
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Leidys French
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Carlos Amero
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Ángel Santiago
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Peter Groitl
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ramón A. Gonzalez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
- * E-mail:
| |
Collapse
|
6
|
PML isoforms IV and V contribute to adenovirus-mediated oncogenic transformation by functionally inhibiting the tumor-suppressor p53. Oncogene 2015; 35:69-82. [PMID: 25772236 DOI: 10.1038/onc.2015.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/16/2014] [Accepted: 01/30/2015] [Indexed: 11/09/2022]
Abstract
Although modulation of the cellular tumor-suppressor p53 is considered to have the major role in E1A/E1B-55K-mediated tumorigenesis, other promyelocytic leukemia nuclear body (PML-NB)/PML oncogenic domain (POD)-associated factors including SUMO, Mre11, Daxx, as well as the integrity of these nuclear bodies contribute to the transformation process. However, the biochemical consequences and oncogenic alterations of PML-associated E1B-55K by SUMO-dependent PML-IV and PML-V interaction have so far remained elusive. We performed mutational analysis to define a PML interaction motif within the E1B-55K polypeptide. Our results showed that E1B-55K/PML binding is not required for p53, Mre11 and Daxx interaction. We also observed that E1B-55K lacking subnuclear PML localization because of either PML-IV or PML-V-binding deficiency was no longer capable of mediating E1B-55K-dependent SUMOylation of p53, inhibition of p53-mediated transactivation or efficiently transforming primary rodent cells. These results together with the observation that E1B-55K-dependent SUMOylation of p53 is required for efficient cell transformation, provides evidence for the idea that the SUMO ligase activity of the E1B-55K viral oncoprotein is intimately linked to its growth-promoting oncogenic activities.
Collapse
|
7
|
Interaction of adenovirus type 5 E4orf4 with the nuclear pore subunit Nup205 is required for proper viral gene expression. J Virol 2014; 88:13249-59. [PMID: 25210169 DOI: 10.1128/jvi.00933-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Adenovirus type 5 E4orf4 is a multifunctional protein that regulates viral gene expression. The activities of E4orf4 are mainly mediated through binding to protein phosphatase 2A (PP2A). E4orf4 recruits target phosphoproteins into complexes with PP2A, resulting in dephosphorylation of host factors, such as SR splicing factors. In the current study, we utilized immunoprecipitation followed by mass spectrometry to identify novel E4orf4-interacting proteins. In this manner we identified Nup205, a component of the nuclear pore complex (NPC) as an E4orf4 interacting partner. The arginine-rich motif (ARM) of E4orf4 was required for interaction with Nup205 and for nuclear localization of E4orf4. ARMs are commonly found on viral nuclear proteins, and we observed that Nup205 interacts with three different nuclear viral proteins containing ARMs. E4orf4 formed a trimolecular complex containing both Nup205 and PP2A. Furthermore, Nup205 complexed with E4orf4 was hypophosphorylated, suggesting that the protein is specifically targeted for dephosphorylation. An adenovirus mutant that does not express E4orf4 (Orf4(-)) displayed elevated early and reduced late gene expression relative to that of the wild type. We observed that knockdown of Nup205 resulted in the same phenotype as that of the Orf4(-) virus, suggesting that the proteins function as a complex to regulate viral gene expression. Furthermore, knockdown of Nup205 resulted in a more than a 4-fold reduction in the replication of wild-type adenovirus. Our data show for first time that Ad5 E4orf4 interacts with and modifies the NPC and that Nup205-E4orf4 binding is required for normal regulation of viral gene expression and viral replication. IMPORTANCE Nuclear pore complexes (NPCs) are highly regulated conduits in the nuclear membrane that control transport of macromolecules between the nucleus and cytoplasm. Viruses that replicate in the nucleus must negotiate the NPC during nuclear entry, and viral DNA, mRNA, and proteins must then be exported from the nucleus. Several types of viruses restructure the NPC to facilitate replication, and the current study shows that adenovirus type 5 (Ad5) utilizes a novel mechanism to modify NPC function. We demonstrate that a subunit of the NPC, Nup205, is a phosphoprotein that is actively dephosphorylated by the Ad5-encoded protein E4orf4. Moreover, Nup205 is required by Ad5 to regulate viral gene expression and efficient viral replication. Nup205 is a nonstructural subunit that is responsible for the gating functions of the NPC, and this study suggests for the first time that the NPC is regulated by phosphorylation both during normal physiology and viral infection.
Collapse
|
8
|
Schreiner S, Bürck C, Glass M, Groitl P, Wimmer P, Kinkley S, Mund A, Everett RD, Dobner T. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes. Nucleic Acids Res 2013; 41:3532-50. [PMID: 23396441 PMCID: PMC3616723 DOI: 10.1093/nar/gkt064] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Death domain-associated protein (Daxx) cooperates with X-linked α-thalassaemia retardation syndrome protein (ATRX), a putative member of the sucrose non-fermentable 2 family of ATP-dependent chromatin-remodelling proteins, acting as the core ATPase subunit in this complex, whereas Daxx is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription is regulated by cellular chromatin remodelling to allow efficient virus gene expression. Here, we focus on the repressive role of the Daxx/ATRX complex during Ad5 replication, which depends on intact protein-protein interaction, as negative regulation could be relieved with a Daxx mutant that is unable to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance and diversity of viral factors antagonizing Daxx/ATRX-mediated repression of viral gene expression and shed new light on the modulation of cellular chromatin remodelling factors by Ad5. We show for the first time that cellular Daxx/ATRX chromatin remodelling complexes play essential roles in Ad gene expression and illustrate the importance of early viral proteins to counteract cellular chromatin remodelling.
Collapse
Affiliation(s)
- Sabrina Schreiner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Schreiner S, Wimmer P, Dobner T. Adenovirus degradation of cellular proteins. Future Microbiol 2012; 7:211-25. [PMID: 22324991 DOI: 10.2217/fmb.11.153] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic cells orchestrate constant synthesis and degradation of intracellular components, including soluble proteins and organelles. The two major intracellular degradation pathways are the ubiquitin/proteasome system and autophagy. Whereas ubiquitin/proteasome system is involved in rapid degradation of proteins, autophagy selectively removes protein aggregates and damaged organelles. Failure of these highly adjusted proteolytic systems to maintain basal turnover leads to altered cellular homeostasis. During evolution, certain viruses have developed mechanisms to exploit their functions to facilitate their own replication, prevent viral clearance and promote the outcome of infection. In this article, we summarize the current opinion on adenoviruses (Ad) and molecular host cell targets, extending on recent evidences for protein degradation pathways in infected cells. We describe recently identified connections between Ad-mediated proteolysis and viral replication with main emphasis on the function of certain Ad proteins.
Collapse
Affiliation(s)
- Sabrina Schreiner
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany. sabrina.schreiner@hpi. uni-hamburg.de
| | | | | |
Collapse
|
10
|
Ching W, Dobner T, Koyuncu E. The human adenovirus type 5 E1B 55-kilodalton protein is phosphorylated by protein kinase CK2. J Virol 2012; 86:2400-15. [PMID: 22190719 PMCID: PMC3302271 DOI: 10.1128/jvi.06066-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/12/2011] [Indexed: 01/07/2023] Open
Abstract
The human adenovirus type 5 (HAdV5) early region 1B 55-kDa protein (E1B-55K) is a multifunctional phosphoprotein playing several critical roles during adenoviral productive infection, e.g., degradation of host cell proteins, viral late mRNA export, and inhibition of p53-mediated transcription. Many of these functions are apparently regulated at least in part by the phosphorylation of E1B-55K occurring at a stretch of amino acids resembling a potential CK2 consensus phosphorylation motif. We therefore investigated the potential role of CK2 phosphorylation upon E1B-55K during adenoviral infection. A phosphonegative E1B-55K mutant showed severely reduced virus progeny production, although viral early, late, and structural protein levels and viral DNA replication were not obviously affected. Binding studies revealed an interaction between the CK2α catalytic subunit and wild-type E1B-55K, which is severely impaired in the phosphonegative E1B mutant. In addition, in situ the α-catalytic subunit is redistributed into ring-like structures surrounding E1B-55K nuclear areas and distinct cytoplasmic accumulations, where a significant amount of CK2α colocalizes with E1B-55K. Furthermore, in in vitro phosphorylation assays, wild-type E1B-55K glutathione S-transferase fusion proteins were readily phosphorylated by the CK2α subunit but inefficiently phosphorylated by the CK2 holoenzyme. Addition of the CK2-specific inhibitors TBB (4,5,6,7-tetrabromobenzotriazole) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole) to infected cells confirmed that CK2α binding to E1B-55K is necessary for efficient phosphorylation of E1B-55K. In summary, our data show that CK2α interacts with and phosphorylates HAdV5 E1B-55K at residues S490/491 and T495 and that these posttranslational modifications are essential for E1B-55K lytic functions.
Collapse
Affiliation(s)
- Wilhelm Ching
- Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Department of Molecular Virology, Hamburg, Germany
| | | | | |
Collapse
|
11
|
Schmid M, Kindsmüller K, Wimmer P, Groitl P, Gonzalez RA, Dobner T. The E3 ubiquitin ligase activity associated with the adenoviral E1B-55K-E4orf6 complex does not require CRM1-dependent export. J Virol 2011; 85:7081-94. [PMID: 21561915 PMCID: PMC3126608 DOI: 10.1128/jvi.02368-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 05/03/2011] [Indexed: 11/20/2022] Open
Abstract
The adenovirus type 5 (Ad5) E1B-55K and E4orf6 (E1B-55K/E4orf6) proteins are multifunctional regulators of Ad5 replication, participating in many processes required for virus growth. A complex containing the two proteins mediates the degradation of cellular proteins through assembly of an E3 ubiquitin ligase and induces shutoff of host cell protein synthesis through selective nucleocytoplasmic viral late mRNA export. Both proteins shuttle between the nuclear and cytoplasmic compartments via leucine-rich nuclear export signals (NES). However, the role of their NES-dependent export in viral replication has not been established. It was initially shown that mutations in the E4orf6 NES negatively affect viral late gene expression in transfection/infection complementation assays, suggesting that E1B-55K/E4orf6-dependent viral late mRNA export involves a CRM1 export pathway. However, a different conclusion was drawn from similar studies showing that E1B-55K/E4orf6 promote late gene expression without active CRM1 or functional NES. To evaluate the role of the E1B-55K/E4orf6 NES in viral replication in the context of Ad-infected cells and in the presence of functional CRM1, we generated virus mutants carrying amino acid exchanges in the NES of either or both proteins. Phenotypic analyses revealed that mutations in the NES of E1B-55K and/or E4orf6 had no or only moderate effects on viral DNA replication, viral late protein synthesis, or viral late mRNA export. Significantly, such mutations also did not interfere with the degradation of cellular substrates, indicating that the NES of E1B-55K or E4orf6 is dispensable both for late gene expression and for the activity associated with the E3 ubiquitin ligase.
Collapse
Affiliation(s)
| | | | - Peter Wimmer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Peter Groitl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | | | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| |
Collapse
|
12
|
Adenovirus type 5 early region 1B 55K oncoprotein-dependent degradation of cellular factor Daxx is required for efficient transformation of primary rodent cells. J Virol 2011; 85:8752-65. [PMID: 21697482 DOI: 10.1128/jvi.00440-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Early region 1B 55K (E1B-55K) from adenovirus type 5 (Ad5) is a multifunctional regulator of lytic infection and contributes in vitro to complete cell transformation of primary rodent cells in combination with Ad5 E1A. Inhibition of p53 activated transcription plays a key role in processes by which E1B-55K executes its oncogenic potential. Nevertheless, additional functions of E1B-55K or further protein interactions with cellular factors of DNA repair, transcription, and apoptosis, including Mre11, PML, and Daxx, may also contribute to the transformation process. In line with previous results, we performed mutational analysis to define a Daxx interaction motif within the E1B-55K polypeptide. The results from these studies showed that E1B-55K/Daxx binding is not required for inhibition of p53-mediated transactivation or binding and degradation of cellular factors (p53/Mre11). Surprisingly, these mutants lost the ability to degrade Daxx and showed reduced transforming potential in primary rodent cells. In addition, we observed that E1B-55K lacking the SUMO-1 conjugation site (SCS/K104R) was sufficient for Daxx interaction but no longer capable of E1B-55K-dependent proteasomal degradation of the cellular factor Daxx. These results, together with the observation that E1B-55K SUMOylation is required for efficient transformation, provides evidence for the idea that SUMO-1-conjugated E1B-55K-mediated degradation of Daxx plays a key role in adenoviral oncogenic transformation. We assume that the viral protein contributes to cell transformation through the modulation of Daxx-dependent pathways. This further substantiates the assumption that further mechanisms for efficient transformation of primary cells can be separated from functions required for the inhibition of p53-stimulated transcription.
Collapse
|
13
|
Yatherajam G, Huang W, Flint SJ. Export of adenoviral late mRNA from the nucleus requires the Nxf1/Tap export receptor. J Virol 2011; 85:1429-38. [PMID: 21123381 PMCID: PMC3028892 DOI: 10.1128/jvi.02108-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 11/22/2010] [Indexed: 01/04/2023] Open
Abstract
One important function of the human adenovirus E1B 55-kDa protein is induction of selective nuclear export of viral late mRNAs. This protein interacts with the viral E4 Orf6 and four cellular proteins to form an infected-cell-specific E3 ubiquitin ligase. The assembly of this enzyme is required for efficient viral late mRNA export, but neither the relevant substrates nor the cellular pathway that exports viral late mRNAs has been identified. We therefore examined the effects on viral late gene expression of inhibition of the synthesis or activity of the mRNA export receptor Nxf1, which was observed to colocalize with the E1B 55-kDa protein in infected cells. When production of Nxf1 was impaired by using RNA interference, the efficiency of viral late mRNA export was reduced to a corresponding degree. Furthermore, synthesis of a dominant-negative derivative of Nxf1 during the late phase of infection interfered with production of a late structural protein. These observations indicate that the Nxf1 pathway is responsible for export of viral late mRNAs. As the infected-cell-specific E3 ubiquitin ligase targets its known substrates for proteasomal degradation, we compared the concentrations of several components of this pathway (Nxf1, Thox1, and Thoc4) in infected cells that did or did not contain this enzyme. Although the concentration of a well-established substrate, Mre11, decreased significantly in cells infected by adenovirus type 5 (Ad5), but not in those infected by the E1B 55-kDa protein-null mutant Hr6, no E1B 55-kDa protein-dependent degradation of the Nxf1 pathway proteins was observed.
Collapse
Affiliation(s)
- Gayatri Yatherajam
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08854
| | - Wenying Huang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08854
| | - S. J. Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08854
| |
Collapse
|
14
|
Identification of a previously unrecognized promoter that drives expression of the UXP transcription unit in the human adenovirus type 5 genome. J Virol 2010; 84:11470-8. [PMID: 20739525 DOI: 10.1128/jvi.01338-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously identified an adenovirus (Ad) protein named U exon protein (UXP) encoded by a leftward-strand (l-strand) transcription unit. Here we identify and characterize the UXP promoter. Primer extension and RNase protection assays mapped the transcription initiation site at 32 nucleotides upstream of the UXP gene initiation codon. A series of viral mutants with mutations at two putative inverted CCAAT (I-CCAAT) boxes and two E2F sites were generated. With mutants lacking the proximal I-CCAAT box, the UXP mRNA level decreased significantly to 30% of the Ad type 5 (Ad5) mRNA level as measured by quantitative reverse transcription-PCR. Decreased UXP was also observed by immunoblotting and immunofluorescence. UXP mRNA and protein levels were similar to those of Ad5 for mutants lacking the distal I-CCAAT box or both putative E2F sites. Ad DNA levels were similar in mutant- and wild-type Ad5-infected cells during the late stage of infection, strongly suggesting that the decreased UXP mRNA and protein from mutants lacking the proximal I-CCAAT box was due to decreased promoter activity. Electrophoretic mobility shift assays (EMSA) indicated that a cellular factor binds specifically to the proximal I-CCAAT box of the UXP promoter. An in vitro luciferase reporter assay demonstrated that basal promoter activity lies between bp -158 and +30 of the transcription initiation site. No E1A-mediated promoter transactivation was observed in 293 cells compared with A549 cells. Thus, we propose that there is a previously unidentified Ad5 promoter that drives expression of the UXP transcription unit. This promoter is embedded within the gene for fiber, and it contains a proximal I-CCAAT box critical for UXP mRNA transcription.
Collapse
|
15
|
Schreiner S, Wimmer P, Sirma H, Everett RD, Blanchette P, Groitl P, Dobner T. Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus-infected cells. J Virol 2010; 84:7029-38. [PMID: 20484509 PMCID: PMC2898266 DOI: 10.1128/jvi.00074-10] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 05/06/2010] [Indexed: 01/19/2023] Open
Abstract
The death-associated protein Daxx found in PML (promyelocytic leukemia protein) nuclear bodies (PML-NBs) is involved in transcriptional regulation and cellular intrinsic antiviral resistence against incoming viruses. We found that knockdown of Daxx in a nontransformed human hepatocyte cell line using RNA interference (RNAi) techniques results in significantly increased adenoviral (Ad) replication, including enhanced viral mRNA synthesis and viral protein expression. This Daxx restriction imposed upon adenovirus growth is counteracted by early protein E1B-55K (early region 1B 55-kDa protein), a multifunctional regulator of cell-cycle-independent Ad5 replication. The viral protein binds to Daxx and induces its degradation through a proteasome-dependent pathway. We show that this process is independent of Ad E4orf6 (early region 4 open reading frame 6), known to promote the proteasomal degradation of cellular p53, Mre11, DNA ligase IV, and integrin alpha3 in combination with E1B-55K. These results illustrate the importance of the PML-NB-associated factor Daxx in virus growth restriction and suggest that E1B-55K antagonizes innate antiviral activities of Daxx and PML-NBs to stimulate viral replication at a posttranslational level.
Collapse
Affiliation(s)
- Sabrina Schreiner
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Peter Wimmer
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Hüseyin Sirma
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Roger D. Everett
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Paola Blanchette
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Peter Groitl
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Thomas Dobner
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom, Departments of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| |
Collapse
|
16
|
Abstract
DNA-tumor viruses comprise enveloped and non-enveloped agents that cause malignancies in a large variety of cell types and tissues by interfering with cell cycle control and immortalization. Those DNA-tumor viruses that replicate in the nucleus use cellular mechanisms to transport their genome and newly synthesized viral proteins into the nucleus. This requires cytoplasmic transport and nuclear import of their genome. Agents that employ this strategy include adenoviruses, hepadnaviruses, herpesviruses, and likely also papillomaviruses, and polyomaviruses, but not poxviruses which replicate in the cytoplasm. Here, we discuss how DNA-tumor viruses enter cells, take advantage of cytoplasmic transport, and import their DNA genome through the nuclear pore complex into the nucleus. Remarkably, nuclear import of incoming genomes does not necessarily follow the same pathways used by the structural proteins of the viruses during the replication and assembly phases of the viral life cycle. Understanding the mechanisms of DNA nuclear import can identify new pathways of cell regulation and anti-viral therapies.
Collapse
Affiliation(s)
- Urs F Greber
- Institute of Zoology, University of Zürich, Switzerland
| | | |
Collapse
|
17
|
Kindsmüller K, Schreiner S, Leinenkugel F, Groitl P, Kremmer E, Dobner T. A 49-kilodalton isoform of the adenovirus type 5 early region 1B 55-kilodalton protein is sufficient to support virus replication. J Virol 2009; 83:9045-56. [PMID: 19587039 PMCID: PMC2738261 DOI: 10.1128/jvi.00728-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 07/01/2009] [Indexed: 11/20/2022] Open
Abstract
The adenovirus type 5 (Ad5) early region 1B 55-kDa (E1B-55K) protein is a multifunctional regulator of cell-cycle-independent virus replication that participates in many processes required for maximal virus production. As part of a study of E1B-55K function, we generated the Ad5 mutant H5pm4133, carrying stop codons after the second and seventh codons of the E1B reading frame, thereby eliminating synthesis of the full-length 55K product and its smaller derivatives. Unexpectedly, phenotypic studies revealed that H5pm4133 fully exhibits the characteristics of wild-type (wt) Ad5 in all assays tested. Immunoblot analyses demonstrated that H5pm4133 and wt Ad5 produce very low levels of two distinct polypeptides in the 48- to 49-kDa range, which lack the amino-terminal region but contain segments from the central and carboxy-terminal part of the 55K protein. Genetic and biochemical studies with different Ad5 mutants show that at least one of these isoforms consists of two closely migrating polypeptides of 433 amino acid residues (433R) and 422R, which are produced by translation initiation at two downstream AUG codons of the 55K reading frame. Significantly, a virus mutant producing low levels of the 433R isoform alone replicated to levels comparable to those of wt Ad5, demonstrating that this polypeptide provides essentially all functions of E1B-55K required to promote maximal virus growth in human tumor cells. Altogether, these results extend previous findings that the wt Ad5 E1B region encodes a series of smaller isoforms of E1B-55K and demonstrate that very low levels of at least one of these novel proteins (E1B-433R) are sufficient for a productive infection.
Collapse
Affiliation(s)
- Kathrin Kindsmüller
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany, Helmholtz Zentrum München, Institute of Molecular Immunology, Marchioninistr. 25, 81377 Munich, Germany
| | - Sabrina Schreiner
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany, Helmholtz Zentrum München, Institute of Molecular Immunology, Marchioninistr. 25, 81377 Munich, Germany
| | - Florian Leinenkugel
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany, Helmholtz Zentrum München, Institute of Molecular Immunology, Marchioninistr. 25, 81377 Munich, Germany
| | - Peter Groitl
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany, Helmholtz Zentrum München, Institute of Molecular Immunology, Marchioninistr. 25, 81377 Munich, Germany
| | - Elisabeth Kremmer
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany, Helmholtz Zentrum München, Institute of Molecular Immunology, Marchioninistr. 25, 81377 Munich, Germany
| | - Thomas Dobner
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany, Helmholtz Zentrum München, Institute of Molecular Immunology, Marchioninistr. 25, 81377 Munich, Germany
| |
Collapse
|
18
|
Insufficient accumulation of viral late mRNAs restricts the replicative cycle of human adenovirus type 37 in A549 cells. Arch Virol 2009; 154:1401-7. [DOI: 10.1007/s00705-009-0451-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
|
19
|
Distinct requirements of adenovirus E1b55K protein for degradation of cellular substrates. J Virol 2008; 82:9043-55. [PMID: 18614635 DOI: 10.1128/jvi.00925-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1b55K and E4orf6 proteins of adenovirus type 5 (Ad5) assemble into a complex together with cellular proteins including cullin 5, elongins B and C, and Rbx1. This complex possesses E3 ubiquitin ligase activity and targets cellular proteins for proteasome-mediated degradation. The ligase activity has been suggested to be responsible for all functions of E1b55K/E4orf6, including promoting efficient viral DNA replication, preventing a cellular DNA damage response, and stimulating late viral mRNA nuclear export and late protein synthesis. The known cellular substrates for degradation by E1b55K/E4orf6 are the Mre11/Rad50/Nbs1 DNA repair complex, the tumor suppressor p53, and DNA ligase IV. Here we show that the degradation of individual targets can occur independently of other substrates. Furthermore, we identify separation-of-function mutant forms of E1b55K that can distinguish substrates for binding and degradation. Our results identify distinct regions of E1b55K that are involved in substrate recognition but also imply that there are additional requirements beyond protein association. These mutant proteins will facilitate the determination of the relevance of specific substrates to the functions of E1b55K in promoting infection and inactivating host defenses.
Collapse
|
20
|
Tollefson AE, Ying B, Doronin K, Sidor PD, Wold WSM. Identification of a new human adenovirus protein encoded by a novel late l-strand transcription unit. J Virol 2007; 81:12918-26. [PMID: 17881437 PMCID: PMC2169129 DOI: 10.1128/jvi.01531-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A short open reading frame named the "U exon," located on the adenovirus (Ad) l-strand (for leftward transcription) between the early E3 region and the fiber gene, is conserved in mastadenoviruses. We have observed that Ad5 mutants with large deletions in E3 that infringe on the U exon display a mild growth defect, as well as an aberrant Ad E2 DNA-binding protein (DBP) intranuclear localization pattern and an apparent failure to organize replication centers during late infection. Mutants in which the U exon DNA is reconstructed have a reversed phenotype. Chow et al. (L. T. Chow et al., J. Mol. Biol. 134:265-303, 1979) described mRNAs initiating in the region of the U exon and spliced to downstream sequences in the late DBP mRNA leader and the DBP-coding region. We have cloned this mRNA (as cDNA) from Ad5 late mRNA; the predicted protein is 217 amino acids, initiating in the U exon and continuing in frame in the DBP leader and in the DBP-coding region but in a different reading frame from DBP. Polyclonal and monoclonal antibodies generated against the predicted U exon protein (UXP) showed that UXP is approximately 24K in size by immunoblot and is a late protein. At 18 to 24 h postinfection, UXP is strongly associated with nucleoli and is found throughout the nucleus; later, UXP is associated with the periphery of replication centers, suggesting a function relevant to Ad DNA replication or RNA transcription. UXP is expressed by all four species C Ads. When expressed in transient transfections, UXP complements the aberrant DBP localization pattern of UXP-negative Ad5 mutants. Our data indicate that UXP is a previously unrecognized protein derived from a novel late l-strand transcription unit.
Collapse
Affiliation(s)
- Ann E Tollefson
- Department of Molecular Microbiology and Immunology, St. Louis University Health Sciences Center, 1100 South Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
21
|
Kindsmüller K, Groitl P, Härtl B, Blanchette P, Hauber J, Dobner T. Intranuclear targeting and nuclear export of the adenovirus E1B-55K protein are regulated by SUMO1 conjugation. Proc Natl Acad Sci U S A 2007; 104:6684-9. [PMID: 17428914 PMCID: PMC1871846 DOI: 10.1073/pnas.0702158104] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have investigated the requirements for CRM1-mediated nuclear export and SUMO1 conjugation of the adenovirus E1B-55K protein during productive infection. Our data show that CRM1 is the major export receptor for E1B-55K in infected cells. Functional inactivation of the E1B-55K CRM1-dependent nuclear export signal (NES) or leptomycin B treatment causes an almost complete redistribution of the viral protein from the cytoplasm to the nucleus and its accumulation at the periphery of the viral replication centers. Interestingly, however, this nuclear restriction imposed on the wild type and the NES mutant protein is fully compensated by concurrent inactivation of the adjacent SUMO1 conjugation site. Moreover, the same mutation fully reverses defects of the NES mutant in the nucleocytoplasmic transport of Mre11 and proteasomal degradation of p53. These results show that nuclear export of E1B-55K in infected cells occurs via CRM1-dependent and -independent pathways and suggest that SUMO1 conjugation and deconjugation provide a molecular switch that commits E1B-55K to a CRM1-independent export pathway.
Collapse
Affiliation(s)
- Kathrin Kindsmüller
- *Heinrich Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany; and
| | - Peter Groitl
- *Heinrich Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany; and
| | - Barbara Härtl
- *Heinrich Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany; and
| | - Paola Blanchette
- McGill University, Department of Biochemistry, Montreal, QC, Canada H3G 1Y6
| | - Joachim Hauber
- *Heinrich Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany; and
| | - Thomas Dobner
- *Heinrich Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Lidsky PV, Hato S, Bardina MV, Aminev AG, Palmenberg AC, Sheval EV, Polyakov VY, van Kuppeveld FJM, Agol VI. Nucleocytoplasmic traffic disorder induced by cardioviruses. J Virol 2006; 80:2705-17. [PMID: 16501080 PMCID: PMC1395435 DOI: 10.1128/jvi.80.6.2705-2717.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Some picornaviruses, for example, poliovirus, increase bidirectional permeability of the nuclear envelope and suppress active nucleocytoplasmic transport. These activities require the viral protease 2A(pro). Here, we studied nucleocytoplasmic traffic in cells infected with encephalomyocarditis virus (EMCV; a cardiovirus), which lacks the poliovirus 2A(pro)-related protein. EMCV similarly enhanced bidirectional nucleocytoplasmic traffic. By using the fluorescent "Timer" protein, which contains a nuclear localization signal, we showed that the cytoplasmic accumulation of nuclear proteins in infected cells was largely due to the nuclear efflux of "old" proteins rather than impaired active nuclear import of newly synthesized molecules. The nuclear envelope of digitonin-treated EMCV-infected cells permitted rapid efflux of a nuclear marker protein. Inhibitors of poliovirus 2A(pro) did not prevent the EMCV-induced efflux. Extracts from EMCV-infected cells and products of in vitro translation of viral RNAs contained an activity increasing permeability of the nuclear envelope of uninfected cells. This activity depended on the expression of the viral leader protein. Mutations disrupting the zinc finger motif of this protein abolished its efflux-inducing ability. Inactivation of the L protein phosphorylation site (Thr47-->Ala) resulted in a delayed efflux, while a phosphorylation-mimicking (Thr47-->Asp) replacement did not significantly impair the efflux-inducing ability. Such activity of extracts from EMCV-infected cells was suppressed by the protein kinase inhibitor staurosporine. As evidenced by electron microscopy, cardiovirus infection resulted in alteration of the nuclear pores, but it did not trigger degradation of the nucleoporins known to be degraded in the poliovirus-infected cells. Thus, two groups of picornaviruses, enteroviruses and cardioviruses, similarly alter the nucleocytoplasmic traffic but achieve this by strikingly different mechanisms.
Collapse
Affiliation(s)
- Peter V Lidsky
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow Region, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gonzalez R, Huang W, Finnen R, Bragg C, Flint SJ. Adenovirus E1B 55-kilodalton protein is required for both regulation of mRNA export and efficient entry into the late phase of infection in normal human fibroblasts. J Virol 2006; 80:964-74. [PMID: 16378998 PMCID: PMC1346875 DOI: 10.1128/jvi.80.2.964-974.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human adenovirus type 5 (Ad5) E1B 55-kDa protein is required for selective nuclear export of viral late mRNAs from the nucleus and concomitant inhibition of export of cellular mRNAs in HeLa cells and some other human cell lines, but its contributions(s) to replication in normal human cells is not well understood. We have therefore examined the phenotypes exhibited by viruses carrying mutations in the E1B 55-kDa protein coding sequence in normal human fibroblast (HFFs). Ad5 replicated significantly more slowly in HFFs than it does in tumor cells, a difference that is the result of delayed entry into the late phase of infection. The A143 mutation, which specifically impaired export of viral late mRNAs from the nucleus in infected HeLa cells (R. A. Gonzalez and S. J. Flint, J. Virol. 76:4507-4519, 2002), induced a more severe defect in viral mRNA export in HFFs. This observation indicates that the E1B 55-kDa protein regulates mRNA export during the late phase of infection of normal human cells. Other mutants exhibited phenotypes not observed in HeLa cells. In HFFs infected by the null mutant Hr6, synthesis of viral late mRNAs and proteins was severely impaired. Such defects in late gene expression were the result of inefficient progression into the late phase of infection, for viral DNA synthesis was 10-fold less efficient in Hr6-infected HFFs than in cells infected by Ad5. Similar, but less severe, defects in viral DNA synthesis were induced by the insertion mutation H224, which has been reported to inhibit binding of the E1B 55-kDa protein to p53 (C. C. Kao, P. R. Yew, and A. J. Berk, Virology 179:806-814, 1990).
Collapse
Affiliation(s)
- Ramon Gonzalez
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
24
|
Weitzman MD, Ornelles DA. Inactivating intracellular antiviral responses during adenovirus infection. Oncogene 2005; 24:7686-96. [PMID: 16299529 DOI: 10.1038/sj.onc.1209063] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DNA viruses promote cell cycle progression, stimulate unscheduled DNA synthesis, and present the cell with an extraordinary amount of exogenous DNA. These insults elicit vigorous responses mediated by cellular factors that govern cellular homeostasis. To ensure productive infection, adenovirus has developed means to inactivate these intracellular antiviral responses. Among the challenges to the host cell is the viral DNA genome, which is viewed as DNA damage and elicits a cellular response to inhibit replication. Adenovirus therefore encodes proteins that dismantle the cellular DNA damage machinery. Studying virus-host interactions has yielded insights into the molecular functioning of fundamental cellular mechanisms. In addition, it has suggested ways that viral cytotoxicity can be exploited to offer a selective means of restricted growth in tumor cells as a therapy against cancer. In this review, we discuss aspects of the intracellular response that are unique to adenovirus infection and how adenoviral proteins produced from the early region E4 act to neutralize antiviral defenses, with a particular focus on DNA damage signaling.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | |
Collapse
|
25
|
Kzhyshkowska J, Kremmer E, Hofmann M, Wolf H, Dobner T. Protein arginine methylation during lytic adenovirus infection. Biochem J 2005; 383:259-65. [PMID: 15242333 PMCID: PMC1134066 DOI: 10.1042/bj20040210] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arginine methylation of proteins affects major processes in the cell, including transcriptional regulation, mRNA metabolism, signal transduction and protein sorting. Arginine methylation of Ad (adenovirus) E1B 55-kDa-associated protein E1B-AP5 was recently described by us [Kzhyshkowska, Schutt, Liss, Kremmer, Stauber, Wolf and Dobner (2001) Biochem. J. 358, 305-314]. In this first example of protein arginine methylation analysis in Ad-infected cells, we investigated methylation of the E1B-AP5 and the viral L4-100 kDa protein. We demonstrate that E1B-AP5 methylation is enhanced during the course of infection in a cell-type-specific manner. We also show that L4-100 kDa is efficiently methylated in Ad-infected cells. L4-100 kDa formed complex with methyltransferase in vivo during productive infection, and can be methylated by HRMT1L2 (human protein arginine methyltransferase 1) in vitro. Comparative analysis of E1B-AP5 and L4-100 kDa protein methylation in Ad-infected HeLa, MCF-7 and H1299 cells revealed that the profile of protein arginine methylation correlates with the efficiency of Ad proteins production. Our results suggest that protein arginine methylation is an important host-cell function required for efficient Ad replication.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Landshuterstr. 22, D-93053 Regensburg, Germany.
| | | | | | | | | |
Collapse
|
26
|
Blanchette P, Cheng CY, Yan Q, Ketner G, Ornelles DA, Dobner T, Conaway RC, Conaway JW, Branton PE. Both BC-box motifs of adenovirus protein E4orf6 are required to efficiently assemble an E3 ligase complex that degrades p53. Mol Cell Biol 2004; 24:9619-29. [PMID: 15485928 PMCID: PMC522240 DOI: 10.1128/mcb.24.21.9619-9629.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 06/15/2004] [Accepted: 07/22/2004] [Indexed: 11/20/2022] Open
Abstract
Small DNA tumor viruses typically encode proteins that either inactivate or degrade p53. Human adenoviruses encode products, including E4orf6 and E1B55K, that do both. Each independently binds to p53 and inhibits its ability to activate gene expression; however, in combination they induce p53 degradation by the ubiquitin pathway. We have shown previously that p53 degradation relies on interactions of E4orf6 with the cellular proteins Cul5, Rbx1, and elongins B and C to form an E3 ligase similar to the SCF and VBC complexes. Here we show that, like other elongin BC-interacting proteins, including elongin A, von Hippel-Lindau protein, and Muf1, the interaction of E4orf6 is mediated by the BC-box motif; however, E4orf6 uniquely utilizes two BC-box motifs for degradation of p53 and another target, Mre11. In addition, our data suggest that the interaction of E1B55K with E4orf6 depends on the ability of E4orf6 to form the E3 ligase complex and that such complex formation may be required for all E4orf6-E1B55K functions.
Collapse
Affiliation(s)
- Paola Blanchette
- McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Belov GA, Lidsky PV, Mikitas OV, Egger D, Lukyanov KA, Bienz K, Agol VI. Bidirectional increase in permeability of nuclear envelope upon poliovirus infection and accompanying alterations of nuclear pores. J Virol 2004; 78:10166-77. [PMID: 15331749 PMCID: PMC514989 DOI: 10.1128/jvi.78.18.10166-10177.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poliovirus and some other picornaviruses trigger relocation of certain nuclear proteins into the cytoplasm. Here, by using a protein changing its fluorescence color with time and containing a nuclear localization signal (NLS), we demonstrate that the poliovirus-triggered relocation is largely due to the exit of presynthesized nuclear protein into the cytoplasm. The leakiness of the nuclear envelope was also documented by the inability of nuclei from digitonin-permeabilized, virus-infected (but not mock-infected) cells to retain an NLS-containing derivative of green fluorescent protein (GFP). The cytoplasm-to-nucleus traffic was also facilitated during infection, as evidenced by experiments with GAPDH (glyceraldehyde-3-phosphate dehydrogenase), cyclin B1, and an NLS-lacking derivative of GFP, which are predominantly cytoplasmic in uninfected cells. Electron microscopy demonstrated that a bar-like barrier structure in the channel of the nuclear pores, seen in uninfected cells, was missing in the infected cells, giving the impression of fully open pores. Transient expression of poliovirus 2A protease also resulted in relocation of the nuclear proteins. Lysates from poliovirus-infected or 2A-expressing cells induced efflux of 3xEGFP-NLS from the nuclei of permeabilized uninfected cells. This activity was inhibited by the elastase inhibitors elastatinal and N-(methoxysuccinyl)-L-alanyl-L-alanyl-L-prolyl-L-valine chloromethylketone (drugs known also to be inhibitors of poliovirus protease 2A), a caspase inhibitor zVAD(OMe), fmk, and some other protease inhibitors. These data suggest that 2A elicited nuclear efflux, possibly in cooperation with a zVAD(OMe).fmk-sensitive protease. However, poliovirus infection facilitated nuclear protein efflux also in cells deficient in caspase-3 and caspase-9, suggesting that the efflux may occur without the involvement of these enzymes. The biological relevance of nucleocytoplasmic traffic alterations in infected cells is discussed.
Collapse
Affiliation(s)
- George A Belov
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Human adenoviruses (Ads) have the ability to transform primary cells, and certain Ads, the subgenus A adenoviruses such as Ad12, induce tumours in immunocompetent rodents. The oncogenic phenotype of the subgenus A adenoviruses is determined by the viral E1A oncogene. In order to generate tumours, Ad12-transformed cells must evade the cellular immune system of the host. Ad12 E1A gene products mediate transcriptional repression of several genes in the major histocompatibility complex (MHC) involved in antigen processing and presentation, resulting in evasion of cytotoxic T lymphocyte (CTL) killing of transformed cells. In this review, the molecular mechanisms of E1A-mediated transcriptional repression of MHC gene expression are described. In addition, evasion of natural killer (NK) cell killing by Ad-transformed cells is also considered.
Collapse
Affiliation(s)
- G E Blair
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | | |
Collapse
|
29
|
Abstract
The last 40 years of molecular biological investigations into human adenoviruses have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of their productive infection cycle in permissive host cells. Also, initial observations concerning the carcinogenic potential of human adenoviruses subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer, and established adenoviruses as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human adenoviruses is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in adenovirus-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, detailed studies on the tumorigenic potential of subgroup D adenovirus type 9 (Ad9) E4 have now revealed a new pathway that points to a novel, general mechanism of virus-mediated oncogenesis. In this chapter, we summarize the current state of knowledge about the oncogenes and oncogene products of human adenoviruses, focusing particularly on recent findings concerning the transforming and oncogenic properties of viral proteins encoded in the E1B and E4 transcription units.
Collapse
Affiliation(s)
- C Endter
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Landshuterstr. 22, 93047 Regensburg, Germany
| | | |
Collapse
|
30
|
Chastain-Moore AM, Roberts T, Trott DA, Newbold RF, Ornelles DA. An activity associated with human chromosome 21 permits nuclear colocalization of the adenovirus E1B-55K and E4orf6 proteins and promotes viral late gene expression. J Virol 2003; 77:8087-98. [PMID: 12829847 PMCID: PMC161949 DOI: 10.1128/jvi.77.14.8087-8098.2003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus E1B-55K and E4orf6 proteins cooperate during virus infection while performing several tasks that contribute to a productive infection, including the selective nucleocytoplasmic transport of late viral mRNA. Previous studies have shown that the E4orf6 protein retains the E1B-55K protein in the nucleus of human and monkey cells, but not in those of rodents, suggesting that primate-specific cellular factors contribute to the E4orf6-mediated retention of the E1B-55K protein in the nucleus. In an effort to identify these proposed primate-specific cellular factors, the interaction of the E1B-55K and E4orf6 proteins was studied in a panel of stable human-rodent monochromosomal somatic cell hybrids. Analysis of this panel of cell lines has demonstrated the existence of an activity associated with human chromosome 21 that permits the E1B-55K and E4orf6 proteins to colocalize in the nucleus of a rodent cell. Additional hybrid cells bearing portions of human chromosome 21 were used to map this activity to a 10-megabase-pair segment of the chromosome, extending from 21q22.12 to a region near the q terminus. Strikingly, this region also facilitates the expression of adenovirus late genes in a rodent cell background while having little impact on the expression of early viral genes.
Collapse
Affiliation(s)
- Amy M Chastain-Moore
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, NC 27157-1064, USA
| | | | | | | | | |
Collapse
|
31
|
Flint SJ, Gonzalez RA. Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins. Curr Top Microbiol Immunol 2003; 272:287-330. [PMID: 12747554 DOI: 10.1007/978-3-662-05597-7_10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The E1B 55-kDa and E4 Orf6 proteins of human subgroup C adenoviruses both counter host cell defenses mediated by the cellular p53 protein and regulate viral late gene expression. A complex containing the two proteins has been implicated in induction of selective export of viral late mRNAs from the nucleus to the cytoplasm, with concomitant inhibition of export of the majority of newly synthesized cellular mRNAs. The molecular mechanisms by which these viral proteins subvert cellular pathways of nuclear export are not yet clear. Here, we review recent efforts to identify molecular and biochemical functions of the E1B 55-kDa and E4 Orf6 proteins required for regulation of mRNA export, the several difficulties and discrepancies that have been encountered in studies of these viral proteins, and evidence indicating that the reorganization of the infected cell nucleus and production of viral late mRNA at specific intra-nuclear sites are important determinants of selective mRNA export in infected cells. In our view, it is not yet possible to propose a coherent molecular model for regulation of mRNA export by the E1B 55-kDa and E4 Orf6 proteins. However, it should now be possible to address specific questions about the roles of potentially relevant properties of these viral proteins.
Collapse
Affiliation(s)
- S J Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08844, USA.
| | | |
Collapse
|
32
|
Kzhyshkowska J, Rusch A, Wolf H, Dobner T. Regulation of transcription by the heterogeneous nuclear ribonucleoprotein E1B-AP5 is mediated by complex formation with the novel bromodomain-containing protein BRD7. Biochem J 2003; 371:385-93. [PMID: 12489984 PMCID: PMC1223277 DOI: 10.1042/bj20021281] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2002] [Revised: 12/09/2002] [Accepted: 12/18/2002] [Indexed: 11/17/2022]
Abstract
E1B-AP5 was initially identified as a target of the early adenovirus E1B-55 kDa protein during the course of lytic infection. E1B-AP5 belongs to the heterogeneous nuclear ribonucleoprotein family and was demonstrated to be involved in mRNA processing and transport [Gabler, Schutt, Groitl, Wolf, Shenk and Dobner (1998) J. Virol. 72, 7960-7971]. In the present paper, we demonstrate that E1B-AP5 differentially regulates basic and ligand-dependent transcription. We found that E1B-AP5 represses basic transcription driven by several virus and cellular promoters, and mapped the repression activity to the N-terminal part of the protein. In contrast with basic repression, E1B-AP5 activated the glucocorticoid-dependent promoter in the absence of dexamethasone, but did not contribute to the dexamethasone-induced activation. Mutant analysis indicated the presence of an additional cellular factor that modulates E1B-AP5 transcriptional activity. Using yeast two-hybrid screening, we identified a novel chromatin-associated bromodomain-containing protein, BRD7, as an E1B-AP5 interaction partner. We confirmed E1B-AP5-BRD7 complex formation in vivo and in vitro. We found that, although BRD7 binds to histones H2A, H2B, H3 and H4 through its bromodomain, this domain was not necessary for the interaction with E1B-AP5. Indeed, the triple complex formation of E1B-AP5, BRD7 and histones was demonstrated. Disruption of the E1B-AP5-BRD7 complex increased E1B-AP5 repression activity for basic transcription and converted it from being an activator of the hormone-dependent promoter into being a strong repressor. We conclude that complex formation between BRD7 and E1B-AP5 links chromatin events with mRNA processing at the level of transcriptional regulation.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Universität Heidelberg, Uni-Klinikum Mannheim, Dermatologie, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany.
| | | | | | | |
Collapse
|
33
|
Huang W, Flint SJ. Unusual properties of adenovirus E2E transcription by RNA polymerase III. J Virol 2003; 77:4015-24. [PMID: 12634361 PMCID: PMC150658 DOI: 10.1128/jvi.77.7.4015-4024.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2002] [Accepted: 12/23/2002] [Indexed: 01/13/2023] Open
Abstract
In adenovirus type 5-infected cells, RNA polymerase III transcription of a gene superimposed on the 5' end of the E2E RNA polymerase II transcription unit produces two small (<100-nucleotide) RNAs that accumulate to low steady-state concentrations (W. Huang, R. Pruzan, and S. J. Flint, Proc. Natl. Acad. Sci. USA 91:1265-1269, 1984). To gain a better understanding of the function of this RNA polymerase III transcription, we have examined the properties of the small E2E RNAs and E2E RNA polymerase III transcription in more detail. The accumulation of cytoplasmic E2E RNAs and the rates of E2E transcription by the two RNA polymerases during the infectious cycle were analyzed by using RNase T(1) protection and run-on transcription assays, respectively. Although the RNA polymerase III transcripts were present at significantly lower concentrations than E2E mRNA throughout the period examined, E2E transcription by RNA polymerase III was found to be at least as efficient as that by RNA polymerase II. The short half-lifes of the small E2E RNAs estimated by using the actinomycin D chase method appear to account for their limited accumulation. The transcription of E2E sequences by RNA polymerase II and III in cells infected by recombinant adenoviruses carrying ectopic E2E-CAT (chloramphenicol transferase) reporter genes with mutations in E2E promoter sequences was also examined. The results of these experiments indicate that recognition of the E2E promoter by the RNA polymerase II transcriptional machinery in infected cells limits transcription by RNA polymerase III, and vice versa. Such transcriptional competition and the properties of E2E RNAs made by RNA polymerase III suggest that the function of this viral RNA polymerase III transcription unit is unusual.
Collapse
Affiliation(s)
- Wenlin Huang
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | |
Collapse
|
34
|
Gonzalez RA, Flint SJ. Effects of mutations in the adenoviral E1B 55-kilodalton protein coding sequence on viral late mRNA metabolism. J Virol 2002; 76:4507-19. [PMID: 11932416 PMCID: PMC155063 DOI: 10.1128/jvi.76.9.4507-4519.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Accepted: 01/30/2002] [Indexed: 11/20/2022] Open
Abstract
The human subgroup C adenoviral E1B 55-kDa protein cooperates with the viral E4 Orf6 protein to induce selective export of viral, late mRNAs from the nucleus to the cytoplasm. Previous studies have suggested that such preferential transport of viral mRNA and the concomitant inhibition of export of cellular mRNAs are the result of viral colonization of specialized microenvironments within the nucleus. However, neither the molecular basis of this phenomenon nor the mechanism by which the E1B 55-kDa protein acts has been elucidated. We therefore examined viral late mRNA metabolism in HeLa cells infected with a series of mutant viruses that carry insertions at various positions in the E1B protein coding sequence (P. R. Yew, C. C. Kao, and A. J. Berk, Virology 179:795-805, 1990). All the mutations examined impaired cytoplasmic accumulation of viral L2 mRNAs and reduced L2 mRNA export efficiency. However, in most cases these defects could be ascribed to reduced E1B 55-kDa protein concentration or the unexpected failure of the altered E1B proteins to enter the nucleus efficiently. The latter property, the pleiotropic defects associated with all the mutations that impaired nuclear entry of the E1B protein, and consideration of its primary sequence suggest that these insertions result in misfolding of the protein. Insertion of four amino acids at residue 143 also inhibited viral mRNA export but resulted in increased rather than decreased accumulation of the E1B 55-kDa protein in the nucleus. This mutation specifically impaired the previously described association of the E1B protein with intranuclear structures that correspond to sites of adenoviral DNA replication and transcription (D. Ornelles and T. Shenk, J. Virol. 65:424-439, 1991) and the colocalization of the E1B and E4 Orf6 proteins. As this insertion has been shown to inhibit the interaction of the E1B with the E4 Orf6 protein in infected cell extracts (S. Rubenwolf, H. Schütt, M. Nevels, H. Wolf, and T. Dobner, J. Virol. 71:1115-1123, 1997), these phenotypes provide direct support for the hypothesis that selective viral mRNA export is determined by the functional organization of the infected cell nucleus.
Collapse
Affiliation(s)
- Ramon A Gonzalez
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
35
|
Orlando JS, Ornelles DA. E4orf6 variants with separate abilities to augment adenovirus replication and direct nuclear localization of the E1B 55-kilodalton protein. J Virol 2002; 76:1475-87. [PMID: 11773420 PMCID: PMC135776 DOI: 10.1128/jvi.76.3.1475-1487.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E4orf6 protein of group C adenovirus is an oncoprotein that, in association with the E1B 55-kDa protein and by E1B-independent means, promotes virus replication. An arginine-faced amphipathic alpha-helix in the E4orf6 protein is required for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein and to enhance replication of an E4 deletion virus. In this study, E4orf6 protein variants containing arginine substitutions in the amphipathic alpha-helix were analyzed. Two of the six arginine residues within the alpha-helix, arginine-241 and arginine-243, were critical for directing nuclear localization of the E1B 55-kDa protein. The four remaining arginine residues appear to provide a net positive charge for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein. The molecular determinants of the arginine-faced amphipathic alpha-helix that were required for the functional interaction between the E4orf6 and E1B 55-kDa proteins seen in the transfected cell differed from those required to support a productive infection. Several E4orf6 protein variants with arginine-to-glutamic acid substitutions that failed to direct nuclear localization of the E1B 55-kDa protein restored replication of an E4 deletion virus. Additionally, a variant containing an arginine-to-alanine substitution at position 243 that directed nuclear localization of the E1B 55-kDa protein failed to enhance virus replication. These results indicate that the ability of the E4orf6 protein to relocalize the E1B 55-kDa protein to the nucleus can be separated from the ability of the E4orf6 protein to support a productive infection.
Collapse
Affiliation(s)
- Joseph S Orlando
- Department of Microbiology and Immunology, School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
36
|
Abstract
Previous investigations into potential transforming activities of adenovirus (Ad) early genes were largely overshadowed by the more obvious roles of E1A and E1B products. One exception was an Ad9 E4 protein (ORF1) shown to enhance transformation of cultured cells and promote mammary tumors in female rats. Recently, significant advances in understanding Ad E4 gene products at the molecular level have revealed that these proteins possess an unexpectedly diverse collection of functions, which not only orchestrate many viral processes, but overlap with oncogenic transformation of primary mammalian cells. Operating through a complex network of protein interactions with key viral and cellular regulatory components, Ad E4 products are apparently involved in transcription, apoptosis, cell cycle control, DNA repair, cell signaling, posttranslational modifications and the integrity of nuclear multiprotein complexes known as PML oncogenic domains (PODs). Some of these functions directly relate to known transforming and oncogenic processes, or implicate mechanisms such as modulating the function and subcellular localization of cellular PDZ domain-containing proteins, POD reorganization, targeted proteolytic degradation, inhibition of DNA double-strand break repair and 'hit-and-run' mutagenesis. Here, we summarize the recent data and discuss how E4 gene product interactions may contribute to viral oncogenesis.
Collapse
Affiliation(s)
- B Täuber
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|
37
|
Abstract
Over the past few years there have been a number of interesting advances in our understanding of the functions encoded by the adenovirus early transcription unit 4 (Ad E4). A large body of recent data demonstrates that E4 proteins encompass an unexpectedly diverse collection of functions required for efficient viral replication. E4 gene products operate through a complex network of protein interactions with key viral and cellular regulatory components involved in transcription, apoptosis, cell cycle control and DNA repair, as well as host cell factors that regulate cell signaling, posttranslational modifications and the integrity of nuclear multiprotein complexes known as nuclear bodies (NBs) or PML oncogenic domains (PODs). As understood at present, some of the lytic functions overlap with roles in oncogenic transformation of primary mammalian cells. These observations, together with findings that E4 proteins substantially affect cell toxicity and the immune response of the host have profound implications for the development of Ad vectors for gene therapy. In this article we will summarize recent findings regarding the diverse functions of E4 gene products in the context of earlier work. We will emphasize the interaction of E4 proteins with cellular and viral interaction partners, the role of these interactions for lytic virus growth and how these interactions may contribute to viral oncogenesis. Finally, we will discuss their role in Ad vector and adeno-associated virus infections.
Collapse
Affiliation(s)
- B Täuber
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|
38
|
Endter C, Kzhyshkowska J, Stauber R, Dobner T. SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc Natl Acad Sci U S A 2001; 98:11312-7. [PMID: 11553772 PMCID: PMC58726 DOI: 10.1073/pnas.191361798] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
SUMO-1 is a small ubiquitin-related modifier protein that is covalently linked to many cellular and viral protein targets. Modification by SUMO-1 is proposed to play a role in protein targeting and/or stability. We show here that adenovirus type 5 early region 1B 55-kDa (E1B-55kDa) oncoprotein can be covalently modified by SUMO-1 in vivo through a major attachment site comprising a single lysine residue at amino acid position 104. The sequence surrounding this lysine matches the proposed PsiKxE consensus motif required for SUMO-1 conjugation. A single mutation (K104R) that abolishes SUMOylation of E1B-55kDa dramatically reduces the ability of the adenovirus type 5 protein to transform primary baby rat kidney cells in cooperation with E1A and to inhibit p53-mediated transactivation. Overexpression of SUMO-1 in adenovirus type 5 E1A/E1B-55kDa-transformed baby rat kidney cells causes the relocalization of E1B-55kDa from the cytoplasm to the nucleus, where it accumulates with SUMO-1 in dot- or track-like structures. Significantly, when SUMO-1 is ectopically expressed in transformed rat cells no effect on the cytoplasmic localization of the E1B-K104R mutant protein is observed. Our results demonstrate that SUMO-1 modification is required for transformation by adenovirus type 5 E1B-55kDa and provide further evidence for the idea that this posttranslational modification plays a role in protein targeting to specific subcellular sites.
Collapse
Affiliation(s)
- C Endter
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | | | | | | |
Collapse
|